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I. INTRODUCTION

One of the intriguing asymmetry in nature is the empirical absence of magnetic monopole.

Its non-existence breaks the Maxwellian duality symmetry. Their theoretical existence can

nevertheless be put by hand in the Abelian theory. It was Dirac [1] who first seriously

considered the monopole’s physical existence by showing that it can explain how electric

charge is quantized. In doing so, he necessarily introduced the existence of an unphysical

string describing the singularity of the monopole. This singularity seems to be an artifact

of the Abelian gauge group.

While the monopole can be added in the Abelian gauge theory, they must exist in certain

non-Abelian gauge formalisms. Wu and Yang [2] proposed magnetic monopole without sin-

gular string using the non-aAbelian SU(2) gauge theory. Later, ’t Hooft [3] and Polyakov [4]

introduced magnetic monopole as topological soliton, which shows that the SU(2) gauge the-

ory allows finite energy monopole solution. For excellent review on magnetic monopoles as

topological solitons see, for example, [5, 6]. Unfortunately the correct non-Abelian construc-

tion for electroweak unification in nature is based on the SU(2) × U(1)Y Weinberg-Salam

model [7, 8] whose vacuum manifold is a 3-sphere, M = SU(2) × U(1)/U(1) ∼= S3. Thus,

the second homotopy group is trivial, π2 (S3) = I.

Upon closer inspection, it is revealed that the vacuum manifold of the bosonic sector

of Weinberg-Salam theory can have a non-contractible loop [9], suggesting the existence

of monopole defects. This is made precise by Cho and Maison [10] who realized that the

extra U(1) hypercharge can be viewed as a gauged CP1, thus resulting in π2 (CP1) = Z.

The Cho-Maison (CM) monopole, however, suffers from the singularity of energy due to its

Coulombian (point-like) U(1) hypercharge. This singularity can be understood if we view

the CM monopole as a hybrid between the U(1) (singular) Dirac and the SU(2) (regular)

t’Hooft-Polyakov monopoles [11, 12]. Inspite of it, recent investigation has shown that the

perturbation spectra of this electroweak monopole do not contain any negative mode; thus

stable [13]. It was originally hoped that the infinite energy can be made finite by either:

embedding it into a larger (say, SU(5)) GUT group [14], or coupling it with gravity [15].

The experimental search for magnetic monopole has been run, for example by MoEDAL

collaboration, extensively [16–22]. CM monopole becomes one of the prominent candidate

since it emerges from the realistic electroweak unification group. However, to detect its
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existence we need its mass estimate, and it is not so trivial given the singularity of the

energy. In [12] Cho, Kim, and Yoon (CKY) proposed three ways to estimate the mass bound:

dimensional argument, scaling argument, both of which are backed up by ultra-violet (UV)

regularization. Their calculation shows that the monopole mass is around 4 TeV <∼ MW
<∼ 7

TeV, which should be accessible to the MoEDAL. The CKY UV-regularization is based on

the non-minimal coupling between the Higgs and the U(1)-gauge fields, L ∋ ϵ (|H|)BµνB
µν

with ε (|H|) ∝ |H|8. Ellis, Mavromatos, and You (EMY) [23] found that such power-law

ϵ regulator phenomenologically contradicts the Higgs decay H → γγ [24]. Instead, they

proposed more general polynomial functions whose coefficients are determined by requiring

that ϵ satisfies the Principle of Maximum Entropy (PME) [23]. This approach gives a

theoretical prediction that the electroweak magnetic monopole can be observed with a mass

<∼ 5.5 TeV.

It is well-known that in the limit of vanishing potential the monopole is stable with

globally-minimum energy. This is the Bogomolny-Prasad-Sommerfield (BPS) limit [25, 26].

Blaschke and Beneš were the first to show that the CKY model has BPS state in its spec-

trum [27]. Using the Bogomolny formalism [25] they calculated the lower bound of the

energy to be MW ∼ 2.37 TeV. Employing different regularization mechanism, Zhang, Zhou,

and Cho (ZZC) obtained an energy bound around 3.75 TeV [28], but in the BPS state

it approaches 2.37 TeV. Interestingly, the ZZC model allows the existence of non-unique

BPS states. With different Bogomolny equations they show that they could obtain the

energy bound 2.98 TeV. The non-uniqueness of BPS state in ZZC model of electroweak

monopole is truly remarkable. The t’Hooft-Polyakov monopole and all its non-canonical

variants (see [29–31]) have a single BPS eenergy lower bound. To the best of our knowledge,

the CM electroweak monopole in this ZZC regularization model is the first solitons with

non-unique BPS energy. Investigating further the other possible sector of BPS states in this

ZZC model is preceisely the aim of this work.

In this paper we try to construct other possible BPS configurations in the ZZC electroweak

monopole by employing one of the Bogomolny formalism. This paper is organized as follows.

In Sect. II we briefly review the electroweak monopole. To obtain the BPS equations we

employ one of the Bogomolny formalism. This method is reviewed in Sect. III. We apply the

Bogomolny method to the electroweak monopole with electromagnetic permittivity regulator

in Sect. IV. In Sect. V we discuss several alternative proposals for electroweak monopole
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regularization and the existence of their BPS states. Finally, in Sect. VI we disucss our

results.

II. ELECTROWEAK MONOPOLE: A REVIEW

Here we briefly review the existence of magnetic monopole in electroweak theory. The

discussion heavily follows Refs. [10, 32].

The electroweak theory is described by the SU(2)× U(1)Y Weinberg-Salam model [7, 8]

whose Lagrangian consists of the following four parts:

LEW = Lh + Lg + Lf + Ly. (1)

Here Lh, Lg, Lf , and Ly denote the scalar Englert-Brout-Higgs, the Abelian and non-Abelian

gauge, the fermionic, and the interactions between the fermions Lagrangians, respectively,

Lh = −|D̂µH|2 − λ

2

(
H†H − µ2

λ

)2

,

Lg = −1

4
F a
µνF

aµν − 1

4
GµνG

µν ,

Lf = Q̄ji /DQj + ūji /Duj + d̄ji /Ddj + L̄ji /DLj + ēji /Dej,

Ly = −yuijϵ
abh†

bQ̄iau
c
j − ydijhQ̄id

c
j − yeijhL̄ie

c
j + h.c.,

where D̂µ is the SU(2)× U(1)Y covariant derivative,

D̂µH ≡
(
∂µ − i

g

2
σaAa

µ − i
g′

2
Bµ

)
H =

(
Dµ − i

g′

2
Bµ

)
H.

The Englert-Brout-Higgs field H is responsible for the SU(2)× UY (1) → Uem(1) symmetry

breaking, with Uem(1) is the abelian gauge group for electromagnetism. The vector potential

Aa
µ and Bµ in the field strength tensors F a

µν (a = 1, 2, 3) and Gµν , respectively, are the gauge

fields from SU(2) and hypercharge UY (1).

The Cho-Maison monopole can be found in the bosonic sector of the Lagrangian (1)

L = Lh + Lg

= −|D̂µH|2 − λ

2

(
H†H − µ2

λ

)2

− 1

4
F a
µνF

aµν − 1

4
GµνG

µν

= −1

2
(∂µρ)

2 − ρ2

2
|Dµξ|2 −

λ

8
(ρ2 − ρ20)

2 − 1

4
F a
µνF

aµν − 1

4
GµνG

µν , (2)
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where in the last line the field H is decomposed into the Higgs field ρ and the unit doublet

ξ, H ≡
(
ρ/
√
2
)
ξ with ξ†ξ = 1. We also define ρ0 ≡

√
2µ2/λ to be the expectation value

of the Higgs field in vacuum. The most general ansatz for CM monopole compatible with

spherical symmetry is as follows [10, 28, 32]:

ρ = ρ(r), ξ = i

sin (θ/2) e−iφ

− cos (θ/2)

 ,

n̂ = −ξ†σξ = r̂, Cµ = −1

g
(1− cos θ) ∂µφ

Aµ =
1

g
A(r)∂µtr̂ +

1

g
(f(r)− 1) r̂ × ∂µr̂,

Bµ =
1

g′
B(r)∂µt−

1

g′
(1− cos θ) ∂µφ. (3)

Note that for the case of pure magnetic monopole, A(r) = B(r) = 0. The gauge ansatz Aa
µ

and Bµ in (3) can be written in the complete form:

At = (0, 0, 0) = Ar,

Aθ =
1− f(r)

g
(sinφ,− cosφ, 0) ,

Aφ =
1− f(r)

g
sin θ (cosφ cos θ, sinφ cos θ,− sin θ) ,

Bt = 0 = Br = Bθ, Bφ = − 1

g′
(1− cos θ) .

The unitary transformation ξ → Uξ =

0

1

 allows one to define physical gauge fields

consisting of the electromagnetic field A
(em)
µ , the charged and the netral bosons Wµ Zµ,

respectively:

A(em)
µ = e

(
1

g2
A(r) +

1

g′2
B(r)

)
∂µt−

1

e
(1− cos θ) ∂µφ,

Wµ =
i

g

f(r)√
2
eiφ (∂µθ + i sin θW∂µφ) ,

Zµ =
e

gg′
(A(r)−B(r)) ∂µt. (4)
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The Lagrangian (1) in terms of the physical fields can be rewritten as

L = −1

2
(∂µρ)

2 − λ

8

(
ρ2 − ρ20

)2 − 1

4
F ′2

µν −
1

4
G2

µν −
1

2
|D′

µWν −D′
νWµ|2

−g2

4
ρ2W ∗

µW
µ − g2 + g′2

8
ρ2Z2

µ + igF ′
µνW

∗µW ν +
g2

4

(
W ∗

µWν −W ∗
νWµ

)2
= −1

2
(∂µρ)

2 − λ

8

(
ρ2 − ρ20

)2 − 1

4
F (em)
µν

2 − 1

4
Z2

µν −
g2

4
ρ2W ∗

µW
µ − g2 + g′2

8
ρ2Z2

µ

−1

2
|
(
D(em)

µ + ie
g

g′
Zµ

)
Wν −

(
D(em)

ν + ie
g

g′
Zν

)
Wµ|+ ie

(
F (em)
µν +

g

g′
Zµν

)
W ∗µW ν

+
g2

4

(
W ∗

µWν −W ∗
νWµ

)
, (5)

where

D′
µ ≡ ∂µ + igA′

µ,

Dem
µ ≡ ∂µ + ieA(em)

µ ,

F ′
µν = ∂µA

′
ν − ∂νA

′
µ,

A′
µ = Aµ + Cµ,

Cµ = −2i

g
ξ†∂µξ,

and e (defined to be the electric charge) is related to the coupling constants g and g′ by

e =
gg′√
g2 + g′2

. (6)

This corresponding field equations are

ρ′′ +
2

r
ρ′ − 1

2r2
f 2ρ =

λ

2

(
ρ2 − ρ20

)
ρ− 1

4
(B − A)2 ρ,

f ′′ − 1

r2
(
f 2 − 1

)
f =

g2

4
ρ2f − A2f. (7)

The simplest nontrivial solution of (7) is when A(r) = B(r) = f(r) = 0, ρ = ρ0 ≡
√
2µ/

√
λ,

and the EM gauge becomes

A(em)
µ = −1

e
(1− cos θ) ∂µφ, (8)

that is, a point-like magnetic monopole with the magnetic charge 4π/e.

A more general solution can be obtained when A(r), B(r), and f(r) are nonzero satisfying

the boundary conditions

ρ(0) = 0, f(0) = 1, A(0) = 0, B(0) = b0,

ρ(∞) = ρ0, f(∞) = 0, A(∞) = B(∞) = A0, (9)
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where 0 ≤ A0 ≤ eρ0 and 0 ≤ b0 ≤ A0. This condition describes a Cho-Maison dyon with

the electric charge qe and magnetic charge qm,

qe = −8π

e
sin2 θW

∫ ∞

0

f 2Adr =
4π

e
A1,

qm =
4π

e
. (10)

Here A1 is the coefficient of 1/r term in the asymptotic expansion of A(r),

A(r) → A0 +
A1

r
+ · · · . (11)

The ansatz (4) gives the energy of monopole (A(r) = B(r) = 0) in the form

E = E0 + E1, (12)

E0 ≡ 4π

∫ ∞

0

dr

2r2

{
1

g′2
+

1

g2
(
f 2 − 1

)2}
, (13)

E1 ≡ 4π

∫ ∞

0

dr

{
1

2
(rρ′)

2
+

λ

8
r2
(
ρ2 − ρ20

)2
+

1

g2
f ′2 +

1

4
f 2ρ2

}
. (14)

Applying the boundary conditions (9) for ρ and f ,E1 approaches a finite value

E1 ≈ 4.1 TeV, (15)

but E0 → ∞ at the origin. This condition implies that there is no lower bound energy for

this monopole, hence no BPS equations.

III. BPS LAGRANGIAN METHOD FOR MONOPOLE

Bogomolny formalism is a convenient way of solving soliton’s second-order field equations

by reducing them into first-order. The corresponding equations and solutions are known as

the BPS equations and BPS states, respectively. For monopole, the BPS state corresponds

to the vanishing of the potential (λ → 0) while keeping the Higgs VEV finite, µ/
√
λ →

const. [25, 26], thus preserving the non-trivial topology.

The original Bogomolny mechanism was more of a smart guess trick of completing the

square. Over the years there have been numerous proposals on constructing a systematic

algorithm for obtaining the BPS equations (see, for example, [33–35]). Among them is

the so-called “BPS Lagrangian method”, initially used for some vortices models [36]. This
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formalism has been used for obtaining BPS states of some exotic magnetic monopoles in [37].

In this method, the BPS equations are the solutions of

L − LBPS = 0. (16)

The brief review of this method is explained below.

In spherical coordinates where the system only depends on the radial coordinate r, the

total static energy in the BPS limit is the difference of a BPS energy function in the limit

r → ∞ and r → 0 [35]

EBPS = Q(r → ∞)−Q(r → 0) =

∫ ∞

0

dQ. (17)

According to the work by Atmaja, Prasetyo, and Ramadhan [36, 37], Q = ηπP (ρ)F (f) is the

suitable choice for BPS energy function in many models of vortices (η = 2) and monopoles

(η = 4), where ρ(r) and f(r) are the components of the ansatz that depend on r. We can

write LBPS as

LBPS = − 1

4πr2
dQ

dr
= − 1

r2
d

dr
{P (ρ)F (f)}

= − 1

r2

{
dP

dρ
ρ′(r)F (f) + P (ρ)

dF

df
f ′(r)

}
, (18)

with ρ′(r) ≡ dρ/dr and f ′(r) ≡ df/dr. We can see that LBPS consists of the first order

derivative of ρ(r) and f(r), so Eq. (16) is a polinomial of ρ′(r) and f ′(r).

In the model where the static lagrangian of monopole is a quadratic function of ρ′(r) and

f ′(r), Eq. (16) gives{
ρ′(r)−G

(1)
1 [ρ, f, f ′(r)]

}{
ρ′(r)−G

(2)
1 [ρ, f, f ′(r)]

}
= 0 or{

f ′(r)−G
(1)
3 [ρ, f, ρ′(r)]

}{
f ′(r)−G

(2)
3 [ρ, f, ρ′(r)]

}
= 0. (19)

If we choose to solve roots of ρ′(r) first, then to get a unique expression of ρ′(r) we restrict

G
(1)
1 −G

(2)
1 = 0. This in turn can be rearranged to give us{

f ′(r)−G
(1)
2 [ρ, f ]

}{
f ′(r)−G

(2)
2 [ρ, f ]

}
= 0, (20)

which give us one expression of f ′(r) by G
(1)
2 − G

(2)
2 = 0. This model must be valid for all

r. Therefore, if G
(1)
2 −G

(2)
2 is written as the polinomial of r,

G
(1)
2 −G

(2)
2 ≡

∑
n

anr
n = 0, (21)
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we obtain some conditions for both F (f)dP/dρ and P (ρ)dF/df from an = 0,∀n. The BPS

equations are obtained from solving these conditions for both and substituting the results

into ρ′(r) and f ′(r).

Note that in general we cannot always express LBPS proportionally as a total differential

of the boundary term, as in Eq. (18). A more general expression for LBPS can be written as

LBPS = −Qρ(ρ, f)
ρ′(r)

r2
−Qf (ρ, f)

f ′(r)

r2
, (22)

where Qρ and Qf are in general functions of both ρ and f . In this case, the total energy

(E) and the topological charge (Q) cannot directly be inferred. The definition of topological

charge, however, is still well-defined since it depends solely on the homotopy of the vacuum

manifold. In this paper we shall encounter the BPS electroweak monopole where Eq. (18)

does not hold.

IV. BOGOMOLNY FORMALISM FOR CHO-MAISON MONOPOLE WITH PER-

MITTIVITY REGULARIZATION

As an attempt to regularize the singular CM monopole, ZZC [28] proposed a non-

canonical kinetic term on the U(1) gauge sector of Lagrangian (5) by introducing a non-

vacuum electromagnetic permittivity ϵ(ρ),

L = −1

2
(∂µρ)

2 − λ

8

(
ρ2 − ρ20

)2 − 1

4
ϵ(ρ)F (em)

µν

2

−1

2

∣∣∣∣(D(em)
µ + ie

g

g′
Zµ

)
Wν −

(
D(em)

ν + ie
g

g′
Zν

)
Wµ

∣∣∣∣2
−1

4
Z2

µν −
g2

4
ρ2W ∗

µW
µ − g2 + g′2

8
ρ2Z2

µ

+ie

(
F (em)
µν +

g

g′
Zµν

)
W ∗µW ν +

g2

4

(
W ∗

µWν −W ∗
νWµ

)2
. (23)

Using the ansatz (4), the monopole field equations are

ρ′′ +
2

r
ρ′ − 1

2r2
f 2ρ =

λ

2

(
ρ2 − ρ20

)
ρ− 1

4
(B − A)2 ρ+

ϵ

2

[
1

e2r4
− e2

(
A′

g2
+

B′

g′2

)]
,

f ′′ − 1

r2
(
f 2 − 1

)
f =

g2

4
ρ2f − A2f. (24)
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The boundary condition is determined by considering the total energy:

E = E0 + E1, (25)

E0 ≡ 4π

∫ ∞

0

dr

2r2

{
ϵ

e2
+

1

g2
f 2
(
f 2 − 2

)}
, (26)

E1 ≡ 4π

∫ ∞

0

dr

{
1

2
(rρ′)

2
+

λ

8
r2
(
ρ2 − ρ20

)2
+

1

g2
f ′2 +

1

4
f 2ρ2

}
. (27)

It is evident that E0 is divergent at the origin (r → 0). This divergence can be removed by

introducing a power-law function of ϵ(ρ) [28]:

ϵ =

(
ρ

ρ0

)n{
c0 + c1

(
ρ

ρ0

)
+ · · ·

}
, (28)

ρ(r → 0) ≈ rδ (h0 + h1r + · · · ) , (29)

where δ can be determined from Eq. (24):

δ =

√
3− 1

2
, n >

2

δ
= 2

(√
3 + 1

)
≃ 5.46. (30)

In this condition, the first term in E0 is finite near origin. To make the second term in E0

finite, we need f(0) = 0 or
√
2. However, both conditions do not result in finite energy.

The solution to remove the singularity of Eq. (25) is to combine both the divergent terms.

Defining

ϵ = ϵ0 + ϵ1, ϵ0 =
g′2

g2 + g′2
=

e2

g2
, ϵ1 ≃

(
ρ

ρ0

)n

, (31)

the singular energy E0 can be written as

E0 = 4π

∫ ∞

0

dr

2e2r2

{
ϵ0
(
f 2 − 1

)2
+ ϵ1

}
. (32)

Thus, ZZC shows that the CM monopole energy is finite by taking f(r → 0) = 1. This

boundary condition is similar to the CKY case [12].

Applying the BPS Lagrangian method into this model, the Eq. (32) and the ansatz (4)can

be used to rewrite the Lagrangian as:

L = −ρ′2

2
− 1

2e2r4

(
ϵ0
(
f 2 − 1

)2
+ ϵ1

)
− f ′2

g2r2
− f 2ρ2

4r2
− V (ρ). (33)

Here we add a potential term of the Higgs, V (ρ). In this method we do not a priori assume

that V = 0. Instead, such condition (to be precise, V = const.) appears as a constraint for

the BPS equations to exist (see, for example, [36, 37]).
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Putting the Lagrangians (22) and (33) into the Eq. (16), we end up with algebraic equa-

tions for ρ′(r) and f ′(r). Solving ρ′(r) first yields

ρ′± =
Qρ

r2
± 1

2r2

√
−8r4V + 4Q2

ρ −
4

e2
(
ϵ0 (f 2 − 1)2 + ϵ1

)
− 2r2f 2ρ2 + 8Qfr2f ′ − 8r2f ′2

g2
.

(34)

Demanding the two roots to be equal (ρ′+ = ρ′−) results in a quadratic equation for f ′, whose

solution is

f ′
± =

g2Qf

2
± g

er

√
e2
(
2Q2

ρ + g2Q2
fr

2
)
− 2

(
ϵ0 (f 2 − 1)2 + ϵ1

)
− e2r2 (4r2V + f 2ρ2). (35)

Again, the two roots will be equal (f ′
+ = f ′

−) if the terms inside the square root equal zero.

The resulting equation can be written as a power series of r,

2
[
e2Q2

ρ −
(
ϵ0
(
f 2 − 1

)2
+ ϵ1

)]
+ e2r2

(
g2Q2

f − f 2ρ2
)
− 4e2r4V = 0. (36)

Eq. (36) is satisfied only when

V = 0, (37)

Qρ = ±1

e

√
ϵ0 (f 2 − 1)2 + ϵ1 = ±

√
(f 2 − 1)2

g2
+

ϵ1
e2
, (38)

Qf = ±ρf

g
. (39)

Therefore, the BPS equations for this monopole are

ρ′ = ± 1

r2

√
(f 2 − 1)2

g2
+

ϵ1
e2
, (40)

f ′ = ±1

2
gρf. (41)

Eqs. (40)-(41) are the main results of our work. They are distinct BPS equations, cannot

be reduced to Eqs. (44) or (50) in the ZZC model [28]. Note that Eq. (40) as well as the

energy (32) depend on the power of n via ϵ1 = (ρ/ρ0)
n. Choosing different regularization

function ϵ1 amounts to having BPS solutions with smaller energy. In the limit of n → ∞

the total energy converges to a finite value, E → 3.569 GeV.

In Fig. 1 we present the solutions of Eq. (40)-(41) for several values of n up to n → ∞.

As can be seen, small n produces more diffuse BPS solutions. As n increases the field

profiles become more localized. As a comparison, we plot the solution of the 2nd-order field

equations (24) for n = 6.
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n = 6, E = 4939 GeV

n = 10, E = 4429 GeV

n = 20, E = 4019 GeV

n = 30, E = 3874 GeV

n = ∞, E = 3569 GeV
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FIG. 1: The BPS equations (40)-(41) for n = 6, 10, 20, 30, and n = ∞. The solutions for the

Eq. (24) for n = 6 (with A(r) = B(r) = 0) [28] are represented by dashed lines.

The total energy (Eq. (25)), after setting λ = 0, can be written as:

E = 4π

∫ ∞

0

dr

{
1

2
r2ρ′

2
+

1

2e2r2
(
ϵ0(f

2 − 1)2 + ϵ1
)
+

1

g2
f ′2 +

1

4
f 2ρ2

}

= 4π

∫ ∞

0

dr

1

2
r2

(
1

r2

√
(f 2 − 1)2

g2
+

ϵ1
e2

)2

+
(ϵ0(f

2 − 1)2 + ϵ1)

2e2r2
+

1

g2

(
1

2
gρf

)2

+
f 2ρ2

4


≥ 4π

∫ ∞

0

dr

{
(f 2 − 1)2

g2r2
+

ϵ1
e2r2

+
f 2ρ2

2

}
. (42)

The bound is saturated by Eqs. (40)-(41).

In Fig. 2 we show the plots of energy densities for several values of n. Since ϵ1 = (ρ/ρ0)
n,

we have an energy bound which depends on n. The value of this bound decreases as n

increases. Note that the energy densities at r → 0 are very high due to the the ϵ1 term. In

the limit where n → ∞, the integral of ϵ1 term becomes negligible, and we have the lowest

bound for the total energy.
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FIG. 2: The energy density (42) for n = 6, 10, 20, 30, and n = ∞.

V. SOME REGULARIZATION ALTERNATIVES FOR THE CHO-MAISON

MONOPOLE AND THEIR BPS STATES

In the previous section we show how the BPS state of the CM monopole in the ZZC

model can be obtained by means of the BPS Lagrangian method. since the ZZC model [28]

is just one toy model to regularize the singularity, it is by no means unique. In this section

we shall discuss several other regularization possibilities in the literature and establish their

corresponding Bogomolny equations.

A. Born-Infeld Extension in the Hypercharge Sector

The spirit of “regularization” seems to lie on adding nonlinear interactions into the field

configurations. When talking about nonlinear fields, one natural choice is the Born-Infeld

field theory [38]. Arunasalam and Kobakhidze [39] proposed the the Born-Infeld extension

13



to the hypercharge sector of the Lagrangian (2):

L = −|D̂µH|2 − λ

2

(
H†H − µ2

λ

)2

− 1

4
F a
µνF

aµν + β2

[
1−

√
−det

(
ηµν +

1

β
Gµν

)]

= −|D̂µH|2 − λ

2

(
H†H − µ2

λ

)2

− 1

4
F a
µνF

aµν

+β2

[
1−

√
1 +

1

2β2
GµνGµν − 1

16β4
(GµνG̃µν)2

]
, (43)

where G̃µν ≡ 1
2
ϵµναβGαβ is the Hodge dual of the field strength tensor Gµν , and β is the

Born-Infeld parameter with the unit of masss2. In the limit β → ∞, the Lagrangian goes

back to Eq. (2).

The field equations are

ρ′′ +
2

r
ρ′ − f 2

2r2
ρ = λ

(
ρ2

2
− µ2

λ

)
ρ,

f ′′ − f 2 − 1

r2
f =

g2

4
ρ2f, (44)

which is the same as Eqs. (7) when A = B = 0. The energy is

E = E0 + E1, (45)

E0 ≡
∫ ∞

0

dr β2


√

(4πr2)2 +
h2
Y

β2
− 4πr2

 , (46)

E1 ≡ 4π

∫ ∞

0

dr

{
(f 2 − 1)2

2g2r2
+

1

2
(rρ′)2 +

f ′2

g2
+

λr2

8
(ρ2 − ρ20)

2 +
1

4
f 2ρ2

}
, (47)

with hY ≡ 4π/g′ the hypermagnetic charge of the monopole. E1 ≈ 4.1 TeV as before, while

E0 is finite due to the Born-Infeld modification. Its value is

E0 ≈
π3/2

3Γ
(
3
4

)2
√

βh3
Y

4π
=

4π5/2

3Γ
(
3
4

)2
√

β

g′3
≈ 72.8

√
β, (48)

where they use g′ = 0.357. This shows that the monopole energy depends on the parameter

β. The magnetic field is qm = 4π/e. The numerical value of β can be obtained from

experiments. The constraint from the Pb-Pb scattering at LHC [40] and considering the

cos θW factor in the sector,
√
β >∼ 90 GeV. Therefore,

E = 4.1 TeV + 72.8
√
β ≈ 10.6 TeV. (49)

Since the monopole has finite energy, it is then legitimate to ask about its BPS states.
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The Lagrangian (43) can be written, using the BPS Lagrangian method, as functions of

r only:

L = Ls + LBI ,

Ls ≡ −ρ′2

2
− (f 2 − 1)2

2g2r4
− f ′2

g2r2
− f 2ρ2

4r2
− V (ρ),

LBI ≡ β2

(
1−

√
1 +

1

g′2r4β2

)
, (50)

where LBI comes from the hypercharge sector. The lowest energy bound is given by (48), and

since LBI is independent of ρ(r) and f(r) it does not enter into the formalism Ls−LBPS = 0.

Solving it for ρ′(r), we have

ρ′(r)± =
Qρ

r2
± 1

2r2

√
4Q2

ρ −
4

g2
(f 2 − 1)2 − 8r4V − 2r2f 2ρ2 + 8Qfr2f ′ − 8r2f ′2

g2
, (51)

from which the roots of f ′(r) can be deduced:

f ′(r)± =
g2Qf

2
± 1

2r

√
2g2Q2

ρ − 2(f 2 − 1)2 + g4Q2
fr

2 − 4g2r4V − g2r2ρ2f 2. (52)

We then have a polynomial equation in the power of r,

2
[
g2Q2

ρ − (f 2 − 1)2
]
− 4g2r4V + g2r2

[
g2Q2

f − f 2ρ2
]
= 0. (53)

The 4th-order term gives V = 0. The 0th-order and the 2nd-order terms yield, respectively,

Qρ = ±f 2 − 1

g
, (54)

Qf = ±ρf

g
. (55)

We have the BPS equations of the form

ρ′ = ±f 2 − 1

gr2
, (56)

f ′ = ±1

2
gρf. (57)

These results confirm the BPS equations obtained by [41]. Note that the difference between

these BPS states and that of t’Hoof-Polyakov’s is the appearance of the factor 1/2, which

makes them cannot be solved analytically. We present their numerical solutions in Fig. 3.

The BPS solutions are rather more diffuse than the corresponding solutions to the Euler-

Lagrange field equations (44).
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FIG. 3: Solid lines: The numerical solutions to the BPS equations (56)-(57). Dashed lines:

The solutions to the Euler-Lagrange equations (44).

B. Born-Infeld extension in both SU(2) and U(1) sectors

Modifying the hypercharge sector with nonlinear electrodynamics, despite being useful

in terms of the regularization objective, is rather trivial from the BPS point of view. This

is because such term does not enter in the BPS condition (16). A more interesting case is

when the Born-Infeld extension is not applied only to the hypercharge but also to the SU(2)

Yang-Mills sectors. This model was proposed by Arunasalam, Collison, and Kobakhidze

(ACK) [42].

The corresponding Lagrangian can be written as

L = Ls + LBI1 + LBI2,

Ls ≡ −ρ′2

2
− f 2ρ2

4r2
− V (ρ),

LBI1 ≡ β2
1

1−

√
1 +

(f 2 − 1)2

g2β2
1r

4
+

2f ′2

g2β2
1r

2

 ,

LBI2 ≡ β2
2

(
1−

√
1 +

1

g′2r4β2
2

)
. (58)

Since, like before, LBI2 does not contribute to the field solutions, the BPS equations can be
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written as (Ls + LBI1)− LBPS = 0. Solving it for ρ′(r),

ρ′± =
Qρ

r2
±

√√√√√Q2
ρ

r4
+ 2

V − β2
1 +

f 2ρ2

4r2
− Qff ′

r2
+

√
β4
1 +

1

2
β2
1

(
2(f 2 − 1)2

g2r4
+

4f ′2

g2r2

). (59)

This can be used to solve f ′(r),

f ′
± =

K +

√
128β2

1

r2
D2

L
, (60)

where

D2 ≡ 4g2Q4
ρ − 16g2r8(2β2

1 − V )V + 4g2r2(2Q2
f − 4Q2

ff
2 + 2Q2

ff
4 −Q2

ρf
2ρ2)

+r4(−16β2
1 + 16g2Q2

ρβ
2
1 + 32β2

1f
2 − 16β2

1f
4 − 16g2Q2

ρV + g2f 4ρ4)

+8g2r6(g2Q2
fβ

2
1 − β2

1f
2ρ2 + f 2V ρ2),

K ≡ −g2Qf

(
16Q2

ρ

r2
+ 32r2β2

1 − 32r2V − 8f 2ρ2
)
,

L ≡ 2(16g2Q2
f − 32r2β2

1). (61)

Setting D2 = 0, the cofficient for the 8th-order power constraints the potential to be

constant, V = 0 or 2β2
1 . From the 6th-order term we have

Qf = ±ρf
√

β2
1 − V

gβ1

, (62)

Choosing V = 2β2
1 gives imaginary value for Qf , so we choose V = 0. Substituting these

results to D2 gives

D2 = 4g2Q4
ρ + 4g2r2(2Q2

f − 4Q2
ff

2 + 2Q2
ff

4 −Q2
ρf

2ρ2)

+r4(−16β2
1 + 16g2Q2

ρβ
2
1 + 32β2

1f
2 − 16β2

1f
4 + g2f 4ρ4), (63)

with

Qf = ±ρf

g
.

We can immediately see that there is an incompatibility with nontrivial BPS equations here.

The zeroth-order power of Eq. (63) implies Qρ = 0, while the 2nd- and the 4th-order terms

yield, respectively,

Qρ = ±

{√
2(f 2 − 1)

g
,

√
16β2

1(f
2 − 1)2 − g2ρ2f 2

4gβ1

}
. (64)
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These three Qρ conditions cannot be consistently satisfied unless f(r) and ρ(r) are constants,

f = ±1, ρ = 0. (65)

We conclude that within this BPS Lagrangian method, there is no BPS states for the ACK

model of electroweak monopole.

C. Generalized electroweak monopole

As our last attempt, we can generalize the “regulators” in Eq. (23) by introducing two

functions dependent to the scalar field, W (ρ) and G(ρ). These act as the multiplier to the

Lagrangian, which will generalize the model from equation (23). In the context of t’Hooft-

Polyakov monopole this mechanism has been discussed by authors in [29, 30], and its BPS

Lagrangian method was elaborated in [37].

The Lagrangian, in the case of monopole (A(r) = B(r) = 0), is

L = −G(ρ)

(
1

2
(∂µρ)

2 +
g2

4
ρ2W ∗

µW
µ

)
− V (ρ)−W (ρ)

(
1

4
ϵ(ρ)F (em)

µν

2

+
1

2

∣∣∣∣D(em)
µ Wν −D(em)

ν Wµ

∣∣∣∣2 − ieF (em)
µν W ∗µW ν − g2

4
(W ∗

µWν −W ∗
νWµ)

2

)
. (66)

This is the generalized version of the nonsingular electroweak monopole with non-vacuum

electromagnetic permittivity (23). Using the ansatz (4), the Lagrangian reads

L = −G(ρ)

(
ρ′2

2
+

f 2ρ2

4r2

)
−W (ρ)

[
1

2e2r4
{
ϵ0(f

2 − 1)2 + ϵ1
}
+

f ′2

g2r2

]
− V (67)

From L − LBPS = 0 we have

ρ′± =
Qρ

Gr2
± 1

2Gr2

{
4Q2

ρ −G

(
8r4V +

4

e2
W
(
ϵ0(f

2 − 1)2 + ϵ1
)

+2Gr2f 2ρ2 − 8Qfr
2f ′ +

8r2Wf ′2

g2

)} 1
2

. (68)

Solving for f ′(r), we have

f ′
± =

g2Qf

2W
± g

e
√
GrW

{
e2
(
2WQ2

ρ + g2GQ2
fr

2
)

−2GW 2
(
ϵ0
(
f 2 − 1

)2
+ ϵ1

)
− e2r2GW

(
4r2V + f 2Gρ2

)} 1
2

. (69)
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The terms inside the square root satisfies

−32e4Gr8VW 2 + 16e2r4W 2

(
e2Q2

ρ −GW
(
ϵ0(f

2 − 1)2 + ϵ1
))

+8e4Gr6W
(
g2Q2

f − f 2GWρ2
)
= 0. (70)

The 8th-order term yields V = 0. The 4th-order and the 6th-order term give, respectively,

Qρ = ±
√
GW

√
(f 2 − 1)2

g2
+

ϵ1
e2
, (71)

Qf = ±
√
GWρf

g
. (72)

The BPS equations are thus

ρ′ = ± 1

r2

√
W

G

√
(f 2 − 1)2

g2
+

ϵ1
e2
, (73)

f ′ = ±1

2
gρf

√
G

W
. (74)

The energy bound of this monopole can be found in a similar way as in Eq. (42). Sub-

stituting Eqs. (73)(74) to the Lagrangian (66) and integrating it gives

E = 4π

∫ ∞

0

dr

{
G(ρ)

[
r2ρ′2

2
+

f 2ρ2

4

]
+W (ρ)

[
1

2e2r2
{
ϵ0(f

2 − 1)2 + ϵ1
}
+

f ′2

g2

]}
= 4π

∫ ∞

0

dr

{
G(ρ)

[
W (ρ)

2G(ρ)r2

(
(f 2 − 1)2

g2
+

ϵ1
e2

)
+

f 2ρ2

4

]
+W (ρ)

[
1

2e2r2
{
ϵ0(f

2 − 1)2 + ϵ1
}
+

G(ρ)

W (ρ)

ρ2f 2

4

]}
≥ 4π

∫ ∞

0

dr

{
W (ρ)

(
(f 2 − 1)2

g2r2
+

ϵ1
e2r2

)
+G(ρ)

f 2ρ2

2

}
. (75)

The bound is determined by the forms of G(ρ) and W (ρ).

VI. CONCLUSIONS

The possible existence of magnetic monopole in electroweak theory is what makes the

Cho-Maison monopole appealing theoretically. However, its singular energy problem must

be resolved before any serious experimental result can be claimed. Zhang, Zhou, and Cho

in [28] regularize the electroweak monopole by means of renormalization of the “bare” elec-

tromagnetic permittivity. Once the finite energy is achieved it is just natural to ask whether
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the BPS solutions that saturate the lowest energy bound exist. In this paper we employ the

BPS Lagrangian method to systematically generate such solutions.

The nature of electroweak Cho-Maison monopole opens up degeneracy in its BPS states,

not found in the t’Hooft-Polyakov case. ZZC reported that for a given regularized Lagrangian

there can exist at least two sets of BPS equations, each having different energy bound.

Using the BPS Lagrangian method, we report a new set of BPS equations within the ZZC

model, Eqs. (40)-(41). These equations are not reducible to the known BPS states in ZZC

paper [28]. The solutions depends on n, the polynomial power of the permittivity expansion.

The corresponding energy bound (in the limit of n → ∞) is E ≃ 3.569 GeV. This value

is higher than the lowest energy bound predicted by ZZC, but still within the allowed

theoretical window.

In this work we also consider several other regularization proposals and apply the BPS

method to extract their corresponding BPS states. The first is the Born-Infeld extension

in the hypercharge sector [39]. In this model the Born-Infeld modification does not enter

the field equations but does regularize the energy. We obtain the BPS equations (56)-(57),

which is the same as obtained in [41]. They are just different from the t’Hooft-Polyakov ones

by a factor of 1/2. An immediate extension to the first model is an electroweak monopole

with Born-Infeld form in both the hypercharge and Yang-Mills sectors. This model has

been considered in [42]. The SO(3) counterpart of this monopole can be found, for example,

in [43]. Our investigation reveals that within the BPS Lagrangian method no nontrivial

configuration for ρ(r) and f(r) exist. It seems that having Born-Infeld form in both the

gauge sectors is too restricted for the existence of the BPS state. For the last model we

study, we construct a “generalized electroweak monopole” in the same spirit as in [29, 30],

having non-canonical kinetic terms whose generalized functions G and W depend only on

the Higgs field and not on its derivative. The resulting BPS equations have the factor of√
W/G in both ρ′(r) and 1/f ′(r), as shown in Eqs. (73)-(74).

Finally we should comment on the limitation of the Bogomolny method we employ. It

is surprising that the method gives us a new set of distinct BPS equations, Eqs. (40)-(41).

But what is more intriguing is that they are the only BPS solutions for the ZZC model of

electroweak monopole using this mechanism. Surely this means that the method cannot

probe the possible existence of other BPS solutions. Secondly, it is well-known that every

topological soliton solutions is labeled by their topological charge, and that there is a relation
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between the BPS energy and the charge. However, in this BPS method the direct relation

seems to be absent. The BPS Lagrangian LBPS cannot be expressed as a total differential,

whose integral does not give us the boundary term (i.e, the topological charge),

EBPS ̸= Q. (76)

Lastly, this method fails to give us the BPS equations for the ACK model [42] described by

the Lagrangian (58). The method leass to three incompatible conditions for the function Qρ,

which amount to having trivial solutions (65). At the moment it is not yet clear whether this

failure is due to the BPS method or the structure of the non-Abelian Born-Infeld monopole

itself. The Grandi-Moreno-Schaposnik monopole [43] is not known to have BPS states. In

any case, Atmaja in [37] gives suggestion on how to generalize the LBPS: by introducing non-

boundary terms. These terms can later be determined from the constraints of the system.

It would be interesting to see whether this approach can be applied to the electroweak

monopole case to cure our problems. This wil be the topic of our forthcoming publications.
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