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Nucleocytoplasmic transport is essential for cellular function, presenting a canonical example of
rapid molecular sorting inside cells. It consists of a coordinated interplay between import/export
of molecules in/out the cell nucleus. Here, we investigate the role of spatio-temporal dynamics
of the nucleocytoplasmic transport and its regulation. We develop a biophysical model that cap-
tures the main features of the nucleocytoplasmic transport, in particular, its regulation through the
Ran cycle. Our model yields steady-state profiles for the molecular components of the Ran cycle,
their relaxation times, as well as the nuclear-to-cytoplasmic molecule ratio. We show that these
quantities are affected by their spatial dynamics and heterogeneity within the nucleus. Specifically,
we find that the spatial nonuniformity of Ran Guanine Exchange Factor (RanGEF)—particularly
its proximity to the nuclear envelope— enhances the Ran cycle’s efficiency. We further show that
RanGEF’s accumulation near the nuclear envelope results from its intrinsic dynamics as a nuclear
cargo, transported by the Ran cycle itself. Overall, our work highlights the critical role of molecular
spatial dynamics in cellular processes, and proposes new avenues for theoretical and experimental
inquiries into the nucleocytoplasmic transport.

Eukaryotic cells are organized into functional compart-
ments, such as the nucleus and the cytoplasm. The for-
mer houses the genome and DNA-related machinery, the
latter contains cytosol and organelles for cellular func-
tions such as protein synthesis and degradation [1]. The
boundary between the nucleus and the cytoplasm is de-
lineated by the nuclear envelope (NE) [1], with molecules
transported bidirectionally across the NE through nu-
clear pore complexes (NPCs) [2]. Small molecules, such
as ions and nucleotides, can freely diffuse through the
NPCs [3–5], while larger molecules, such as proteins, re-
quire a regulated multi-step process [6, 7]. These large
cargoes bind to a nuclear transport receptor (NTR),
which then transports them in/out of the nucleus, de-
pending if the cargo has a nuclear localization or export
signal (NLS/NLS) [7, 8].

While individual molecular translocations through
NPCs do not require energy, being thermally driven and
facilitated by interactions with nucleoporins inside the
NPC [9–12], they are part of a complex cycle that is
essentially an energy-driven pump [12–16]. This cycle
can generate import/export fluxes against concentration
gradients, maintaining the system in a non-equilibrium
steady state [16]. This import/export cycle is run by
GTP and the asymmetric distribution of a GTPase Ran
protein across the NE [17], with RanGDP largely in the
cytoplasm and RanGTP in the nucleus [11–14]. This
asymmetry is established by the guanine nucleotide ex-
change factor (RanGEF) [18–21], which promotes GDP-
to-GTP exchange in the nucleus, as well as the GTPase-
activating protein (RanGAP) [22], which in turn facil-
itates GTP hydrolysis in the cytoplasm. Importantly,
RanGEF is bound to chromatin, while RanGAP asso-
ciates with the cytoplasmic side of NPCs.

The import–export cycles of cargo proteins are tightly

regulated by RanGTP. Figure 1 depicts the import cycle,
with each cycle using one GTP molecule and resulting in
the export of one Ran molecule per cargo [23]. Taken
together, the import–export cycles are tightly controlled
by the Ran cycle [16]. Indeed, reversing the RanGTP
gradient between the nucleus and cytoplasm leads to an
inverted gradient of the cargoes [24].

In this study, we investigate the mechanisms behind
the nucleo-cytoplasmic transport mediated by the Ran
cycle. In contrast to previous studies, which assumed
a rapid homogenization of the Ran cycle components

FIG. 1. Ran-mediated nuclear transport of a cargo molecule,
forming a complex with a nuclear transport receptor (NTR).
Cargo-NTR complex passes through nuclear pores, diffuses,
and releases the cargo upon RanGTP binding. The RanGTP–
NTR complex is recycled to the cytoplasm, where it is dissoci-
ated through GTP hydrolysis. RanGDP reenters the nucleus
and converts to RanGTP via RanGEF, completing its cycle.
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within the nucleus and cytoplasm [3, 25–36], we explore
the role of heterogeneity and spatial dynamics of the Ran
cycle. To this end, we develop a model of the spatiotem-
poral transport of Ran components and explore how spa-
tial heterogeneity of RanGEF affects the Ran cycle. We
find analytical solutions for steady-state concentrations
and relaxation times of Ran components, and obtain ra-
tios of the nuclear to cytoplasmic Ran. We find that lo-
calization of RanGEF near the NE significantly increases
the Ran content in the nucleus. Lastly, we show that a
heterogeneous distribution of RanGEF near the NE orig-
inates from its dynamics as a NLS-containing cargo.

Model— We model the nucleus as a sphere of radius R
with boundary S (the NE; R ≃ 5 – 10 µm [1]) enclosing a
volume Vn. We assume a constant NPC surface density,
providing a uniform flux of particles across the NE [37].
Each NPC supports 102–103 translocations per second
[36]. The outwards flux at the NE of a molecular species
X can be described by JX = λX (Xc −Xn) [25], where
λX is the permeability, and the subscripts c and n de-
note the cytoplasm and nucleus, respectively. Here, the
concentration is the number of molecules per unit vol-
ume, ignoring the presence of subnuclear bodies and the
polymeric structure of chromatin. The nuclear molecules
are assumed to diffuse in the nucleus with an effective
constant diffusivity, denoted by dX for a solute X, in the
range 1−20µm2/s [34, 35]. We do not explicitly account
for advection of molecules by nucleoplasmic flows [38–46],
with such an effect, if present, entering only as a contri-
bution to the apparent diffusion constant. We assume
that cytoplasmic concentrations are uniform, akin to the
experimental conditions of permeabilized cells where the
external delivery of molecules is controlled [11]. Thus, at
the NE the diffusive flux of molecules is given by

−n · dX∇Xn(r, t) + JX = 0, r ∈ S, (1)

where n is the outward unit normal to the NE surface S.
We consider the dynamics of the Ran cycle as shown in

Fig. 1, where A denotes RanGDP, B is RanGTP, and I
is RanGTP–NTR complex. The dynamics of the nuclear
RanGDP is given by the reaction–diffusion equation:

∂tAn = dA∇2An − α(r, t)An, r ∈ Vn, (2)

where α is the nucleotide exchange rate due to RanGEF,
converting RanGDP to RanGTP [47]. Similarly, the dy-
namics of nuclear RanGTP is described by

∂tBn = dB∇2Bn + α(r, t)An − β(r, t)Bn, r ∈ Vn, (3)

where β is the dissociation rate of cargo molecules from
the cargo–NTR complex by binding of RanGTP. We as-
sume β(r, t) = b0Gn(r, t), where b0 is a constant and Gn

is the nuclear cargo–NTR concentration given by

∂tGn = dG∇2Gn − b0GnBn, r ∈ Vn. (4)

Also, the cargo dissociation leads to the formation of a
nuclear RanGTP–NTR complex (In), which is given by

∂tIn = dI∇2In + β(r, t)Bn, r ∈ Vn. (5)

The nuclear concentration Cn of free cargo follows

∂tCn = dC∇2Cn + β(r, t)Bn − χ(r, t)Cn, r ∈ Vn, (6)

where χ is the nuclear depletion of cargo, e.g. the tran-
scription factor binding to certain loci on the chromatin.
The five reaction–diffusion equations (2–6) are aug-

mented with boundary conditions at the NE, which are
given by Eq. (1) with JA, JG, and JI being nonzero,
since their constituents associate with NTRs, while JB =
JC = 0, as B and C cannot translocate through NPCs.
In cytoplasm, the homogeneous RanGTP–NTR con-

centration is described by

∂tIc = −ηIc − V−1
c

´

S JI dS, (7)

where the last term is the exchange of RanGTP–NTR
through the NPCs, with Vc as the volume of cytoplasm,
whereas the first is the loss due to the GTP hydrolysis
by RanGAP, converting RanGTP to RanGDP at a rate
η. Similarly, the cytoplasmic RanGDP is governed by

∂tAc = ηIc − V−1
c

´

S JA dS, (8)

while the cytoplasmic cargo–NTR complex follows

∂tGc = ζ0NcCc − V−1
c

´

S JG dS, (9)

where Nc is the cytosolic concentration of free NTRs, and
ζ0 is the production rate of cargo–NTR complex from a
pool of free cargo, with ∂tCc = −ζ0NcCc + other sources
or sink terms. NTRs are assumed to be abundant in the
cell with Nc as a constant. Eqs. (2–9) can be solved by
providing initial conditions for each concentration [48].

Ran cycle under static RanGEF profiles— Since the
Ran cycle drives and regulates the nucleocytoplasmic
transport, we aim to understand its dynamics and
steady-state behavior. We assume that cargo–NTR com-
plexes are in abundance within the cell, so that the cargo
dissociation rate β = β0 is treated as a constant. To
start, we assume that RanGEF is uniformly distributed
with concentration F0, where α = a0F0 ≡ α0 and a0 is
a constant. Under this approximation, the equations be-
come linear and can be solved by a Laplace transform
method [48], choosing an initial condition where Ran is
only in the cytoplasm in its GDP-form. The solutions
in Laplace space can be used to determine the steady-
state concentration profiles and the dominant relaxation
time to steady-state [48], as shown in Fig. 2(a) and (b),
where, for simplicity, we choose the permeability λ and
diffusivity d to be the same for all species. Since initially
Ran molecules are not present in the nucleus and cyto-
plasmic concentrations are homogeneous, the solutions to
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FIG. 2. (a) Relaxation time τ of the Ran cycle (see diagram), when RanGEF is uniform with α0 = 5 s−1. Herein, we set
the same diffusivity d = 10µm2/s for all species, R = 10µm, η = 10 s−1, and ν = 2/3. Dashed curves are the associated
infinite diffusivity limits (same colors). (b) Steady-state concentrations of the Ran-cycle components (as fraction of initial A0

concentration). Dashed curves correspond to a uniform RanGEF. In the left plot, solid curves correspond to RanGEF in a shell
with inner radius Rδ (blue region). RanGEF’s net number is the same as in the uniform case, αshell = α0/(1− δ3). In the right
plot, RanGEF is in a ball of radius Rε (blue region), with ε such that αball = α0/ε

3 = αshell. Here, δ = 0.9, β0 = 1 s−1, and
λ = 10µm/s. (c) Steady-state Φ when RanGEF is uniform, with λ = 50µm/s. (d) Steady-state Φ for the uniform (dashed),
shell (purple), and ball (blue) cases, with α0 = 10 s−1 and β0 = 1 s−1. (e) Relative change EΦ of the steady-state Φ in the shell
case compared to Φ in the uniform case, with δ = 0.98. Yellow point and star in (c–e) highlight the same parameter points.

the nuclear concentrations at steady state are found to
be radially symmetric, decreasing from the NE into the
nucleus with permeation length scales ℓA =

√
d/α0 and

ℓB =
√
d/β0. These lengths also control the abundance

of molecules in the nucleus compared to cytoplasm, where
the ratio Φ of nuclear-to-cytoplasmic Ran molecules is
found in exact form [48]. In the physiological regime, Φ
must be greater than unity, around 3–4 [35]. This con-
dition restricts the phase space in terms of local rates,
see Fig. 2(c), requiring that β0 be less than a threshold
β⋆
0 at which Φ = 1, with typically β⋆

0 ≃ 1 s−1. Simi-
larly, this further constrains the permeability λ, which
must be larger than a threshold λ⋆, see Fig. 2(d); typi-
cally λ⋆ ≃ 1µm/s. Note that if the rates α0 and β0 were
known, then knowledge of Φ, which can be measured
experimentally [35], allows the estimation of biophysical
parameters such as permeability λ.

Another experimentally measurable quantity [3, 26,
28–31, 36] is the relaxation time to steady-state of the
Ran cycle. In this simple theory, the relaxation time fol-
lows from the Laplace space solutions of the concentra-
tions. Specifically, the complex pole s⋆ with the smallest
negative real part in this solution gives us the dominant

relaxation time τ ; shown in Fig. 2(a). For small values
of permeability λ, we find that τ ∼ 1/λ, while at larger
values of λ, the system exhibits underdamped oscilla-
tions (frequency given by a nonzero imaginary part of s⋆),
where oscillation onset occurs at higher λ with increasing
β [48]. A comparison between τ and its value in the limit
of fast diffusion shows large deviations for λ ≳ 1µm/s,
and thus neglecting diffusion may lead to significant er-
rors in the estimation of the relaxation times.
The nucleotide exchange rate depends on the local

concentration of RanGEF bound to the chromatin [49],
which so far is assumed to be uniformly distributed.
However, chromatin density is heterogeneous [50], includ-
ing heterochromatin. Hence, we investigate next the ef-
fect of the RanGEF spatial heterogeneity [51]. For this
we study two simple radial distributions of α(r): first,
all RanGEF molecules are localized in a spherical shell;
and, second, they are all confined to a spherical ball at
the center of the nucleus. Assuming piece-wise constant
profiles of α, the steady-state radial profiles of the con-
centration fields can be found analytically, and are shown
in Fig. 2(b) for the shell and ball cases. In both scenarios,
the same total number of RanGEF molecules is chosen as
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FIG. 3. (a) Relaxation of Φ when RanGEF concentration is uniform (dashed), α = a0F0 = 3 s−1. Solid curves are the cases
when RanGEF is transported in the nucleus as a complex K (see diagram) and dissociated at a rate γF0 = 50 s−1. Initial
concentration of F is taken to be: uniform (blue curve), and heterogeneous given by 10 random Gaussian spherical clusters of

equal size. Red curve is Φ averaged over 100 such random initial data. (b) The angular average ⟨F ⟩ =
´ 2π

0
dφ
´ π

0
F (r, θ, φ) sin θdθ

of RanGEF at steady-state. Blue and red curves corresponds to the uniform and random initial cases as in (a). Inset shows the
dependence on γ with RanGEF initially uniform. The blue curve is also depicted in (c). The red shaded region is the standard
deviation of the sample around the mean. The red dashed shows one such realization, which is also depicted in figure (d).

in the entirely uniform case with α = α0. The associated
steady-states of Φ are plotted in Fig. 2(d), which shows
that distributing RanGEF in a shell near the NE sig-
nificantly increases the nuclear localization of molecules,
when compared to the uniform case; see Fig. 2(e). The
increase in Φ increases with diminishing the shell thick-
ness. Conversely, localizing RanGEF away from the NE
(the ball case) has the opposite effect. Thus, a spatial
profile for RanGEF can control the nuclear transport.

Dynamics of RanGEF as nuclear cargo— So far we
have assumed static RanGEF distributions, however,
RanGEF molecules are also NLS-containing cargoes and
their nuclear transport is mediated by the Ran cycle [52].
Next, we show that within our model this results in a pos-
itive feedback that localizes RanGEF to the nuclear pe-
riphery. To begin, we complement the previous equations
of the Ran cycle with transport of an additional cargo—
receptor complex K that carries RanGEF (F ); see in-
set diagram in Fig. 3(a). Using Eqs. (4) and (9), their
concentration are described by ∂tKc = −V−1

c

´

S JK dS
and ∂tKn = dK∇2Kn− γBnKn, satisfying a flux bound-
ary condition as in Eq. (1). The last (nonlinear) term
accounts for dissociation of RanGEF cargo at the rate
γBn. We assume that once free the RanGEF cargo binds
rapidly to the chromatin, and its bound concentration is
given by ∂tF = γBnKn. To complete the model we must
set α = a0F and β = β0 + γKn.

First, we consider initial distributions F for bound
RanGEF which comprise only 10% of the total RanGEF
in the cell. The remaining 90% is in the cytoplasm which
sets the initial data for Kc. As before, all Ran molecules
are initially in the cytoplasm and in their GDP-form.
We solve numerically for the spatial-temporal evolution
of the concentration fields [48, 53]. Fig. 3(a) shows the
evolution of Φ for (i) an initially uniform distribution for
F , and (ii) a distribution F consisting of randomly placed

Gaussian spherical clusters of equal standard deviation.
The long–time states of Φ for both (i) and (ii) show an
significant increase over the static uniform RanGEF case,
as previously computed in Fig. 2(d). Moreover, the long–
time concentration profile of chromatin-bound RanGEF
shows a sharply varying spatial profile within the nucleus,
with a significant accumulation at the NE. To compare
the cases (i) and (ii), we compute the angular average of
RanGEF, ⟨F ⟩, which are shown in Fig. 3(b). For case
(i), we find at long times a radial profile ⟨F ⟩ that mono-
tonically decays away from NE with permeation length
∼

√
d/(γF0), which rapidly decreases by increasing the

rate γ; see Fig. 3(b) and (c). For case (ii), the long-time
F shows a heterogeneous profile, as shown in the exam-
ple of Fig. 3(d), where ⟨F ⟩ also sharply decays away from
the NE. By averaging over many such radial profiles ⟨F ⟩
at long–times, each derived with different initial random
data, we determine their mean and standard deviation
as shown in Fig. 3(b). This reveals that bound RanGEF
displays a significant and sharp accumulation at the NE,
despite the initial random distribution.
Discussion— We developed a model exploring the nu-

cleocytoplasmic transport, highlighting the essential role
of the spatial distribution and dynamics of the Ran cycle.
Our findings demonstrate that the spatial RanGEF dis-
tribution directly influences the nucleocytoplasmic trans-
port, in particular, RanGEF’s localization at the NE en-
hances the Ran cycle efficiency. We find that the sharp
accumulation of RanGEF at the NE emerges directly
from the transport dynamics of RanGEF molecules as
an NLS-containing cargo. Overall, our results suggest
that the spatial modulation of the RanGEF substrate
may contribute to the regulation of the RanGTP spatial
gradient inside cells. With RanGEF having a high affin-
ity for heterochromatin, changes in its organization near
the NE could affect the spatial dynamics of RanGEF,
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and thus in turn the nucleocytoplasmic transport. Un-
derstanding how changes in heterochromatin influence
RanGEF localization may offer insights into cell’s pro-
gression through the cell cycle as well as diseases, where
nucleus-wide chromatin organization is disrupted. Our
results open new avenues for further theoretical and ex-
perimental inquiries into the role of spatial dynamics of
molecules in the nucleocytoplasmic transport.
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A. Ran–mediated nucleocytoplasmic transport

In the cytoplasm, a nuclear transport receptor (NTR)
protein, such as importin, can recognize and bind di-
rectly to a cargo molecule which contains a specific
amino-acid sequence known as the nuclear localization
signal (NLS). The NTR–cargo complex subsequently as-
sociates with, and translocates through the NPC allow-
ing it to enter the nucleus [1]. The binding affinity be-
tween NTR and its cargo is mediated by Ran which is
a small GTPase enzyme that binds to the nucleotide
guanosine triphosphate (GTP), hydrolyzing to guano-
sine diphosphate (GDP). The GTP-bound form of Ran
(RanGTP) associates strongly with NTRs, and its bind-
ing to NTRs considerably decreases their affinity to the
bound cargo [2]. Due to the abundance of RanGTP in the
nucleus, this results in the dissociation of cargo by bind-
ing of RanGTP. The NTR–RanGTP is then returned to
cytoplasm through NPCs. Upon reaching the cytoplasm,
the GTP to GDP hydrolysis of Ran causes the complex
to dissociate, as RanGDP binds NTRs very weakly. This
liberates the NTR to interact with a new cargo [1].

Since the intrinsic GTPase activity of Ran is very slow,
the hydrolysis of RanGTP to RanGDP is entirely gov-
erned by the interaction with RanGTPase activating pro-
tein (RanGAP) [3]. This is bound structurally to the
cytoplasmic side of NPC [4], and its localization leads
to a scarce population of RanGTP within cytoplasm [5].
This scarcity also allows for NTRs to efficiently bind their
cargoes, since RanGTP competes strongly with the their
binding [2]. The cytoplasmic RanGDP is recycled back to

nucleus by binding specifically to another NTR protein,
which is known as the Nuclear Transport Factor 2, or
NTF2 [6]. This allows for RanGDP to translocate more
efficiently through the NPC [7]. Upon reaching the nu-
cleus, RanGDP unbinds from NTF2, but the mechanism
of dissociation remains unclear. The imported RanGDP
is then converted to RanGTP by the interaction with
the nucleotide exchange factor for Ran (RanGEF), which
functions to accelarate the dissociation of GDP from Ran
and its exchange for GTP [1]. The only known RanGEF
protein is the so-called regulator of chromosome conden-
sation (RCC1), which is predominantly bound to chro-
matin [8], and its spatial localization thereby provides the
nuclear abundance of RanGTP needed for proper func-
tioning of the nuclear import/export cycles [9].

The nuclear export functions in a similar way; the
binding of specialized NTR proteins, known as exportins,
to the nuclear cargo depends on the interaction with
RanGTP, but in this case its binding increases consid-
erably the affinity of exportins for the cargo by about
1000-fold [10]. As a consequence, the cargo exits the nu-
cleus via the NPC as a ternary complex consisting of
exportin-cargo-RanGTP. On the cytoplasmic side, the
GTPase activity of Ran is initiated by RanGAP, and
the hydrolysis of RanGTP to RanGDP causes the ex-
port complex to fully dissociate [1]. This frees the cargo
and completes the export cycle. We note that there are
some examples of NTRs that function in both directions,
undergoing both nuclear export and import [11].

The movement through NPC does not require energy
input, the transport in and out of the nucleus is powered
solely by the free energy transduction from the Ran cycle.
Here, the forward cycle brings RanGDP into the nucleus
with NTF2 and takes out RanGTP with importin [12].
The reverse of this cycle is scarcely populated, as detailed
balance is broken by the interaction of Ran with RanGEF
in the nucleus and RanGAP in the cytoplasm [12]. The
energetics for these two chemical reactions is provided by
the nonequilibrium ratio of free GDP to GTP molecules
(typically, about 1/100), which is maintained and regu-
lated by the metabolism of the cell [13]. This leads to
a steep concentration gradient across the nuclear enve-
lope (NE), thereby controlling the flux and directional-
ity of nucleocytoplasmic transport [2]. In other words,
free-enegy from the Ran cycle is transduced by NTRs in
order to bias the concentration distribution of free cargo,
respectively, within each cellular compartments [12].

ar
X

iv
:2

40
4.

06
68

8v
1 

 [
ph

ys
ic

s.
bi

o-
ph

] 
 1

0 
A

pr
 2

02
4



2

B. Homogeneous RanGEF distribution

To understand the dynamics and steady-state profiles
of the system, we assume that the cargo dissociation rate
β = β0 is a constant; assuming that NTR–cargo com-
plexes are found in excess throughout the cell. Similarly,
we consider that RanGEF is homogeneously distributed
within the nucleus: α = α0 = a0F0, where F0 is the con-
centration of RanGEF, and a0 is a constant. Under such
considerations, the system of equations becomes linear
and thus their solutions are analytically tractable.

In the following, for simplicity, we choose that nuclear
diffusivity of all Ran species is the same, denoted by d.
Also, the permeability of RanGDP and NTR–RanGTP
is chosen to be the same, denoted herein by λ.

1. Radial solutions in Laplace space

Provided that the initial conditions for the nuclear con-
centrations are uniform, their steady-state solutions will
remain spherically symmetric as the cytoplasmic concen-
trations are treated as spatially homogeneous. The nu-
clear concentration of RanGDP can be described by

T
∂An

∂t
=

1

r2
∂

∂r

[
r2

∂An

∂r

]
− kαAn(r, t), (S.1)

where the diffusion time T = R2/d, the dimensionless
nucleotide exchange rate kα = R2α0/d, and r ∈ [0, 1] is
the rescaled radial distance from the center of the cell nu-
cleus (r = 0). Moreover, Eq. (S.1) satisfies the following
flux boundary condition at the NE (r = 1):

∂An

∂r
(r=1, t) = Λ [Ac(t)−An(1, t)], (S.2)

where Λ = λR/d. Initially, we consider that RanGDP is
not present in the nucleus, that is, An(r, t=0) = 0. The
cytoplasmic dynamics of Ac is given by

T
∂Ac

∂t
= kηIc − 3νΛ [Ac(t)−An(1, t)], (S.3)

where the dimensionless recycling rate kη = ηR2/d and
ν = Vn/Vc. We set Ac(t=0) = A0, with A0 as the initial
concentration of Ran molecules in the cytoplasm.

Similarly, the nuclear RanGTP is governed by

T
∂Bn

∂t
=

1

r2
∂

∂r

[
r2

∂Bn

∂r

]
+ kαAn − kβBn, (S.4)

where kβ = R2β0/d is the dimensionless cargo dissocia-
tion rate. The RanGTP is initially absent in the nuclues,
that is, B(r, t=0) = 0. Furthermore, Bn satisfies a no-
flux boundary condition at the NE:

∂Bn

∂r
(r=1, t) = 0. (S.5)

The concentration of NTR–RanGTP complexes in the
nucleus is given by

T
∂In
∂t

=
1

r2
∂

∂r

[
r2

∂In
∂r

]
+ kβBn, (S.6)

which satisfies the following boundary condition at NE:

∂In
∂r

(r=1, t) = Λ [Ic(t)− In(1, t)], (S.7)

and the cytoplasmic concentration Ic is governed by

T
∂Ic
∂t

= −kηIc − 3νΛ [Ic(t)− In(1, t)]. (S.8)

Here, we choose In(r, t=0) = 0 and Ic(t=0) = 0; thus,
all of the Ran molecules are initially in the cytoplasm in
the RanGDP-form (at concentration A0).
The set of equations (S.1–S.8) can be solved by a

Laplace transform method, where we define that

X̂(s) = L̂s[X] =
1

T

ˆ ∞

0

e−st/T X(t) dt, (S.9)

where X denotes any of the concentrations An, Ac, Bn,
In, and Ic. By employing Eq. (S.9), the nuclear RanGDP
equation (S.1) can be written as

1

r2
∂

∂r

[
r2

∂Ân

∂r

]
− (s+ kα)Ân(r, s) = 0, (S.10)

and the boundary condition in Eq. (S.2) becomes

∂Ân

∂r
(r=1, s) = Λ [Âc(t)− Ân(1, s)]. (S.11)

The cytoplasmic RanGDP equation Eq. (S.3) becomes

sÂc(s)−A0 = kη Îc(s)− 3νΛ[Âc(s)− Ân(1, s)], (S.12)

which gives

Âc(s) =
A0 + kη Îc(s) + 3νΛÂn(1, s)

s+ 3νΛ
. (S.13)

On the other hand, the solution of Eq. (S.10) can be
found to be

Ân(r, s) =
Cα(s) sinh(rSα)

r
(S.14)

where Sα =
√
s+ kα and Cα(s) is a function to be pre-

scribed by the boundary condition in Eq. (S.11); namely,

Cα(s) =
Âc(s)Λ

Sα cosh(Sα)− (1− Λ) sinh(Sα)
. (S.15)

By Laplace transforming Eq. (S.4), the nuclear
RanGTP equation can be written as

1

r2
∂

∂r

[
r2

∂B̂n

∂r

]
+ kαÂn − (s+ kβ)B̂n = 0, (S.16)
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and its no-flux boundary condition now reads

∂

∂r
B̂n(r=1, t) = 0. (S.17)

By using Eq. (S.13), the solution of Eq. (S.16) is found
to be

B̂n(r, s) =
Cβ(s) sinh(rSβ)

r
+
kαCα(s) sinh(rSα)

r (kβ − kα)
, (S.18)

where we define Sβ =
√

s+ kβ , and Cβ is a function to
be found from the boundary condition in Eq. (S.17):

Cβ(s) =
Âc(s) [Sβ cosh (Sβ)− sinh (Sβ)]

−1

(
1− kβ

kα

)[
1

Λ
− 1

1− Sα coth (Sα)

] . (S.19)

By Laplace transforming the nuclear NTR–RanGTP
equation (S.6), we obtain that

1

r2
∂

∂r

[
r2

∂În
∂r

]
+ kβB̂n − s În = 0, (S.20)

while the boundary condition in Eq. (S.2) transforms to

∂În
∂r

(r=1, s) = Λ [Îc(t)− În(1, s)]. (S.21)

The solution to Eq. (S.20) can be found as follows:

În(r, s) =
Cα(s)kβ sinh (rSα)

r (kα − kβ)
− Cβ(s) sinh (rSβ)

r

+
C0(s) sinh (r

√
s)

r
, (S.22)

where C0 is a function to be determined from the bound-
ary condition in Eq. (S.21); namely, we find that

C0(s) =
Îc(s)Λ + Âc(s)Λ

[
1− 1−Xβ/Xα

1− kβ/kα

]

(Λ− 1) sinh (
√
s) +

√
s cosh (

√
s)

, (S.23)

where we define

Xj =
1

Λ
− 1

1− Sj coth (Sj)
, j ∈ {α, β}. (S.24)

From Eq. (S.8), the cytoplasmic concentration of the
NTR–RanGTP complex in Laplace space is found to be

Îc(s) =
3νΛ

s+ kη + 3νΛ
În(1, s). (S.25)

This equation allows us to obtain Âc(s) from Eq. (S.13),
which in turn provides us with exact expressions in the
Laplace space for the concentrations Ân(r, s), B̂n(r, s),

and În(r, s) in terms of the initial concentration A0 and
the dimensionless parameters ν, kα, kβ , kη, and Λ.

2. Steady-state concentration profiles

The steady-state concentration profiles can be derived
by final value theorem for the Laplace transform, which
tells us that if the steady-state value exists, then

lim
t→∞

f(t) = lim
s→0

sF̂ (s)

where F̂ (s) is the Laplace transform of the function f(t),

provided that all poles of sF̂ (s) are strictly stable or lie
in the open left half-plane, Re(s) < 0.
We start by assuming that the steady-state value of the

cytoplasmic concentration Ac(∞) exists and we denote
it hereinafter by Āc. Therefore the steady-state nuclear
concentration of RanGDP is given by

Ān(r) =
C̄α sinh(r

√
kα)

r
, (S.26)

where the constant C̄α is found to be

C̄α = lim
s→0

s Cα(s) =
ĀcΛcsch(

√
kα)√

kα coth(
√
kα)− 1 + Λ

, (S.27)

through Eqs. (S.14) and (S.15), where Āc = lim
s→0

sÂc(s).

Similarly, we find the steady-state of RanGTP concen-
tration in the nucleus, B̄n(r), from Eq. (S.18), that is

B̄n(r) =
C̄β sinh(r

√
kβ)

r
+

kα C̄α sinh(r
√
kα)

r (kβ − kα)
, (S.28)

where C̄β is readily found from Eq. (S.19) as follows

C̄β =
Āc

[√
kβ cosh(

√
kβ)− sinh(

√
kβ)

]−1

(
1− kβ

kα

)[
1

Λ
− 1

1−
√
kα coth(

√
kα)

] . (S.29)

Also, the steady-state concentration profile of NTR–
RanGTP in the nucleus, Īn(r), can be found in a similar
way. Using Eqs. (S.22) and (S.23), we have that

Īn(r) = C̄0+
C̄αkβ sinh(r

√
kα)

r (kα − kβ)
− C̄β sinh(r

√
kβ)

r
, (S.30)

where the constant C̄0 is given by

C̄0 = Īc + Āc

[
1− 1− X̄β/X̄α

1− kβ/kα

]
, (S.31)

with Īc = lim
s→0

sÎc(s) and the coefficients

X̄j =
1

Λ
− 1

1−
√

kj coth(
√

kj)
, j ∈ {α, β}. (S.32)

To derive the result in Eq. (S.31), we use the limits

lim
s→0

sinh(r
√
s)√

s
= r, and (S.33)

lim
s→0

√
s

(Λ− 1) sinh (
√
s) +

√
s cosh (

√
s)

=
1

Λ
. (S.34)
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From Eq. (S.25), we obtain that

Īc =
3νΛ

kη + 3νΛ
Īn(1) =

3νĀc

kηX̄α
. (S.35)

where the last equality follows from Eq. (S.30). Using
final value theorem, Eq. (S.13) becomes

Āc =
kη Īc
3νΛ

+ Ān(1). (S.36)

This also gives us that

Ān(1) = Āc
ΛX̄α−1

ΛX̄α
=

ΛĀc√
kα coth(

√
kα)+Λ−1

, (S.37)

which is consistent with Eq. (S.26) at r = 1. Moreover,
the dimensionless flux of RanGDP at steady-state is

J̄A ≡ Λ
[
Āc − Ān(1)

]
=

kη Īc
3ν

> 0, (S.38)

which means that RanGDP diffuses into nuclues, while
the dimensionless flux of NTR–RanGTP is given by

J̄I ≡ Λ
[
Īc − Īn(1)

]
= −kη Īc

3ν
< 0, (S.39)

which means that NTR–RanGTP diffuses out of the nu-
cleus. Moreover, this shows that the fluxes must balance
identically at steady-state:

J̄A + J̄I = 0. (S.40)

To determine the value of Āc, we make use the con-
servation of the number of particles in the system, as
described in the next section.

3. Nuclear-to-cytoplasmic ratio of molecules

The number of cytoplasmic molecules in the form of
RanGDP and NTR–RanGTP at time t are given by

cA(t) = VcAc(t), and cI(t) = Vc Ic(t), (S.41)

respectively, whereas the net number of nuclear RanGDP,
nA(t), RanGTP, nB(t), and NTR–RanGTP, nI(t) are
given by the integral of their corresponding concentration
fields over the entire volume of the nucleus. Specifically,

nA(t) =

ˆ

Vn

dV An(r, t), (S.42)

nB(t) =

ˆ

Vn

dV Bn(r, t), (S.43)

nI(t) =

ˆ

Vn

dV In(r, t). (S.44)

By integrating over the nuclear volume the reaction–
diffusion equations of An, Bn, and In, as described in

the main text by Eqs. (2), (3) and (5), and make use
of the divergence theorem and their respective boundary
conditions — see Eq. (1) in main text — we find that

∂

∂t
(nA + nB + nI) =

ˆ

S
dS (JA + JI), (S.45)

where S is the NE. From the cytoplasmic concentration
equations, see Eqs. (7) and (8) of the main text, we find

∂

∂t
(cA + cI) = −

ˆ

S
dS (JA + JI), (S.46)

which shows that the total number of molecules in the
system is conserved, that is,

∂

∂t
(nA + nB + nI + cA + cI) = 0. (S.47)

Since initially all of Ran molecules are assumed to be
only in their GDP-form within the cytoplasm, with con-
centration A0, we have that

nA(t) + nB(t) + nI(t) + cA(t) + cI(t) = A0Vc, (S.48)

must be satisfied for all time t. This includes the steady-
state, and therefore we require that

n̄A + n̄B + n̄I =
(
A0 − Āc − Īc

)
Vc (S.49)

where n̄A, n̄B and n̄I are the corresponding steady-state
numbers. Using the steady-state concentration profile of
nuclear RanGDP, as derived in Eq. (S.26), we obtain

n̄A = 4πR3

ˆ 1

0

dr r2Ān(r) =
3VnĀc

kαX̄α
, (S.50)

where we use that Vn = 4πR3/3. Similarly, we can de-
termine the number of nuclear RanGTP molecules at
steady-state, which through Eq. (S.28) yields

n̄B = 4πR3

ˆ 1

0

dr r2B̄n(r) =
3VnĀc

kβX̄α
. (S.51)

Note that number ratio of nuclear RanGTP to nuclear
RanGDP at steady-state simply reduces to

n̄B

n̄A
=

kα
kβ

=
α0

β0
. (S.52)

By means of Eq. (S.30), the total number of nuclear
NTR–RanGTP complexes is found to be

n̄I = C̄0Vn − 3Vn(kα + kβ)Āc

kβkαX̄α
, (S.53)

where C̄0 is given by Eq. (S.31). Using Eqs. (S.49), (S.50),
(S.51) and (S.53), we have that

ν C̄0 + Āc + Īc = A0, (S.54)

which allows us to determine Āc in terms of A0.
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FIG. S.1. Relaxation times τ̃ associated with each eigenvalue
s̃ as function of permeability λ for the fast diffusion case. The
relaxation time is given by τ̃ = −1/Re(s̃), while the frequency
of underdamped oscillations is given by ω = Im(s̃), which is
shown in the inset plot against λ. Here, we choose α0 = 5 s−1,
β0 = 0.25 s−1, η = 10 s−1, R = 10µm, and ν = 2/3.

Total nuclear-to-cytoplasmic ratio Φ of Ran molecules,
which is defined by

Φ(t) =
nA(t) + nB(t) + nI(t)

cA(t) + cI(t)
, (S.55)

can be rewritten using Eq. (S.48) as follows:

Φ(t) =
A0

Ac(t) + Ic(t)
− 1. (S.56)

Its steady-state, Φ̄, is further simplified using Eq. (S.54):

Φ̄ =
ν C̄0

Āc+ Īc
= ν

[
1− X̄α − X̄β

(1−kβ/kα)
(
X̄α+3ν/kη

)
]

(S.57)

where in the last equality we use Eq. (S.23) and (S.35).
This also gives us a concise way to express in the steady-
state value Āc in terms of A0, namely

Āc =
A0 X̄α(

1 + Φ̄
)(
X̄α + 3ν/kη

) , (S.58)

whereas the steady-state value Īc becomes

Īc =
A0(

1 + Φ̄
)[
1 + kηX̄α/(3ν)

] , (S.59)

which shows that Īc vanishes in the limit kη → ∞, as
expected; meaning the NTR-RanGTP complexes are in-
stantaneously dissociated as they enter the cytoplasm.

4. Relaxation times to steady-state

Before computing the corresponding relaxation times
of the system to steady-state from the Laplace space so-
lutions in Eqs. (S.13), (S.14), (S.18), (S.22) and (S.25),

it is instructive to calculate the relaxation times for the
case of fast diffusion (d→∞), which leads to rapid ho-
mogenization of concentration fields in the nucleus. In
this limit of infinity diffusivity the associated governing
equations take the following form:

∂Ãc

∂t
= ηĨc −

3νλ

R
(Ãc − Ãn), (S.60)

∂Ãn

∂t
= −α0Ãn +

3λ

R
(Ãc − Ãn), (S.61)

∂B̃n

∂t
= −β0B̃n + α0Ãn, (S.62)

∂Ĩn
∂t

= β0B̃n +
3λ

R
(Ĩc − Ĩn), (S.63)

∂Ĩc
∂t

= −ηĨc −
3νλ

R
(Ĩc − Ĩn), (S.64)

where Ãc and Ãn denote the cytoplasmic and nuclear
RanGDP concentrations; B̃n is the nuclear RanGTP con-
centration; while Ĩc and Ĩn denote the cytoplasmic and
nuclear NTR–RanGTP concentrations. Notice that Ãn,
B̃n and Ĩn are not functions of space here, representing
mean concentrations defined over the whole nucleus.
This linear set of equations can be written as follows:

∂C̃

∂t
= MC̃ (S.65)

where the column vector C̃ =
[
Ãc, Ãn, B̃n, Ĩn, Ĩc

]T
and

the matrix M is given by

M =




− 3λν
R

3λν
R 0 0 η

3λ
R −α0− 3λ

R 0 0 0

0 α0 −β0 0 0

0 0 β0 − 3λ
R

3λ
R

0 0 0 3λν
R −η− 3λν

R




. (S.66)

The relaxation times of the system to steady-state can be
computed from the eigenvalues s̃ of matrix M ; namely,
det(M−s̃I) = 0, which shows that one of the eigenvalues
is zero, while the other are given by roots of the following
polynomial equation:

s̃4 + r3 s̃
3 + r2 s̃

2 + r1 s̃+ r0 = 0, (S.67)

where rj are constants (j ∈ {0, 1, 2, 3}) that can be easily
computed in terms of α0, β0, η, ν, λ, and R. The real
part of all non-zero eigenvalues are negative, from which
the relaxation times τ̃ = −1/Re(s̃) can be computed; see
Fig. S.1, and Fig 2(a) of the main text. The imaginary
part of the dominant eigenvalues can become nonzero as
we vary λ, as shown in the inset plot of Fig. S.1.
In the limit of rapid GTP hydrolysis rate (η → ∞) as

well as fast nucleotide exchange (α0 → ∞), the system of
Eqs. (S.60–S.64) reduces to a simpler three-dimensional
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
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π

FIG. S.2. Plot of Âc(s), with s as a complex variable, where

the color shows the arg(Âc). Black and white meshes are con-

tour lines of arg(Âc) and log10[abs(Âc)], respectively. Black
shaded regions show the poles, while white shaded regions are
the zeros of the function. The red dashed lines correspond to
the poles with the smallest negative real part, which in this
case also have a nonzero imaginary part. The white thick lines
are branch cuts. Herein, β0 = 0.25 s−1, α0 = 5 s−1, η = 10 s−1,
d = 10µm2/s, R = 10µm, ν = 2/3 and λ = 50µm/s.

system in terms of only cytoplasmic RanGDP, nuclear
RanGTP, and nuclear NTR–RanGTP; namely,

∂Ãc

∂t
=

3νλ

R
Ĩn − 3νλ

R
(Ãc − Ãn), (S.68)

∂B̃n

∂t
= −β0B̃n +

3λ

R
(Ãc − Ãn), (S.69)

∂Ĩn
∂t

= β0B̃n − 3λ

R
Ĩn. (S.70)

The characteristic polynomial equation in Eq. (S.67) now
reduces to

s̃2+ s̃
3λ(ν+1)+β0R

R
+
3λ[3νλ+β0R(ν+1)]

R2
= 0, (S.71)

which allows us to determine in exact form the solution
of the eigenvalues s̃. The imaginary part of s̃ is nonzero
when the discriminant of Eq. (S.71) becomes negative,
namely we require the permeability λ to be in the range

β0R

3 (
√
ν − 1)

2 > λ >
β0R

3 (
√
ν + 1)

2 , with ν ̸= 1, (S.72)

or λ > β0R/12 when ratio ν = 1. This shows that the
onset of the oscillation occurs at higher values of λ as we
increase the rate β0; see Fig. 2(a) of the main text.

We now turn back to case when diffusivity d is finite.
To obtain the relaxation times in this case from the as-
sociated Laplace solutions in Eqs. (S.13), (S.14), (S.18),
(S.22) and (S.25), we need to locate the complex poles
of functions that have negative real part. Note that the
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FIG. S.3. Relative increase of the dominant relaxation time τ
compared to τ̃ in the fast diffusion case; namely, Eτ = τ/τ̃−1.
We vary λ at two values of β0, with α0 = 5 s−1, η = 10 s−1,
ν = 2/3, d = 10µm2/s, and R = 10µm.

pole at s = 0 corresponds to the steady-state solutions
found previously through the final value theorem. Since
the solutions of Ân, B̂n, În, and Îc are all linearly related
to Âc, then the position of their poles is the same for all
of them. The dominant relaxation time τ is given by

τ = −1/Re(s⋆), (S.73)

where s⋆ is the pole with the smallest and strictly neg-
ative real part, as shown in Fig. S.2. By numerically
tracking the position of the pole s⋆ as function of λ, the
transition from an over-damped decay, with Im(s⋆) = 0,
to an under-damped decay, where Im(s⋆) ̸= 0, can be
seen as we increase the permeability; see Fig. 2(a) of the
main text. By comparing the dominant relaxation time
τ̃ in the fast diffusion case with τ , we find that a signif-
icant relative increase, Eτ = τ/τ̃ − 1, at large values of
the permeability λ, as shown in Fig. S.3.

C. Non-homogeneous RanGEF distribution

Here we consider that distribution of the RanGEF is
not uniform within the nucleus, with the nucleotide ex-
change rate α(r) being a function of the radial distance.
For simplicity, we assume that α is a piecewise constant
function. We consider two extreme cases; first, all of the
RanGEF is distributed within a spherical ball of radius
Rε at the center of the nucleus; and second, all of the
RanGEF is localized in a spherical shell at the nuclear
envelope of thickness R(1−δ). We study how the steady-
state concentrations of each molecular species, as well as
their corresponding total number, is affected by the non-
homogeneous distribution of RanGEF.

In the case where all of the RanGEF is located in a
spherical ball at the center of the nucleus, the nucleotide
exchange rate for Ran is a piecewise constant function:

αball(r) =

{
a0Fball 0 < r ≤ ε,

0 ε < r < 1,
(S.74)
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where a0 is a constant, and Fball is the RanGEF con-
centration within the ball. Thus, we need to solve the
nuclear equations (S.1), (S.4) and (S.6) on two separate
domains, using matching boundary conditions at r = ε;
namely, we demand that concentration and its derivative
are continuous at r = ε.

Similarly, in the case where the RanGEF is distributed
only in a shell near the nuclear boundary, the nucleotide
exchange rate is given by

αshell(r) =

{
0 0 < r ≤ 1− δ,

a0Fshell 1− δ < r < 1,
(S.75)

where Fshell is the RanGEF concentration in the shell.
Thus, a continuity boundary condition is imposed at the
radial position r = 1 − δ where the concentrations and
their derivatives are continuous.

To directly compare with the previous case of homo-
geneous RanGEF throughout the whole nucleus, we de-
mand that the RanGEF number is the same in both
cases: 4

3πR
3(1− δ3)Fshell =

4
3πR

3F0, which gives

αshell(r) =

{
0 0 < r ≤ 1− δ,

α0/(1− δ3) 1− δ < r < 1,
(S.76)

where α0 = a0F0, being the same as the rate defined pre-
viously in section §B. Similarly, we demand the number
of RanGEF to be the same in the ball as in the entirely
uniform case: 4

3πR
3ε3Fball =

4
3πR

3F0. Hence,

αball(r) =

{
α0/ε

3 0 < r ≤ ε,

0 ε < r < 1.
(S.77)

Given these two static distributions for RanGEF, the
steady-state solutions for the concentrations of RanGDP,
RanGTP, and NTR–RanGTP can be determined in exact
form and compared against the entirely uniform case; see
concentration profiles in Fig. 2(b) of the main text.

1. Steady-state profiles — the shell case

Using Eq. (S.1), the steady-state equation for nuclear
RanGDP can be written as follows:





1
r2

∂
∂r

[
r2

∂Āso
n

∂r

]
= 0, 0 < r ≤ 1−δ,

1
r2

∂
∂r

[
r2

∂Āsi
n

∂r

]
= ks

αĀ
si
n , 1−δ < r ≤ 1.

(S.78)

where ks
α = R2α0/[d(1 − δ3)], while Āsi

n and Āso
n denote

the concentrations inside and outside the shell, respec-
tively. The nontrivial solution of Āsi

n is found to be

Āsi
n(r) =

cs1 cosh(r
√
ks
α) + cs2 sinh(r

√
ks
α)

r
, (S.79)

while Āso
n = cs3, where cs1, c

s
2 and c s

3 are constants to be
determined from the boundary conditions; namely,

Āsi
n(1− δ) = Āso

n (1− δ), (S.80)

∂Āsi
n

∂r
(1− δ) =

∂Āso
n

∂r
(1− δ), (S.81)

∂Āsi
n

∂r
(1) = Λ

[
Ās

c − Āsi
n(1)

]
, (S.82)

where Ās
c is the cytoplasmic concentration of RanGDP

at steady-state for the shell case.
By Eq. (S.4), the steady-state equation for nuclear con-

centration of RanGTP is given by




1
r2

∂
∂r

[
r2

∂B̄so
n

∂r

]
= kβB̄

so
n , 0 < r ≤ 1−δ,

1
r2

∂
∂r

[
r2

∂B̄si
n

∂r

]
= kβB̄

si
n− k s

αĀ
si
n , 1−δ < r ≤ 1,

(S.83)
where kβ = R2β0/d. Similarly, B̄si

n and B̄so
n denote the

concentrations of RanGTP inside and outside the shell,
respectively. The solution of B̄si

n is given by

B̄si
n (r) =

c s
1k

s
α cosh(r

√
k s
α) + c s

2k
s
α sinh(r

√
k s
α)

r(kβ − k s
α)

+
c s
4 cosh(r

√
k s
α) + c s

5 sinh(r
√
k s
α)

r
, (S.84)

while the solution of B̄so
n is found to be

B̄so
n (r) =

c s
6 sinh(r

√
kβ)

r
, (S.85)

where c s
4 , c

s
5 and c s

6 are constants to be determined from
the boundary conditions:

B̄si
n (1− δ) = B̄so

n (1− δ), (S.86)

∂B̄si
n

∂r
(1− δ) =

∂B̄so
n

∂r
(1− δ), (S.87)

∂B̄si
n

∂r
(1) = 0. (S.88)

Using Eq. (S.6), the steady-state equation for nuclear
NTR–RanGTP concentration becomes





1
r2

∂
∂r

[
r2

∂Īso
n

∂r

]
= −kβB̄

so
n , 0 < r ≤ 1−δ,

1
r2

∂
∂r

[
r2

∂Īsi
n

∂r

]
= −kβB̄

si
n , 1−δ < r ≤ 1,

(S.89)

where Īsin and Īson are the nuclear NTR–RanGTP concen-
trations inside and outside the shell. We find

Īsin (r) =
c s
7

r
+ c s

8 − c s
4 cosh(r

√
k s
α) + c s

5 sinh(r
√

k s
α)

r

+
c s
1kβ cosh(r

√
k s
α) + c s

2kβ sinh(r
√

k s
α)

r(k s
α − kβ)

, (S.90)
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while the outer solution Īson is given by

Īson (r) = c s
9 − c s

6 sinh(r
√

kβ)

r
, (S.91)

where the constants c s
7 , c

s
8 and c s

9 are found by imposing
the boundary conditions:

Īsin (1− δ) = Īson (1− δ), (S.92)

∂Īsin
∂r

(1− δ) =
∂Īson
∂r

(1− δ), (S.93)

∂Īsin
∂r

(1) = Λ
[
Īsc − Īsin (1)

]
, (S.94)

where Īsn is the cytoplasmic concentration at steady-state
of NTR–RanGTP molecules. From Eq. (S.8), the steady-
state value of Īsn can be written as follows:

Īsc =
3νΛ

kη + 3νΛ
Īsin (1). (S.95)

This allows us to find the constants c s
j , j ∈ {1, 2, . . . , 9},

in terms of the unknown steady-state value of Ās
c, and the

dimensionless parameters ks
α, kβ , kη, ν, Λ, and δ. The

steady-state Ās
c is found by imposing the conservation of

the net number of molecules in the cell, as in Eq. (S.49).

2. Steady-state profiles — the ball case

From Eq. (S.1), the steady-state equation for nuclear
RanGDP is given by





1
r2

∂
∂r

[
r2

∂Ābo
n

∂r

]
= 0, ε < r ≤ 1,

1
r2

∂
∂r

[
r2

∂Ābi
n

∂r

]
= kb

αĀ
bi
n , 0 < r ≤ ε.

(S.96)

where kb
α = R2α0/(dε

3), whilst Ābi
n and Ābo

n are the con-
centrations inside and outside the spherical ball, respec-
tively. The solution of Ābi

n is found to be

Ābi
n (r) =

cb1 sinh(r
√

kb
α)

r
, (S.97)

while the solution of Ābo
n is given by

Ābo
n (r) =

cb2
r

+ cb3 , (S.98)

where cb1 , c
b
2 and c b

3 are constants to be determined from
the boundary conditions:

Ābi
n (ε) = Ābo

n (ε), (S.99)

∂Ābi
n

∂r
(ε) =

∂Ābo
n

∂r
(ε), (S.100)

∂Ābo
n

∂r
(1) = Λ

[
Āb

c − Ābo
n (1)

]
, (S.101)

where Āb
c is the steady-state value of the cytoplasmic

concentration of RanGDP in the ball case.
By Eq. (S.4), the steady-state equation for nuclear con-

centration of RanGTP is given by




1
r2

∂
∂r

[
r2

∂B̄bo
n

∂r

]
= kβB̄

bo
n , ε < r ≤ 1,

1
r2

∂
∂r

[
r2

∂B̄bi
n

∂r

]
= kβB̄

bi
n − k b

α Ā
bi
n , 0 < r ≤ ε,

(S.102)

where B̄bi
n and B̄bo

n are the concentrations of RanGTP
inside and outside the ball, respectively. We find that

B̄bi
n (r) =

cb4 sinh(r
√

kβ)

r
+

cb1k
b
α sinh(r

√
kb
α)

r(kβ − kb
α)

, (S.103)

while

B̄so
n (r) =

c b
5 cosh(r

√
kβ) + c b

6 sinh(r
√

kβ)

r
, (S.104)

where c b
4 , c

b
5 and c b

6 are constants to be determined from:

B̄bi
n (ε) = B̄bo

n (ε), (S.105)

∂B̄bi
n

∂r
(ε) =

∂B̄bo
n

∂r
(ε), (S.106)

∂B̄bo
n

∂r
(1) = 0. (S.107)

Using Eq. (S.6), the steady-state equation for nuclear
NTR–RanGTP concentration can be written as





1
r2

∂
∂r

[
r2

∂Ībo
n

∂r

]
= −kβB̄

bo
n , ε < r ≤ 1,

1
r2

∂
∂r

[
r2

∂Ībi
n

∂r

]
= −kβB̄

bi
n , 0 < r ≤ ε,

(S.108)

where Ībin and Ībon are the nuclear NTR–RanGTP con-
centrations inside and outside the ball. Their solutions
are given by

Ībin = c b
7 − cb4 sinh(r

√
kβ)

r
+

cb1kβ sinh(r
√
kb
α)

r(kb
α − kβ)

, (S.109)

and

Īson = c b
9 −

c b
8 +c b

5 cosh(r
√

kβ)+c b
6 sinh(r

√
kβ)

r
, (S.110)

where c b
7 , c

b
8 and c b

9 are determined from the conditions:

Ībin (ε) = Ībon (ε), (S.111)

∂Ībin
∂r

(ε) =
∂Ībon

∂r
(ε), (S.112)

∂Ībon

∂r
(1) = Λ

[
Ībc − Ībon (1)

]
(S.113)

where Ībc is the steady-state cytoplasmic concentration of
NTR–RanGTP complexes, which via Eq. (S.8) becomes

Ībc =
3νΛ

kη + 3νΛ
Ībon (1). (S.114)
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FIG. S.4. (a) Steady-state nuclear-to-cytoplasm ratio of Ran molecules as a function of α0 and β0 for the case where RanGEF
is uniformly distributed throughout the whole nucleus. (b) Steady-state ratio Φs in the case where RanGEF is only localized in
a spherical shell, with δ = 0.98. Here, the total number of RanGEF molecules is the same as in the uniform case of subfigure (a).

(c) Steady-state Φb for the case of RanGEF distributed in a spherical ball, with ε = (1− δ3)−1/3 ≈ 0.39, which enforces that
we have the same number of RanGEF molecules as in (a) and (b). For all of the sub-figures, we set η = 10 s−1, d = 10µm2/s,
R = 10µm, ν = 2/3 and λ = 50µm/s. The black dashed lines highlight the same parameter point in each of the plots.
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FIG. S.5. Relative increases EΦ in the ratio Φb(δ), with RanGEF distributed only in a spherical shell of thickness R(1 − δ),
compared to the entirely uniform case (δ → 1), i.e. EΦ = Φb(δ)/Φb(δ→ 1)−1. In subfigure (a), we plot EΦ as function of α0

and β0 at fixed λ = 50µm/s, while in subfigure (b), we vary α0 and λ at fixed β0 = 1 s−1. Here, δ = 0.98, ν = 2/3, η = 10 s−1,
d = 10µm2/s, and R = 10µm. Dashed lines show the same parameter point in (a) and (b), which is also shown in Fig. S.4.

This allows us to determine c b
j , j ∈ {1, 2, . . . , 9}, in terms

of Āb
c . The latter is found by imposing the conservation of

the net number of molecules in the cell, as in Eq. (S.49).

3. Net number of molecules and their ratios

By integrating the concentration fields over the vol-
ume of the nucleus, we can compute the total number of
molecules of that nuclear species. Using Eq. (S.42), total
number of nuclear RanGDP at steady-state for the ball
and shell cases is given by

n̄b
A

4πR3
=

ε
ˆ

0

Ābi
n (r) r2dr +

1
ˆ

ε

Ābo
n (r) r2dr, (S.115)

n̄s
A

4πR3
=

1−δ
ˆ

0

Āso
n (r) r2dr +

1
ˆ

1−δ

Āsi
n(r) r

2dr, (S.116)

respectively. Similarly, using Eq. (S.42), we have that

n̄b
B

4πR3
=

ε
ˆ

0

B̄bi
n (r) r2dr +

1
ˆ

ε

B̄bo
n (r) r2dr, (S.117)

n̄s
B

4πR3
=

1−δ
ˆ

0

B̄so
n (r) r2dr +

1
ˆ

1−δ

B̄si
n (r) r

2dr, (S.118)

where n̄b
B and n̄s

B is the net number of nuclear RanGTP
in the ball and shell cases, respectively. From Eq. (S.44),

n̄b
I

4πR3
=

ε
ˆ

0

Ībin (r) r2dr +

1
ˆ

ε

Ībon (r) r2dr, (S.119)

n̄s
I

4πR3
=

1−δ
ˆ

0

Īson (r) r2dr +

1
ˆ

1−δ

Īsin (r) r
2dr, (S.120)

where n̄b
I and n̄s

I is the net number of nuclear NTR–
RanGTP in the ball and shell cases, respectively.
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FIG. S.6. (a) Time evolution of the nuclear-to-cytoplasmic ratio Φ for various values of the permeability λ; all simulations
start with the same initial conditions. (b) The long-time value of Φ as a function of λ; same color convention as in (a). Dashed
curve is the steady-state value of Φ in the case where RanGEF is uniformly distributed throughout the whole nucleus, with
concentration F0 and same number of RanGEF molecules as that of the solid line. Here, β0 = 1 s−1, α0 = 10 s−1, η = 10 s−1,
d = 10µm2/s, R = 10µm, ν = 2/3, and γF0 = 50 s−1.
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FIG. S.7. The nuclear-to-cytoplasmic ratio Φ as function
of time for various values of the rate γ. Initially, RanGEF
concentration is taken to be uniform (representing 10% of the
total RanGEF molecules in the cell). The dashed curve is the
case where RanGEF is not transported as a cargo with all of
the RanGEF molecules uniformly distributed in the nucleus.
Here, β0 = 1 s−1, α0 = 10 s−1, η = 10 s−1, d = 10µm2/s,
R = 10µm, ν = 2/3, and λ = 50µm/s.

By using the definition in Eq. (S.55) of the nuclear-to-
cytoplasmic ratio of Ran molecules, its steady-state value
in the ball and shell cases can be written as

Φ̄b=
n̄b
A + n̄b

B + n̄b
I(

Āb
c + Ībc

)
Vc

and Φ̄s=
n̄s
A + n̄s

B + n̄s
I(

Ās
c + Īsc

)
Vc

, (S.121)

respectively. These ratios are plotted in Fig. S.4 as func-
tion of the rates α0 and β0; also, see Fig. 2(d) of the main
text. The relative increase in the steady-state value of Φ̄s

with respect to the value of the uniform case, Φ̄, as de-
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FIG. S.8. Spherically angular average of RanGEF distribu-
tion ⟨F ⟩ as a function of the radial distance from the center of
the nucleus, for different values of the rate γ. The concentra-
tion F0 corresponds to the case where all of the RanGEF is
uniformly distributed in the nucleus. We use parameters and
initial data for the solid curves as those described in Fig. S.7.

rived in Eq. (S.57), is given by EΦ = Φ̄s/Φ̄−1. The latter
is plotted in Fig. S.5 in terms of α0 and β0, as well as the
permeability λ; see also Fig. 2(e) of the main text.

D. Dynamics of RanGEF as a nuclear cargo

The nucleotide exchange rate depends on the interac-
tion of RanGTP to RanGEF. The only known nucleotide
exchange factor for Ran is bound RCC1 to chromatin.
Interestingly, RCC1 is a NLS cargo, which is transported
via the Ran cycle. This leads to a positive feedback that
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FIG. S.9. The initial (black curves) and long-time (red
curves) of the angular average ⟨F ⟩ as a function of the ra-
dial distance for 100 different random initial realizations of
RanGEF concentration. These initial distributions are cho-
sen as 10 Gaussian clusters of equal standard deviation whose
mean is randomly placed within the nucleus; see example
in Fig. S.10. Dashed curves are the corresponding averages
over the all the initial (black) and long–time (red) profiles.
Here, β0 = 1 s−1, α0 = 10 s−1, η = 10 s−1, d = 10µm2/s,
R = 10µm, ν = 2/3, λ = 50µm/s, and γF0 = 50 s−1.

transports RanGEF to regions where RanGTP is located
which in turn replenishes that region with even more
RanGTP. By assuming that the binding of RanGEF to
chromatin is fast, the local rate α(r, t) depends on con-
centration of RanGEF, which we denote by F (r, t). We
write the nucleotide exchange rate as follows:

α(r, t) = α0F (r, t)/F0, (S.122)

where F0 is concentration of RanGEF, when all of the
RanGEF molecules in the cell are uniformly distributed
in the nucleus (with no additional RanGEF molecules
transported into the nucleus).

As described in the main text, RanGEF is transported
into the nucleus via a NTR–RanGEF complex, and we
denote their cytoplasmic and nuclear concentrations by
Kc and Kn, respectively. In this model, we need to aug-
ment the cargo dissociation rate β with the dissociation
of NTR–RanGEF, namely

β(r, t) = β0 + γKn(r, t). (S.123)

FIG. S.10. Example of an initial distribution of RanGEF,
which contains 10 Gaussian clusters of equal standard devia-
tion of about R/3, being randomly placed within the nucleus.

First, we assume an initial distribution of RanGEF
which is uniform, containing only 10% of the RanGEF
molecules in the cell, with the remaining being in the
form of cytoplasmic NRT–RanGEF. By numerically solv-
ing the system of equations in three-dimensions [14],
Figs. S.6 and S.7 show the time evolution of Φ, and its de-
pendence on the permeability λ and dissociation rate γ.
We make use of a fast spectral method with domain dis-
cretization in spherical coordinates and a Runge-Kutta
scheme for time-stepping [14].
The long–time spatial distribution of bound RanGEF

is shown in Fig. S.8, which shows radial profiles decaying
away from the NE with permeation lengths that decrease
with increasing γ.
Second, we assume the initial distribution of RanGEF

is given by a various three-dimensional Gaussian clus-
ters of equal standard deviation, being randomly placed
within the nucleus; see example in Fig. S.10. We simu-
late 100 different initial random realizations; see Fig. S.9.
The spherical angular average of the RanGEF distribu-
tion, namely

⟨F ⟩ =
2π
ˆ

0

dφ

π̂

0

F (r, θ, φ) sin θdθ, (S.124)

is also shown in Fig. S.9, which displays a sharp accumu-
lation at the NE.
Lastly, Fig. S.11 shows the angular average of nu-

clear concentrations of RanGDP, RanGTP, and NTR–
RanGTP as function of time and radial distance for
the two different initial RanGEF profiles: uniform in
Fig. S.11(a) and random clusters in Fig. S.11(b).
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FIG. S.11. Angular average of the nuclear RanGDP (An), RanGTP (Bn), and NTR–RanGTP (In) as a function of time and
radial distance from the center of the nucleus. In subfigure (a), the initial RanGEF profile is uniform, representing only 10%
of the total number of RanGEF in the cell, while the other 90% is in the cytoplasm as NTR–RanGEF. In subfigure (b), the
initial distribution of RanGEF is given by the random Gaussian clusters as shown in Fig. S.10. The remaining initial RanGEF
is found only in the cytoplasm as NTR–RanGEF. For both case we choose β0 = 1 s−1, α0 = 10 s−1, η = 10 s−1, d = 10µm2/s,
R = 10µm, ν = 2/3, and γF0 = 50 s−1.
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