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A GEOMETRIC REPRESENTATION

NICHOLAS PHAT NGUYEN (NICHOLAS.PN@GMAIL.COM)

Abstract. This article provides a geometric representation for the well-known
isomorphism between the special orthogonal group of an isotropic quadratic
space of dimension 3 and the group of projective transformations of a pro-
jective line. This geometric representation depends on the theory of inversive
transformations in dimension 1 as outlined in the 2021 article Projective Line

Revisited by the same author. This geometric representation also provides a
new perspective on some classical properties of the projective line, such as the
classical cross ratio.
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1. Introduction

It has been known since the 1950s that the special orthogonal group of an
isotropic quadratic space of dimension 3 is isomorphic to the group of projective
transformations of a projective line. That is discussed, for example, near the end
of the classic 1957 book Geometric Algebra by Emil Artin. See [1] at Theorem
5.20. (The Artin book has been republished in a 2016 edition by Dover.) See also
[2] at section 25. Specifically, let V be a vector space of dimension 3 over a com-
mutative coordinate field K of characteristic 6= 2, and suppose that V is endowed
with a regular quadratic form. If the quadratic space V is isotropic, i.e., if V has
an isotropic vector, then the special orthogonal group SO(V ) is isomorphic to the
group PGL(1,K) of projective transformations of the projective line K ∪ {∞}.

However, that isomorphism is based on general algebraic considerations of the as-
sociated Clifford algebra, and by itself has no geometric representation. Specifically,
the theory of Clifford algebra in dimension 3 tells us that the special orthogonal
group of V is isomorphic to the group of invertible elements of the even Clifford
algebra modulo scalar factors. The even Clifford algebra in this case is a quaternion
algebra (central simple of dimension 4), and in particular must be isomorphic to a
matrix algebra because the quadratic space is isotropic. So the special orthogonal
group is isomorphic to the group of invertible 2-by-2 matrices modulo scalar factors,
which is PGL(1,K).

To my knowledge, there has been no published account of any geometric repre-
sentation for the above equivalence. By geometric representation, I mean a projec-
tive line constructed from the given quadratic space V and a faithful action of the
group SO(V ) on that line which is the same as the group of projective transforma-
tions. The goal of this article is to provide such a geometric representation, by the
theory of inversive transformations in dimension 1 as outlined in my earlier article
Projective Line Revisited. See [3].
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For the convenience of the reader, we summarize here the basic ideas of our
geometric representation. Given an isotropic quadratic space V of dimension 3,
we consider the projective quadric defined by the quadratic form of V . The group
SO(V ) is naturally isomorphic to the projective orthogonal group of V , and its
action on the quadric is naturally the same as the faithful action by the projec-
tive orthogonal group on the quadric, which is generated by reflections defined by
nonisotropic vectors of V .

There is a natural way for us to identify that quadric with the points of the
projective line K ∪ {∞} = P(K2), and to identify nonisotropic vectors of V with
regular quadratic forms on K2. Under that identification, we will show that the
action on the projective quadric defined by a nonisotropic vector of V is the same
as the involution or inversive transformation defined by the associated quadratic
form on P(K2). The action of such inversive transformations has been defined and
analyzed in [3].

Accordingly, by using the theory of inversive transformations in dimension 1 as
outlined in my earlier paper Projective Line Revisited, we can identify the action
of the special orthogonal group on the projective quadric of V with the projective
transformations of a projective line K ∪ {∞}.

With this geometric representation, we also gain a new perspective on some
classical properties of the projective line, which we will discuss at the end of the
article.

2. Isotropic Quadratic Space of Dimension 3

Let V be a K-vector space of dimension 3 over a commutative coordinate field
K of characteristic 6= 2, with a given regular quadratic form φ.

If V is isotropic, then the quadratic space V can be expressed as a direct sum of <
d > and an Artinian plane (also known as a hyperbolic plane), where < d > denotes
the quadratic form on K given by x 7→ dx2, i.e., the associated bilinear pairing is
d times ordinary multiplication. We can always choose a suitable orthogonal basis
so that the quadratic form φ on V can be put in the diagonal form < d, d,−d > =
d < 1, 1,−1 >. For any nonzero scalar e, the form φ and the form eφ have the same
projective quadric, and the groups SO(φ) and SO(eφ) are naturally isomorphic,
with the same action on the quadric. See, e.g., [2] at Lemma 24.9. So for our
purpose, we can assume that the quadratic form on V is isomorphic to the form
< 1, 1,−1 >, which is the sum of K with ordinary multiplication and an Artinian
plane.

(If interested, the reader can work directly with the form < d, d,−d > by making
necessary adjustments in relevant formulas. However, in order to keep our references
and formulas simple, we will work with the standard isotropic form < 1, 1,−1 >.)

The space V with the standard isotropic form < 1, 1,−1 > is isomorphic to the
space of all symmetric bilinear forms on K2, with a suitable pairing as described
below.

To be specific, consider the set E of all polynomials p(X) of degree ≤ 2, with
coefficients in the field K. The set E is naturally a K-vector space of dimension 3.
We will refer to a nonzero polynomial p as a 2-cycle, 1-cycle, or 0-cycle depending
on whether the degree of p is 2, 1, or 0. For convenience, we will write each element
p of E in the same form p(X) = aX2 + bX + c, with the understanding that each
coefficient a, b, and c could be zero.
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We can endow the vector space E with a symmetric bilinear form as follows: if
p = aX2 + bX + c and p∗ = a∗X2 + b∗X + c∗, then we define

〈p, p∗〉 = bb∗ − 2ac∗ − 2a∗c.

We refer to this pairing as the cycle pairing or cycle product on E. The cycle
pairing is plainly isomorphic to the sum of K (represented by the middle coefficient,
with ordinary multiplication) and an Artinian plane.

We can think of E as the space of all symmetric bilinear forms on K2. Specif-
ically, a cycle p of E can be thought of as a function from K to K given by
p(x) = q((x, 1), (x, 1)) where q is a symmetric bilinear form on K2.1

If p = aX2 + bX + c, then the matrix for the corresponding symmetric bilinear
form q (relative to the standard basis of K2) has entries a and c in the main
diagonal, and entries b/2 in the cross diagonal. In other words, we can think of
p = aX2 + bX + c as an abbreviated expression for the homogeneous polynomial
aX2 + bXY + cY 2.

The space E with the cycle pairing is isometric to V , and so we can restrict our
attention in the following to E.

Proposition 2.1. The isotropic cycles of E (with respect to the cycle pairing de-
fined above) are the 0-cycles and the 2-cycles with zero discriminant b2 − 4ac. To
each such isotropic cycle, we can associate a nonzero vector (x, y) in K2, unique
up to scalar factors, that represents the projective zero point of that isotropic cycle
(regarded as a quadratic form on K2).

Proof. The 0-cycles p = c are clearly isotropic. The 1-cycles p = bX + c with
b 6= 0 are never isotropic as the norm 〈p, p〉 of such a cycle is b2. For a 2-cycle
p = aX2 + bX + c with a 6= 0, its norm 〈p, p〉 = b2 − 4ac, which is the well-known
discriminant of the quadratic polynomial p.

Each 0-cycle p = c, regarded as the quadratic form cY 2 on K2, has the same zero
vectors (x, 0), which represent the point at infinity in the projective line P(K2).
Each 2-cycle with zero discriminant can be written as a(X − u)(X − u) = a(X2 −
2uX + u2), and regarded as a quadratic form on K2, that 2-cycle has (ux, x) as
zero vectors. Those zero vectors represent the finite point (u, 1) of the projective
line P(K2). �

Based on the above description of isotropic cycles in E, the quadric of E under
the cycle pairing has a natural identification with the projective line P(K2).

3. Action of SO(E) on the Quadric

Note that because E has odd dimension, the map v 7→ −v has determinant −1.
Accordingly, the natural homomorphism of SO(E) to the projective orthogonal
group of E is an isomorphism. The natural action of SO(E) on the projective
quadric of E is the same as the natural action of the projective orthogonal group,
and such action is generated by reflections (or symmetries) defined by nonisotropic
elements of E. As a threshold matter, we want to show that the action of the
projective orthogonal group of E on the quadric is faithful, meaning that the only

1The elements p of E are defined as polynomials of degree 2 or less, but because the field K

has 3 or more elements, such a polynomial p can be identified with a polynomial function from K

to K.
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projective orthogonal transformation of E that leaves invariant all points of the
quadric is the identify transformation. Take the following cycles in E:

• u = X.X
• v = (X − 1).(X − 1) = X.X − 2X + 1
• w = 1
• t = X.X − 4X + 4 = −u+ 2v + 2w

Note that u, v, and w are a linear basis of the 3-dimensional vector space E, and
t can be expressed as a linear combination of u, v, and w with no zero coefficient.
These 4 points therefore give us a projective frame of E. Moreover, all these points
are isotropic. Therefore, if a projective transformation leaves all isotropic points in
the projective space of E invariant, it must be the identity transformation.

We now determine the action of a reflection, defined by a nonisotropic cycle in
E, on the quadric.

Proposition 3.1. Given a nonisotropic cycle in E, the reflection defined by that
cycle has the same action on the quadric of E as the involution or inversive trans-
formation defined by that cycle on the projective line P(K2) = K ∪{∞}, where the
quadric of E is identified with the projective line as discussed above.

Proof. Let us first make the following key observation about the identification of
the projective quadric of E with the projective line P(K2). If p is a cycle in E,
then the zero points of p in P(K2), if any, are identified with the isotropic cycles
of E that are orthogonal to p under the cycle pairing.

Indeed, consider a 0-cycle p = c. Regarded as the quadratic form cY 2 on K2,
that cycle has only one zero point in P(K2), namely the point at infinity represented
by the vectors (u, 0). That point is identified with any 0-cycle r = u. It is clear
that 〈p, r〉 = 0.

Now consider any 1-cycle p = bX+ c, with b 6= 0. That cycle has two zero points
in P(K2), namely the point at infinity represented by the vectors (u, 0) and also
the finite point represented by (c,−b), which corresponds, up to a scalar factor, to
the cycle q = X2 + (2c/b)X + (−c/b)2 under our identification. The cycle pairing
of p with the cycle r = u is clearly zero. The cycle pairing of p with the cycle
q = X2 + (2c/b)X + (−c/b)2 is equal to 2c− 2c = 0. So our observation also holds
in this case.

Now consider a 2-cycle aX2 + bX + c, with a 6= 0. The point at infinity is
not a zero point of that cycle. If the polynomial aX2 + bX + c is not irreducible
over K, so that the expression has roots u and v in K (which may be the same
if the root is repeated), then the cycle has zero points represented by (u, 1) and
(v, 1). Take the zero point (u, 1) as example, it is represented by the isotropic cycle
q = X2 − 2uX + u2. The cycle pairing 〈p, q〉 = −2ub − 2au2 − 2c = −2p(u) = 0.
So the observation holds in all cases.

Let p be a nonisotropic cycle in E. The reflection defined by p is the linear
transformation of E given by the following well-known formula:

x 7→ x′ = x−
2〈x, p〉

〈p, p〉
p
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This is a transformation of order 2, so the action of this reflection on the quadric
is determined by the fixed points (if any), and pairs of points conjugate under the
reflection.

The reflection equation tells us that a point on the quadric represented by x is
invariant under the reflection action if and only if 〈x, p〉 = 0. By our observation
above, the isotropic point represented by xmust be a zero point of the cycle p under
our identification of the quadric with a projective line. That implies the reflection
action on the quadric either has exactly two fixed points, or none at all.

We will now show that each pair of conjugate points are the zero points of a
cycle orthogonal to p under the cycle pairing.

Let u and v be a pair of distinct conjugate points under the reflection by p. Fist,
we consider the case where both these points are finite.

The cycle (X−u)(X−v) has u and v as zero points, and therefore it is orthogonal
to the isotropic cycles X2 − 2uX + u2 and X2 − 2vX + v2. Because reflection is
an orthogonal transformation, it must map the cycle (X − u)(X − v) to something
that is orthogonal to both X2 − 2uX + u2 and X2 − 2vX + v2, i.e., to a cycle
that has u and v as zero points. But up to a scalar factor, (X − u)(X − v) is the
only cycle with that property. Therefore, (X − u)(X − v) is an eigenvector of the
reflection. A reflection has eigenvectors with either eigenvalue 1 (for vectors in the
orthogonal complement of p) or eigenvalue -1 (for vectors proportional to p). That
means (X−u)(X− v) must be a vector in the orthogonal complement of p because
it clearly is not proportional to p (not having the same zero points).

Now consider the case where one of the conjugate points, say v, is the point at
infinity. In this case, u and ∞ are the zero points of the 1-cycle X − u. Moreover,
because ∞ is not a fixed point of the reflection defined by p, p must be a 2-cycle.
Let p = aX2 + bX + c with a 6= 0 and discriminant < p, p >= b2 − 4ac 6= 0. If we
identify ∞ with a 0-cycle q = d, then the reflection formula gives us

q 7→ q′ = q −
2〈q, p〉

〈p, p〉
p = −saX2 − sbX − sc+ d,

where for abbreviation we have written

s =
2〈q, p〉

〈p, p〉
= −

4ad

b2 − 4ac
.

Note that q′ is a 2-cycle, and of course isotropic because it is the transform of
an isotropic cycle under an orthogonal mapping. By looking at the coefficients of
X2 and X , we can readily see that this must be an isotropic 2-cycle with −b/2a
as zero point. So we can take u = −b/2a. The cycle pairing between the 1-cycle
X + b/2a and p = aX2 + bX + c gives us b− 2(b/2a)a = 0.

Therefore the reflection defined by p gives us an action on the quadric where
the fixed points (if any) are the zero points of p and the pairs of distinct conjugate
points are zero points of cycles orthogonal to p.

Proposition 1 of [?] tells us that this action is exactly the same as the action
defined by the involution or inversive transformation associated with p, under our
identification of the quadric of E with P(K2). �

Because involutions generate all the projective transformations of the projective
line, the action of SO(E) on the quadric is the same as the action of all projective
transformations of the projective line. That means the natural morphism of SO(E)
to PGL(1,K) given by this geometric representation is surjective. In addition,
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since the action of SO(E) on the quadric of E is faithful, as we showed earlier,
that morphism of SO(E) to PGL(1,K) is also injective. Therefore, the morphism
is bijective and the above geometric representation gives us a natural isomorphism
between SO(E) and PGL(1,K).

The action of SO(E) on the quadric is the same as the action of the projective
orthogonal transformations, and each element of SO(E) can be written as a product
of two reflections according to the theorem of Cartan-Dieudonne (recall that dimE
= 3). Therefore, our geometric representation provides a clear demonstration or
explanation of the classical fact that each projective transformation in dimension
1 is a product of two involutions. In fact, our geometric representation shows that
each involution itself can also be written as a product of two other involutions,
because the action of such an involution, once we identify it with a transformation
in SO(E), can be translated into a product of two reflections.

4. A Natural Cross Ratio

Following in the footsteps of Felix Klein, we are interested in finding numbers
associated with configurations of points in the projective quadric of E that are
invariant under the action of the projective orthogonal group PO(E).

If u and v are any representative vectors of two distinct points in the projective
quadric, the pairing 〈u, v〉 is invariant under the action of PO(E). However, that
pairing by itself cannot be an invariant, because different representative vectors will
give us different values of the pairing due to different scalar factors.

Note that 〈u, v〉 is always nonzero, because otherwise the two vectors u and
v will generate a totally isotropic subspace of dimension 2, which by the Witt
decomposition would mean E contains the sum of two Artinian planes, which of
course is impossible when dimE = 3. With that in mind, we can consider the
following cross ratio associated to any four distinct points in the quadric, with
representative vectors x, y, z, t:

〈x, z〉〈y, t〉

〈x, t〉〈y, z〉

This cross ratio is well-defined because any pairing value of two distinct points
is always nonzero as noted above, and moreover the cross ratio gives us the same
value regardless of which representative vectors are chosen for the four distinct
points due to cross cancellation of scalar factors. Accordingly, this cross ratio is
naturally invariant under the action of PO(E).

Our geometric representation shows that projective transformations of the pro-
jective line are equivalent to orthogonal transformations of the quadric in a (regular)
isotropic quadratic space of dimension 3. For two finite points u and v on the pro-
jective line, if we take the 2-cycles X2–2uX + u2 and X2–2vX + v2 as isotropic
cycles representing the corresponding points on the quadric of E, then their cycle
pairing is –2(u–v)2. That means the natural cross ratio for that quadric is equal to
the square of the classical cross ratio of a projective line.

Accordingly, our geometric representation gives us a new perspective on the
classical cross ratio. This new perspective also suggests the following proposition.

Proposition 4.1. Any transformation of a projective line over a field K of char-
acteristic 6= 2 that leaves invariant the square of the classical cross ratio must be a
projective transformation.
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Proof. Let f be a transformation of the projective lineK∪{∞} that leaves invariant
the square of the classical cross ratio. We will show that if 0, 1 and ∞ are fixed
by f , then f must be the identity transformation. This will prove the proposition,
because any three distinct points can be mapped by a projective transformation to
0, 1 and ∞.

For any point λ 6= 0, 1,∞, the classical cross ratio [λ, 1; 0,∞] = λ. So f(λ) = λ
or f(λ) = −λ. This implies that f(–1) = –1, as we already have f(1) = 1.

Let λ 6= 0, 1,−1,∞. The cross ratio [λ, –1; 1,∞] = (1–λ)/2. If f(λ) = –λ,
then the square of that cross ratio must be equal to the square of the cross ra-
tio [−λ,−1; 1,∞] = (1 + λ)/2. That means (1–λ)2 = (1 + λ)2 or –2λ = 2λ, a
contradiction as λ 6= 0. Accordingly, f(λ) = λ for all λ, i.e., f is the identity
transformation. �

We should mention that by the same reasoning, we have the same natural cross
ratio for the quadric of any space E of Witt index 1 (meaning the space is iso-
morphic to a sum of an Artinian plane and an anisotropic space, i.e., having no
isotropic vectors). The same invariant applies if we just work with a subset of that
quadric stable under the action of a subgroup of PO(E). It happens that some
well-known geometric spaces, such as the hyperbolic plane or hyperbolic spaces of
higher dimensions, can be regarded as subset of such a quadric in a space of Witt
index 1, and the relevant geometric transformation group can be identified with
a subgroup of PO(E). In those situations, the cross ratio described here gives a
natural invariant for the geometry. In addition, if we restrict to certain subgroups
of PO(E), other invariants may also come up in a natural way. For example, if we
look at the geometry defined by the subgroup of orthogonal transformations leaving
invariant a given nonisotropic vector p of E, then the expression

〈x, p〉〈y, p〉

〈x, y〉

clearly gives us another natural invariant for that geometry. I hope that the inter-
ested reader will have a happy time exploring these questions.
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