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We consider a proposed alternative to quantum gravity, in which the spacetime metric is treated
as classical, even while matter fields remain quantum. Consistency of the theory necessarily re-
quires that the metric evolve stochastically. Here, we show that this stochastic behaviour leads to a
modification of general relativity at low accelerations. In the low acceleration regime, the variance
in the acceleration produced by the gravitational field is high in comparison to that produced by
the Newtonian potential, and acts as an entropic force, causing a deviation from Einstein’s the-
ory of general relativity. We show that in this ”diffusion regime”, the entropic force acts from a
gravitational point of view, as if it were a contribution to the matter distribution. We compute
modifications to the expectation value of the metric via the path integral formalism, and find a
stochastic contribution which corresponds to a cosmological constant, anti-correlated with a contri-
bution which has been used to fit galactic rotation curves without dark matter. We caution that a
greater understanding of this effect is needed before conclusions can be drawn, most likely through
numerical simulations, and provide a template for computing the deviation from general relativity
which serves as an experimental signature of the Brownian motion of spacetime.

According to the standard model of cosmology, ΛCDM, visible matter makes up only 5% of its contents, with dark
energy or a cosmological constant Λ and cold dark matter (CDM) making up the remaining part. There is strong
evidence for this. Dark energy or a cosmological constant appears to drive the expansion of the universe, while dark
matter can account for the flatness of galactic rotation curves [1]. It is observed in the CMB power-spectrum [2, 3],
by gravitational lensing [4] such as that observed in the Bullet Sluster, through dispersion relations of elliptical
galaxies [5], mass estimates of galaxy clusters [6], and appears to be required for the formation of galaxies in the early
universe [7]. However, despite large scale efforts, neither dark energy nor dark matter have been directly detected.
Their apparent existence is only felt through their gravitational field. Discoveries in physics are often indirect. The
neutrino was conjectured by Pauli to exist in 1939 in order to account for energy conservation in β-decay, and only
gave a signal in a particle detector 26 years later. But in the absence of any direct evidence for dark energy or dark
matter it is natural to wonder whether they may be unnecessary scientific constructs like celestial spheres, ether,
or the planet Vulcan, all of which were superseded by simpler explanations. Gravity has a long history of being a
trickster.

Several attempts to modify gravity without dark matter have been proposed. In 1983 Milgrom [8] found that if a
theory had the property that either the law of inertia were modified, or Newton’s theory of gravity was modified at
low acceleration such that

a =

{
aN when a≫ a0,√
a0aN when a≪ a0.

(1)

with aN the Newtonian acceleration, and a0 a parameter of order 10−10 m/s2, then the flatness of rotation curves
and the Tully-Fischer relation [9] would follow. These are effects currently attributed to dark matter. He called this
Modified Newtonian Dynamics (MOND) [10–12]. Here, we would like to point out that this behaviour is reminiscent
of Brownian motion, with a mean of aN , and standard deviation of

√
aN , a statement which we hope becomes clearer

as we progress. In 1983 Milgrom also observed [8] that the MOND acceleration (in the units of this article, c = ℏ = 1),
is given by

a0 ≈ 1

2π

√
Λ

3
, (2)

a coincidence that has yet to be explained. A number of theories have been proposed to reproduce MOND phe-
nomenology [11–17], but thus far no satisfying fundamental theory which reproduces this behaviour has been found.
The problem is that while it is easier to modify a theory at high energy, modifying a theory at low energy while still
respecting current experimental bounds is difficult. It is also important to emphasise that MOND has yet to account
for the results of gravitational lensing or the CMB power spectrum. However, it seems reasonable to wait regarding
these, because MOND is not a fundamental theory.

Another approach, initiated by Mannheim, comes from fitting rotation curves to the spherically symmetric metric
which is a solution to conformal gravity [18–20], an approach we will discuss in more detail after having presented the
results of the path integral.
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Here, we calculate the effect on rotation curves due to a recently proposed alternative to quantum gravity [21, 22].
We will, in particular, use the path integral formulation developed in [22, 23], with Zach Weller-Davies. The theory
was not developed to explain dark matter or energy, but rather, to reconcile quantum theory with gravity. However,
it was already noted in [21], that diffusion in the metric could result in stronger gravitational fields when one might
otherwise expect none to be present, and that this raised the possibility that gravitational diffusion may explain
galactic rotation curves and galaxy formation without the need for dark matter. Here, we will add weight to this
intuition.

We will find that even when the bare cosmological constant is zero, one should typically expect a small one due to
stochastic fluctuations. This is intriguing because the bare cosmological constant is taken to be zero when no matter
is present, to preserve positivity of correlation functions [24]. This provides a potential explanation for its small but
non-zero value.

Looking ahead, we further find that stochastic fluctuations act as if they are a positive contribution to the mass,
and that these become relevant at an acceleration scale, which sets a scale at which gravity is modified, which is a
necessary condition for MOND behaviour. This is discussed through Eq. (21). The path integral also contains another
dominant fluctuation, which contributes a linear term γ1r to the Schwarzschild and Newtonian solution, akin to that
found in conformal gravity. γ1 has units of acceleration. Although the theory does not precisely predict the coincidence
of Eq. (2), it gives a numerically similar relationship between the fluctuation corresponding to the acceleration γ1 of

γ1 ≈ ΛRH , with RH the Hubble radius and with the relationship becoming γ1 ≈
√
Λ in a Λ-dominated universe and

results in flat rotation curves in a region far from the galactic centre, but with possible deviations at larger distances
depending on how parameters are chosen. Our parameters are not coupling constants, but correspond to boundary
conditions which likely require a fuller understanding of the dynamics of the theory. Since quantum-classical theories
of gravity are very restricted, a better understanding of this is likely to enable astrophysical tests of the quantum
nature of spacetime.

The theory of [21, 22] describes spacetime classically, while the matter fields are quantised. This necessarily requires
the evolution of spacetime to have a stochastic component [25]. The full path integral of the theory is given in Section
A. Here, we only study the classical limit of the theory. In this limit, the quantum matter degrees of freedom will
have decohered, but in the dynamics of the classical-quantum framework, the classical degrees of freedom still undergo
stochastic evolution. We will also not concern ourselves with the evolution of the matter degrees of freedom, and
thus only represent them by their mass density m(x), neglecting the Hamiltonian term which governs their evolution.
Therefore, we can represent the path integral as

ϱ(Σf ,mf , tf ) =

∫
Dg N eI[g,m,ti,tf ]ϱ(Σi,mi, ti), (3)

where the action contains a gauge-fixing term so that the path integral over metrics g is over geometries. The path
integral determines the probability density ϱ(Σf ,m, tf ) of a final spatial surface Σf given an initial spatial surface,
and N is a normalisation factor. This is much simpler in the Newtonian limit, where we can parameterise the metric
in terms of the Newtonian gravitational potential Φ. In this limit, the action of [22] was found to be [26]

I[Φ,m, ti, tf ] = −D0(1− β)

G2
N

∫ tf

ti

dtdx⃗
(
∇2Φ− 4πGNm(x)

)2
. (4)

Here β is required to be less than 1/3 by consideration of positivity of the full action, but for the correlation functions
of the full theory to be positive semidefinite, it is required to be negative [24]. It is naturally assumed to be of
order O(1), and in this Newtonian limit, β < 1 is clearly sufficient – it is what is required for the path integral to
suppress paths away from Poisson’s equation. D0/G

2
N is a dimensionless coupling constant, which determines the

scale of fluctuations. β = 1/3 without the matter couplings, would correspond to the conformally invariant theory.
The action is similar in form to that of the Onsager-Machlup function [27]. The action can also be derived as the
weak field limit of the action for Nordstrom gravity which is diffeomorphism invariant and completely positive [28].

Crucially, we see that the action (4) is in the form of an equation of motion squared, and has a global maximum
when the equations of motion are satisfied

⟨∇2Φ− 4πGNm⟩ = 0. (5)

As shown in [26], this action derived as the weak field limit of [21, 22] is a path integral formulation of the model of
[29] when a local noise kernel is chosen. Since Eq (5) is linear in Φ, when m(x) has a definite distribution rather than
being a statistical mixture of distributions we have that ∇2⟨Φ⟩ satisfies Poisson’s equation, and so on expectation,
there is no difference between the expectation value of Φ and its deterministic value. Nonetheless, the action of Eq
(4) is extremised not only by Φ which satisfies Poisson’s equation, but also by more general field configurations that
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make the action variation vanish for fixed endpoints. In vacuum, when m(x) = 0, the Φ which extremise the action
of Equation (4) is found to be the biharmonic equation

∇4Φ = 0, (6)

which have solutions away from x = 0 given by

ΦMPP (x) = − κm
4π|x|

+ κ0 − κ18π|x|+ κ2|x|2. (7)

The first two terms are the standard Newtonian potential plus an arbitrary constant term, while the last two additional
terms do not satisfy the standard vacuum Poisson’s equation, and are therefore local rather than global maxima.
However, they still make substantial contributions to the path integral. Note that the κm term and the κ1 term are
Green’s functions for ∇2 and ∇4 respectively, and for this reason we’ve explicitly put in the sign and factors of π.
Solutions to the biharmonic equation with a source can be found for example, in [30], the difference here being that
the source is 4π∇2Φ.

We wish to emphasise that these are not equations of motion in the usual sense. The dominant contribution to the
path integral comes from the solution to Poisson’s equation, while the rest merely represent stochastic deviations from
Poisson’s equation which are not too suppressed in the path integral given boundary conditions. Other configurations
also contribute with a probability weighed by the path integral.

Therefore, we will call the generalised configurations such as those of Eq. (7)Most Probable Paths (MPPs), adopting
the language used in the study of diffusive dynamics [31–33]. We include a simple example of how these contribute
to the path integral in the case of Brownian motion with a step function potential in Appendix D. The κ should be
static, since this non-relativistic action follows from a local relativistic one. For now, it is worth foreshadowing our
final result by noting that the contribution of κ1 to the most probable path has units of acceleration, and the κ2
contribution is a solution to general relativity if there is a constant matter density and has the same units as the
cosmological constant.

If we were to substitute the most probable path of Equation (7) into the 0th order action of (4) in a vacuum region,
then the κm, m(x) and κ0 term don’t contribute to the action if the Newtonian term is used as a Green’s function for
the matter distribution m(x). They can therefore be set by the boundary conditions, as is done in solving Poisson’s
equation. The κ2 however, does contribute to the action and is therefore suppressed. We will neglect the κ1 term
in this brief discussion, because it doesn’t satisfy appropriate boundary conditions if in vacuum, but it would still
contribute significantly to the path integral (see comment at the end of this article). If we substitute the other terms
of the MPP of Eq (7), into the 0th order action, we get, what we will call the MPP-action

IMPP = −D0,T (1− β)

4πG2
N

∫
d3x (6κ2)

2
, (8)

where D0,T /G
2
N has units of time, since the paths must be static as they are inherited from the relativistic theory, and

we neglect the integral over time. This should be recalled when adding powers of c back to the prefactor of D0,T /G
2
N .

When we are substituting the most probable paths, this is reminiscent of the on-shell action used in quantum field
theory and captures the leading order terms to the path integral. If we include other terms in the action (such as
the κ1 term), then the action will allow us to calculate the relative probabilities of the paths we substitute into the
action regardless of whether they extremise the action.

If we add a source term J(x)O(κ) to the action with an arbitrary function O(κ) of the parameters κ =
{κm, κ0, κ1, κ2}, we can construct a partition function

ZMPP [J ] = N
∫

Dκ eI[ΦMPP ,m,J], (9)

with N the normalisation factor. This can be used to compute correlation functions of the parameters κ. However, for
this simple example, we immediately see that this is a normal distribution in κ2 with a standard deviation which scales
like GN/

√
D0,TV where V is the spatial volume of the region we are considering. We will see that κ2 is equivalent to a

small cosmological constant of arbitrary sign, and we emphasise that it appears as a necessary fluctuation even though
the deterministic equations of motion don’t allow for it. Since it has some variance, we would be surprised if we found
it to be 0. Care should be taken with the MPP action. If we toss a 1000 coins, slightly biased towards heads, the
most probably single configuration is all heads. A more natural characterisation of the outcome would be in terms of
the expected number of heads vs tails, which also characterises any local sample, provided it is sufficiently large. Note
that unlike the Brownian motion path integral in Appendix D, or the full relativistic one, this is a non-dynamical
path integral, but if the dynamics is slow enough, we would expect it to characterise the final distribution.
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Let us now move to the relativistic case. Here, the static solution is the appropriate metric for considering the effect
of stochastic fluctuations over large distances. We therefore consider a spherically symmetric metric of the form

ds2 = −e2ϕ(r)dt2 + e−2ψ(r)dr2 + e−2χ(r)r2 dΩ2, (10)

with Ω the 2-dimensional solid angle. In general relativity, we could perform a coordinate transformation to set
χ(r) = 0. In vacuum, Einstein’s equation would require ϕ(r) = ψ(r) = 1

2 log(1 − 2M/r) and we would arrive at the
usual Schwarzschild solution. Here, we consider more general metrics of the form

ϕ(r) = ψ(r) =
1

2
log

(
1− 2F (r)

r

)
, χ(r) = 0, (11)

with F (r) a function which we will take to be a power series in r, motivated in part by the most probable path of
Equation (7). Note that 1− 2F/r = 0 is a horizon, and so F is bounded in a similar way to the example we consider
in Section D of Brownian motion with a wall.

The full dynamical action of [22] is reproduced as Equation (A2) of Appendix A and in Appendix B we include a
more detailed description of the sketch we are giving here. The purely gravitational part of the action, is given by

I = − D0

G2
N

∫
d4x

√
−g
(
RµνRµν − βR2

)
. (12)

If we now substitute the ansatz of Eq (11) into this action, we find the simple form

IF (r) =− 8πD0

G2
N

∫
dr

(
(1− 2β)F ′′(r)2 +

(4− 8β)

r2
F ′(r)2 − 8β

r
F ′(r)F ′′(r)

)
, (13)

where the angular part has been already integrated out so that the path integral is a two-dimensional Gaussian
distribution in the variables F ′ and F ′′. Here, F ′ has dimensions of acceleration and F ′′ has dimensions of the
cosmological constant. To see this more clearly, let us consider the power expansion of F

2F (r)

r
=

∞∑
n=−∞

γnr
n

= · · ·+ γm
r

+ γ0 + γ1r + γ2r
2 + · · · , (14)

where in the second line we have written the terms relevant to the length scales we are considering. The γm ends up
dropping from the action, and we will henceforth set it to 2GNM , since at order r−1 it is the standard Schwarzschild
term which can here be determined from boundary conditions. It makes no difference for the purposes of this discussion
whether we include the γi corresponding to other higher or lower powers, or functions like log(r). The reason for this
is that the series is linear in the γi, so that when we substitute the expansion back into the action, we find that the
coefficients follow a multivariate Gaussian distribution with zero mean and non-zero correlation. We can then perform
the Gaussian integrals over all other γi we are not interested in, and the action for the remaining γ0, γ1, γ2 will not
change. The reason we are most interested in these contributions, is that negative powers of r will not contribute
far away from the mass distribution of a galaxy which is our zone of interest. On the other hand, higher powers of
the expansion will be heavily suppressed by the action once the radial integral is performed, as can be verified by
including them. We will see that they represent fluctuations larger than our Hubble volume. For this reason we focus
only on the correlation between γ0, γ1 and γ2, and inclusion of the other γi would not effect our conclusions.
If we now substitute the power series of Eq. (14) into the action and integrate from r = 0 to some rmax, we obtain

Iγ = −6πD0,TV

G2
N

(
5− 18β

r2max

γ21 + 6(1− 4β)γ22 +
9(1− 4β)

rmax
γ1γ2

)
, (15)

where we have dropped the constant term γ0 for ease of presentation, as it doesn’t alter the conclusions nor contribute
to rotation curves. V = 4

3πr
3
max, and we could absorb it into the coupling constant D0,T /G

2
N which renormalises it

and gives it units of Planck length to the 4th power l4p, but we leave it in place to keep track of units. The analysis
doesn’t change much if we integrated from the inner horizon to rmax. Since we are considering large-scale fluctuations
which exist over all space, they are naturally suppressed by a volume element, so it’s interesting to see that γ2 is only
suppressed by this amount. We also see here, or by explicit calculation, that higher powers in the expansion of Eq. (14)
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would be more suppressed, which motivated us to integrate out such higher powers. They represent fluctuations of a
length scale which are not felt inside our Hubble volume. This gives the path integral over γ = {γ1, γ2}

Zγ = N
∫

DγeIγ [γ,m]. (16)

Integrating over 4-geometries is here limited to 4-geometries which have the metric.

ds2 = −
(
1− 2MGN

r
− γ0 − γ1r − γ2r

2

)
dt2 +

(
1− 2MGN

r
− γ0 − γ1r − γ2r

2

)−1

dr2 + r2dΩ2 (17)

This is the MK metric of [30, 34], which is used to fit galactic rotation curves [18–20, 30, 35]. Here we will not fit
γ1, but instead determine it from the path integral. While this metric is a solution to conformal gravity [34], it is
not a solution to general relativity, nonetheless, it does contribute to the classical-quantum path integral, as can be
seen from Eq. (15). While conformal gravity has issues with negative norm ghosts, this is not an issue here [24] (c.f.
[36–42]). Moreover, criticisms of using the MK metric in fitting rotation curves akin to those presented in [43–45] are
also not applicable to the classical-quantum theory of [21, 22] which is not conformally invariant, but rather scale-
invariant without matter [24]. Scale invariance is broken by the matter action. Furthermore, although in conformal
gravity, the Newtonian potential now depends on the mass distribution of the source rather than just the mass [46],
the correct Newtonian potential is the dominant saddle of our path integral.

For now, we see that γ2 corresponds to the cosmological constant term of Schwarzschild deSitter, while γ1 contributes
to the geodesic equation of stars far from the galactic centre. The expectation values of γ1 and γ2 are zero, but the
two random variables are normally distributed and inversely correlated as can be seen by inspection of Eq. (15) and
(16). The covariance matrix of the normal distribution determined from the path integral Eq. (15) is

Σ11 =
2r2max

3(13− 36β)

G2
N

D0,TV

Σ22 =
(5− 18β)

9(13− 36β)(1− 4β)

G2
N

D0,TV

Σ12 = − rmax
2(13− 36β)

G2
N

D0,TV
(18)

and the conditional mean of γ1, given an observation of γ2 is given by

µγ1|γ2,rmax
= −9

2
γ2 rmax

(
1− 4β

5− 18β

)
, (19)

here plotted in Figure 2. We can now ask, given that we observe a value of γ2 ≈ Λ/3, where Λ ≈ 10−52 m−2 is the
cosmological constant, and an rmax given by the Hubble radius RH ≈ 1026 m over which we obesrve it, what does
this tell us about the value we expect to see of γ1? Recall that we expect β to be negative and of order 1, but from
Fig 2 we see that we are insensitive to it’s value. In this case we find a mean value of γ1 to be of µγ1|γ2,rmax

≈ −10−26

m−1. Putting units of c back in, we find that γ1 is of the order of the MOND acceleration γ1 ≈ 10−10 m/s2.
This is the value initially used to fit galactic rotation curves for larger spiral galaxies, in the context of conformal

gravity [19] . In the region where the transition between the rising γ1r term is of the order of the falling GNM/r
term, the rotation curve is roughly flat. γ1 is not too large such that it runs afoul of experimental bounds on solar
system evolution. However, to account for smaller dwarf galaxies, γ1 is adjusted as γ1(M) = γ1(1+M/1010M⊙) with
γ1 ≈ 10−28m−1. Here it should be said that CDM simulations also have trouble – the core-cusp problem[47–49], so
dark matter models also require novel matter properties, additional assumptions or further considerations[50]. To
account for more recent data, γ2, is taken to be a κ ≈ 10−50m−2 [20] to ”flatten the curve” while giving a slight rise
which is claimed to be observed [51] (see in contrast [52]).

Without further considering the dynamics of the matter distribution, we have no reason at this point, to select the
constants in the most probable path, because they correspond to boundary conditions. It is reasonable to set γ2 to be
the value of the cosmological constant given its observation over the scale of the Hubble radius, and then use this to
predict γ1. It is not inconsistent with our obtained γ1 for γ2 ≈ κ over galactic distances, since γ1 ≈ µγ1|γ2,rmax

when
rmax ≈ 100kpc since the observed rotation curves in each galaxy only extends to a radius of that order (the galactic
disk of larger galaxies). This would require viewing γ2 as a fluctuation which appears as if it were a dark energy
contribution akin to some form of quintessence [53–55], which is not inconsistent with observation, but without a
greater understanding of galaxy formation in a cosmological setting, little can be said. Instead, the first conclusion we
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would like to draw, is that the order of magnitude estimates suggest the theory makes predictions broadly in line with
current observations, and suggest that simulations of the theory, combined with astrophysical observations, could be
used to test its anomalous behavior.

Efforts to understand the effect of these stochastic fluctuations in cosmology are initiated in [56] with Emanuele
Panella and Andrew Pontzen, where we find some evidence that early time stochastic fluctuations in the gravitational
degree of freedom do behave as a positive matter fluctuation, in terms of how they scale with the expansion factor
in a Friedman-Robertson-Walker spacetime. We also find some evidence that in order to describe our universe, the
fluctuations in both the cosmological constant and gravitational degrees of freedom have to be small, or have to have
occurred at an early time. In particular, we find that our current Λ cannot only be the result of large scale fluctuations
in the evolution of the scale factor. Cosmology studies using different models of stochastic fluctuations have been
considered in [57, 58]. Other approaches have also tried to connect cosmology with the emergence of dark matter [59]
and even attempt to explain dark energy as a fluctuation of the Newtonian gravitational constant [60].

In order to provide a template for further comparison between models and observation, we can already get an
estimate of the parameter D0,T /G

2
N , at least at large distances if we take the cosmological constant to be the result

of stochastic fluctuations. Since we expect that we live in a typical universe, this tells us that the variance in γ2
should be of the order of Λ2, so that the value of γ2 we witness is typical. From the covariance matrix above, we can
see that this sets D0,T /G

2
N to be of the order of D0,T /G

2
N ≈ 1/Λ2VH , with VH the Hubble volume. In units with

c it is perhaps easiest to think in terms of a diffusion coefficient 4-density D2 := G2
N/D0,T c

3VH ≈ 10−104m−4. A
fuller analysis of the variances can be found in Appendix Section B. Note that this could explain both the small but
non-zero value of the cosmological constant, at least in terms of D0,T , since we find in [24] that a bare cosmological
constant can’t be included for reasons of complete positivity, and may lead to explainations of the coincidence that

a0 ≈ 1
2π

√
Λ
3 [8] – both coincidences which has thus far received no satisfying explanation. It also may explains why

general relativity is modified at low acceleration. Crucially, the fact that γ1 and γ2 are anti-correlated comes out of
the path integral. We have also not needed to fine-tune β.
Let us now highlight the weaknesses of the calculation. To make it tractable analytically, we have restricted

ourselves to spherically symmetric and static spacetimes, with metrics of the form of Eqs. (17). Allowing ψ and ϕ
to be different would be desirable. This would double the number of parameters in the action, and may give further
insight into galactic rotation curves. A greater understanding of more general metric fluctuations does seem in order.
For simplicity we have restricted ourselves to understanding the correlation in γ1 and γ2. They reflect different length
scales of stochastic fluctuations, but there are correlations between them, and for example, the higher powers in the
expansion. Here, the full normal distribution reflected in Eq. (13) may provide some insight into the distribution of
what is currently taken to be dark matter, but one must be careful since anything can be fit to a power series, and a
fuller understanding of the probability distribution is required, as we don’t know what other terms may contribute.
Here, the cosmological constant term serves as a reasonable candle to measure against. A fuller principle component
analysis may be useful, via the Kosambi–Karhunen–Loève theorem [61].

For spherically symmetric matter distributions, it is natural for the expectation value of the metric and its variance
to be spherically symmetric. However, any realisation of the stochastic noise is highly non-uniform and is not constant
in time, while the metric ansatz is constant in time and uniform over the sphere at each radius r. Static spacetimes
were chosen because, in the relativistic theory, we would not expect large scale fluctuations except those which are
already present, and conjecture that given the scale, the γ2 term represents fluctuations which have been baked in
during inflation. The R2 term, which dominates the covariant path integral, could allow for Starobinski inflation [62–
64], which is favoured by CMB data [65]. The dynamics of other contributions to the path integral are unknown.
We are also here required to renormalize D0,T by the volume element. While this does not effect the mean values
we derive, nor the relative variances of γ1 vs γ2, it may make the D0,T we estimate here, difficult to relate to that
measured at shorter distance scales. A greater understanding of the renormalisation flow will be required in order
to relate bounds on D0,T coming from astronomy data to the scale relevant for tabletop experiments such as those
proposed in [25] based on the decoherence vs diffusion trade-off [25, 66].

We have also only considered correlations in larger scale fluctuations rather than short distance fluctuations. We
would like to better understand how these arise from the local time-dependent fluctuations present in (4). We would
therefor like to cross-check the results given here, with what the theory predicts for local fluctuations. For this, it
is worthwhile to look at the post-Newtonian expansion of the full theory. Here, we can see that local stochastic
fluctuations lead to an acceleration scale, below which the laws of gravity are modified. This is most easily done in
isotropic coordinates, which we do in Appendix C. In these coordinates, the action is given by Eq. (C9)

I = − D0c
5

64π2G2
N

∫
d3xdt e

2Φ
c2

{(
∇2Φ− (∇Φ)2

2c2
− 4e−

2Φ
c2 πGm

)2

+
3

c4
(∇Φ)4 − 4β

(
∇2Φ− (∇Φ)2

2c2
− 4e−

2Φ
c2 πGm

)2
}

(20)
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where we have put powers of c back in to highlight terms which contribute only at higher order. In each term,
the acceleration squared (∇Φ)2/c2 plays an important role. Let us take β = 0 for simplicity (the argument doesn’t
change much if it’s non-zero), and let’s also drop the 3

c4 (∇Φ)4 for further simplicity – its inclusion will only enhance
the argument we are about to make. In this case, this action says that on expectation, the scalar gravitational
potential Φ must satisfy 〈

e
Φ
c2

(
∇2Φ− 1

2c2
(∇Φ)2 − 4e−

2Φ
c2 πGm(x)

)〉
= 0 (21)

Here, we immediately see, that when ⟨(∇Φ)2⟩ >> ⟨∇Φ⟩2, we will see on average, a deviation from the Newtonian
limit of general relativity. Indeed from Eq. (21), we see that the extra variance acts like a positive mass term. We call
the regime when ⟨(∇Φ)2⟩ >> ⟨∇Φ⟩2, the diffusion regime, since when the acceleration |∇Φ| is small in comparison
to its standard deviation, we will see a deviation from the Newtonian law of gravity. In Appendix D, we define an
entropic force to be just such a deviation from the deterministic equations. This is distinct from the entropic force
used by Verlinde in the context of Holography, in which gravity itself is proposed as an entropic force which also acts
as dark matter[67].

If the diffusion in the acceleration is relatively constant far from the galactic center, then this naturally picks out a
universal acceleration scale as occurs in MOND phenomenology. Once the acceleration drops below the level set by
the diffusion in |∇Φ|, we have a deviation from the Newtonian law, and indeed, the post-Newtonian corrections. If
|∇Φ| is instead above the diffusion regime, the expectation value ⟨∇Φ⟩ obeys the post-Newtonian equations of motion,
which explains why PPN tests of general relativity are unaffected by the stochastic fluctuations of [21, 22].

While this study demonstrates that galactic rotation curves can undergo modification due to stochastic fluctuations,
a phenomenon attributed to dark matter, it is important to acknowledge the existence of separate, independent
evidence supporting ΛCDM. In particular, in the CMB power spectrum, in gravitational lensing, in the necessity of
dark matter for structure formation, and in a varied collection of other methods used to estimate the mass in galaxies.
These now form an important set of tools with which to test the theory of [21, 22].

From a theoretical point of view, another caveat we wish to highlight, concerns the negative definiteness of the action.
This is required in order to give finite probability distributions, and suppress paths which deviate from Einstein’s
equation. While the weak field limit has this property, the generalised deWitt metric, Eq. (A3), is not positive
semidefinite, nonetheless the negative contributions to the path integral appear to correspond to non-dynamical
degrees of freedom [24, 68]. One corresponds to the Gauss-Bonnet term, which in 4 spatial dimensions is a purely
topological term and also a total divergence. Since we don’t sum over topologies, its bulk contribution is benign.
The total divergence is usually discarded as a boundary term at spatial and temporal infinity which does not effect
local physics, but whether this can be done here is less clear, since the final condition is not determined by the initial
condition. The other negative contribution, corresponds to the magnetic part of the Weyl curvature which is also
non-dynamical, in the sense of being made up of only first time-derivatives in the metric. In [68], we find there are
discretizations of the path integral, such that the magnetic Weyl term merely contributes to the normalisation, and
thus appears benign, but the consequences of this are not yet fully understood. This is briefly previewed in [24]. This
concern doesn’t effect the calculation here, because the Weyl curvature term is positive definite on the metrics we
consider, and comes into the action with an overall minus sign if the Gauss-Bonnet identity is used. Nonetheless, care
should be taken in extending this work to dynamical spacetimes [69] until this issue is better understood.

Let us finally examine the implications of our results on tabletop experiments performed on Earth. Here, we have
found that stochastic fluctuations in the acceleration with a standard deviation of the MOND acceleration, could
explain both the small value of the cosmological constant and perhaps the flatness of galactic rotation curves. We
have estimated the value of the diffusion 4-density G2

N/D0,TVHc
3 which corresponds to this, to be of order Λ2. This

rules out terrestrial experiments being able to detect the long-range stochastic fluctuations discussed here, although
it says little about shorter range fluctuations. We can now use the decoherence vs diffusion trade-off [25] to ask
what this says about terrestrial decoherence experiments. There, we found that the decoherence rate corresponding
to the path integral of Eq. (A2) or its weak field limit [26] to be λ = 2D0,T c

3M2/Vλ, where M is the mass of the
particle in the interference experiment, and Vλ is the volume of the wave-packet. Note that this decoherence rate is
not the Diosi-Penrose rate [70–72], since the theory considered here is ultra-local and linear. There is also no genuine
decoherence, since the quantum state stays pure, conditioned on the classical degrees of freedom [26], here taken to be
spacetime. Only when integrating out the gravitational degrees of freedom does the state decohere. Since the value
of D0,T c

3 is of order 10−20 m3s−1kg−2 , M ≈ 10−24 kg for fullerene molecules, Vλ ≈ 10−25 m3 for the wavepacket
volume estimated in the experiment of [73] gives a decoherence rate λ ≈ 10−43 s−1, orders of magnitude below current
bounds of about .1 s−1 [73]. However, this does not reflect the fact that the D0,T that we have estimated here, is at
a volume scale set by VH , the Hubble volume and may renormalise. This however does not suggest that decoherence
experiments and tests from anomalous heating [74–88] are uneffected. Using the decoherence vs diffusion trade-off
again, we can compute the stochastic gravitational fluctuations at short distances, and we found that such short range
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fluctuations would violate current bounds on precision tests of the gravitational field, unless gravity were modified
at short distances. This does appear to be the case – in [24] we find that the pure gravity theory is asymptotically
free, meaning that the stochastic fluctuations of the metric get weaker at shorter distances, at a scale which needs
to be determined from experiment, as is the case with dimensional transmutation in QCD. Whatever the form of
this stochastic noise, it will contribute to apparent decoherence through secondary heating[89], and thus decoherence
experiments and bounds due to heating may constrain the theory further, or rule it out. To understand this better,
one likely requires the nonlinear contributions as in Eq. (21) which acts like a mass on average when the variance
becomes large and plausibly reduces the diffusion at short distances.

This also suggests that measurements of gravity at short distances[90] are of interest in understanding this apparent
behaviour, as well as conducting experiments to test the quantum vs classical nature of spacetime [25, 91–95]. At this
point, it is too early to make bold claims, and a greater understanding of the theoretical and experimental constraints
is required. It is possible that the effects derived here could be the result of a fully quantum theory of gravity,
which [21, 22] describes as an effective theory. This we regard as unlikely because we don’t expect the stochastic
fluctuations of spacetime to be so large in a quantum theory of gravity. The parameter space of such an effective
theory has been found with Isaac Layton in [96]. We also do not know how to make such a theory renormalisable.
Baring such a theory, it would appear that 95% of the energy in the universe is due to stochastic fluctuations of
spacetime, whose origin is either due to a fundamental breakdown in predictability or an environment which does not
obey the laws of classical or quantum theory [97].
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Comment: Two parts of v1 of this preprint were criticized in [98], neither of which formed part of our analysis.
First, they note that if in the Newtonian case, one has an r term in the potential in the vacuum, then it cannot
satisfy matching boundary conditions for a localised source if it is to satisfy the MPP equation with matter ∇4Φ(x) =
4πGN∇2m(x). This is true. However as already emphasised in v1, the MPP is not an equation of motion but only
gives the most probable path, and other paths including the r term in vacuum contribute. This can be seen by also
inserting the κ1 term into the action which gives in the spherically symmetric case

I ′MPP = −D0,T (1− β)

G2
N

∫
r2dr

(
6κ2 +

2κ1
|r|

)2

, (22)

We see κ1 anti-correlated with the cosmological constant term κ2. While suppressed, it still contributes enough to
influence galactic rotation curves. The path integral calculation demonstrates this. If you observe an r2 term (which
is an extremal path) corresponding to a fluctuation which acts as a cosmological constant then you should expect
to see an r term. This is unchanged when a localised matter distribution is present. In the actual calculation, we
consider a power law expansion. It is true however, that a fuller principle component analysis would be useful, via
the Kosambi–Karhunen–Loève theorem [61], to determine the appropriate contributions more fully.

Next, they claim we drop a constant term in our discussion, but we did not, we explicitly keep and note it. This
was in the context of a discussion, where we tried to give the reader further intuition concerning Eq. (21), which very
clearly does set a natural acceleration scale. When the mean acceleration drops below its variance, the acceleration
will act on expectation as a positive matter source. This point has been removed in v2 to not distract from (21). The
separate discussion around the different anomalous contributions to rotation curves comes after Eq. (19) which we
have expanded.

They make a third point already discussed by us in v1 – that by itself, the random variables found in Eqs. (22) or
(15) are zero on expectation. This is true, but because they have variance, we would be very surprised if we observed
a cosmological constant of zero. Furthermore, given that the galaxies we observe all formed under the dynamics of
the same cosmological constant, we would also expect each of their linear fluctuations to be anti-correlated with the
cosmological constant term, provided the conditional variance in the linear term is small enough, which indeed is the
case. If we post-select on one global observation, it can provide a boundary condition for the remaining terms. This
however does depend on the underlying dynamics in cosmology, a point made often in v1.

Although in the linearised theory, there is no preferred sign to the terms, this is not the case once non-linear
corrections are included, as (21) makes clear, and in the example of Brownian motion with a potential given in
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[101] J. Oppenheim, C. Sparaciari, B. Šoda, and Z. Weller-Davies, The two classes of hybrid classical-quantum dynamics, arXiv

preprint arXiv:2203.01332 (2022).
[102] J. Oppenheim and Z. Weller-Davies, The constraints of post-quantum classical gravity, Journal of High Energy Physics

2022, 1 (2022).
[103] J. Oppenheim, The constraints of a continuous realisation of hybrid classical-quantum gravity, manuscript in preparation.
[104] D. Kafri, J. Taylor, and G. Milburn, A classical channel model for gravitational decoherence, New Journal of Physics 16,

065020 (2014).

https://doi.org/10.1038/ncomms1263
https://doi.org/10.1016/0550-3213(84)90184-6
https://doi.org/10.1016/0550-3213(84)90184-6
https://arxiv.org/abs/2404.13037
https://arxiv.org/abs/2203.01332
https://arxiv.org/abs/2203.01332
https://arxiv.org/abs/2011.15112
https://arxiv.org/abs/2011.15112


12
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Appendix A: The classical-quantum action in the classical limit.

Examples of consistent ways to couple classical and quantum systems via a master-equation approach have been
known since the 90’s [66, 99, 100]. One can derive the most general form of consistent classical-quantum (CQ)
dynamics, by demanding that the dynamics preserves the split of classical and quantum degrees of freedom, and
preserve the positivity and normalisation of probabilities [21, 101]. This can then be used to construct a master
equation for general relativity via the Hamiltonian formulation [21, 102, 103]. Recently a path integral formulation of
classical-quantum dynamics was introduced with Zach Weller-Davies [23] and used to formulate a manifestly covariant
path integral for classical general relativity coupled to quantum fields [22]. A measurement and feedback approach
in the case of sourcing the Newtonian potential by quantum matter has also been pursued [29, 89, 104], as well as an
unravelling approach [105, 106]. These can be applied to the weak field limits of gravitational theories [26, 28] and to
cosmology [56].

In the present article, we don’t need the full CQ path integral, since we are interested in the limit where the matter
fields behave classically. But for completeness, we present the full path integral of [22]

ϱ(gf , ϕ
+
f , ϕ

−
f , tf ) =

∫
NDgDϕ+Dϕ− eICQ[g,ϕ+,ϕ−

, ti,tf ]ϱ(gi, ϕ
+
i , ϕ

−
i , ti), (A1)

where N is a normalisation factor and the action takes the form of:

ICQ[g, ϕ+, ϕ−, ti, tf ] =
∫ tf

ti

d4x

[
i
(
LQ[g, ϕ+]− LQ[g, ϕ−]

)
− Det[−g]

8

(
Tµν [ϕ+]− Tµν [ϕ−]

)
D0,µνρσ[g]

(
T ρσ[ϕ+]− T ρσ[ϕ−]

)
− Det[−g]c6

128π2G2
N

(
Gµν − 8πGN

c4
T̄µν [ϕ+, ϕ−]

)
D0,µνρσ[g]

(
Gρσ − 8πGN

c4
T̄ ρσ[ϕ+, ϕ−]

)]
.

(A2)

Here LQ is the quantum Lagrangian density including the appropriate metric factors, the bra and ket fields ϕ± can
be any quantum fields, T̄ [ϕ+, ϕ−] is the average of the bra and ket fields of the stress-energy tensor and we have taken
D0 to saturate the decoherence-diffusion trade-off [25] such that both the decoherence and diffusion coefficients are
written in terms of D0. The bare cosmological constant must be taken to be zero for the action to be completely
positive [24]. Since we do not consider the dynamics of the matter distribution, and consider the decohered case when
Tµν [ϕ+] = Tµν [ϕ−], only the final line of the action is used here, and T̄ ρσ[ϕ+, ϕ−] can be replaced by the classical
stress-energy tensor.

The decoherence and diffusion coefficient D0,µνρσ[g] is then chosen to be ultra-local so that it can be written in
terms of the generalised deWitt metric [107, 108]:

D0,µνρσ = 64π2 D0√
−g
(
gµρgνσ + gµσgνρ − 2βgµνgρσ

)
. (A3)

where we have renormalised the constant to absorb the factor of 128π2 in order to simplify the calculations. It was
found in [24] that positivity requirements impose β ≤ 1

3 and, if one requires the propagator to be positive, one will

have to take β < 0. In the absence of mass, the value of β = 1
3 would correspond to conformal gravity.

In the absence of matter and energy, and with the choice of diffusion coefficient delineated in Eq. (A3), the action
of Equation (A2) is reduced to a purely diffusive term in the metric degrees of freedom. The first two lines of the
action of Eq. (A2) don’t contribute, and with the stress-energy being zero, we are left with

I[g] = −D0c
6

G2
N

∫
d4x

√
−g
(
GµνGµν − β G2

)
, (A4)

where G is the trace of the Einstein tensor. Next, we used the identities connecting the Einstein and the Ricci tensor
in dimension 4.

GµνGµν = RµνRµν ,

G2 = R2, (A5)

to write the action as

I[g] = −4πD0c
6

G2
N

∫
dr

√
−g
(
RµνRµν − βR2

)
. (A6)
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This action is related to that of quadratic gravity [39, 109–111], but doesn’t suffer from negative norm ghosts [24]. As
far as we know, it is unrelated to other forms of stochastic gravity [112] (c.f. [113]) whose purpose is to approximate
the quantum stress energy tensor beyond the semi-classical regime (c.f. [106]).

Appendix B: A stochastic modification to the Schwarzschild metric

We start with the most general spherically symmetric metric

ds2 = −e2ϕdt2 + e−2ψdr2 + e−2χr2(dθ2 + sin2(θ)dϕ2). (B1)

When deriving Schwarzschild, one usually redefines r to reduce the metric to two free parameters before using
Einstein’s equation. We will do that here for simplicity, but it’s important to note that this sort of coordinate system
is not completely sensible here, since the metric is undergoing stochastic changes which would require one to constantly
redefine r to obtain a strictly static object. However, we should be able to redefine r to remove e2χ on expectation.
Let us consider metrics of the generalised Schwarzschild form

ϕ(r) = ψ(r) =
1

2
log

(
1− 2F (r)

r

)
. (B2)

Given this choice of metric, the curvature terms appearing in the diffusion action are:

GµνGµν = RµνRµν =
2

r2
F ′′(r)2 +

8

r4
F ′(r)2, (B3)

G2 = R2 =
4

r2
(
∇2F (r)

)2
, (B4)

which when inserted in Eq. (A4) leads to the action

I = −16πD0,T

G2

∫
dr

(
1

2
F (r)′′2 +

2

r2
F (r)′2 − β(∇2F (r))2

)
, (B5)

where we have already integrated over the angular part given that the action is spherically symmetric.
Whe now consider the power expansion of F (r) of Eq. (14) and substitute it back into the action to obtain

Iγ = −8πD0,T

G2
N

∫ rmax

0

dr
(
(5− 18β)γ21 + 18(1− 4β)γ22r

2 + 18(1− 4β)γ1γ2r
)
, (B6)

which, when integrated, gives

Iγ = −6πD0,TV

G2
N

(
(5− 18β)

γ21
r2max

+ 6(1− 4β)γ22 + 9(1− 4β)
γ1γ2
rmax

)
. (B7)

where V = 4
3πr

3
max. We can now see that the exponentiated action now represents a bivariate normal distribution for

the parameters γ1 and γ2. This represents the values of the stochastic contributions to the path integral.

Φ = −GNM
r

− γ0
2

− γ1
2
r − γ2

2
r2. (B8)

When inserted into the path integral of Eq. (16), it computes the normalised probability distribution to:

f(γ) =
1

N
exp

(
− 6πD0,TV

G2
N

(
(5− 18β)

γ21
r2max

+ 6(1− 4β)γ22 + 9(1− 4β)
γ1γ2
rmax

))
,

N =
rmax

3
√
3(1− 4β)(13− 36β)

G2
N

D0,TV
.

(B9)

which can be seen in the contour plot:
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FIG. 1. Contour plot of the probability distribution of γ1 and γ2 defined in Eq. (B9). The negative correlation of the two
variables is easily seen. To enhance the visibility of the plot, we have plotted γ1 against γ2 ∗ rmax, and we chose a value of
rmax = RH ≈ 1026 m, which represents the order of magnitude of the Hubble radius. We picked an indicative value of β = −1,
but different beta will only tune the correlation as long as β < 1

4
.

We see that γ1 and γ2 are correlated variables with symmetric covariance matrix Cov(γ1, γ2) = Σij given by:

Σ11 =
2r2max

3(13− 36β)

G2
N

D0,TV
,

Σ22 =
(5− 18β)

9(13− 36β)(1− 4β)

G2
N

D0,TV
,

Σ12 = − rmax
2(13− 36β)

G2
N

D0,TV
, (B10)

where Σ11 and Σ22 are the variances of γ1 and γ2 and the two variables have correlation coefficients given by

ρ12 = −3
√
3

2
√
2

√
1− 4β

5− 18β
, (B11)

with the negative correlation easily seen from the plot in Figure 1. We see that the two variables are negatively
correlated with each other and have zero expected value. In other words, if we did not know the value of any of the
two constants through other means, we would take their expectation value to be zero. Moreover, we expect one to
decrease as the other increases and vice versa. However, through observational cosmology, we know that our universe
presents a positive cosmological constant Λ, which has to be manually inserted in Einstein’s equations by hand and
contributes to the Weak field Newtonian limit as

Φ = −GM
r

− Λ

3
r2, (B12)

where the r2 dependence represents a global contribution. At this point, we can make the connection with the γ2
factor. Given that we observe a value of γ2 = Λ

3 , what is the value of γ1 that we expect? We can compute this by
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finding the conditional expectation

µγ1|γ2,rmax
= µγ1 + ρ12

σγ1
σγ2

(γ2 − µγ2)

= −9

2
γ2rmax

(
1− 4β

5− 18β

)
,

(B13)

where we know that µγ1 = µγ2 = 0. We now substitute the γ2 = Λ
3 value that we observe and choose rmax = RH =

1.37 ∗ 1026m to be the Hubble radius. The Hubble radius gives a scale of the distance beyond which galaxies are
receding from us faster than the speed of light due to the expansion of the Universe. Therefore, we arrive at:

µγ1|γ2,rmax
= −3

2
ΛRH

(
1− 4β

5− 18β

)
= −2.28 ∗ 10−26

(
1− 4β

5− 18β

)
.

(B14)

Restoring the units of c means multiplying the above expression by c2, obtaining

µγ1|γ2,rmax
= −2.06 ∗ 10−9

(
1− 4β

5− 18β

)
, (B15)

which, as β → 0 tends to

µγ1|γ2,rmax
= −4.11 ∗ 10−10 m/s2, (B16)

as plotted in Figure 2.
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FIG. 2. The plot represents the conditional expectation of the value of γ1 given the observed value of γ2 as a function of β.
For this plot, we have chosen γ2 = Λ

3
.
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In a dark energy-dominated universe, the value of the Hubble radius can be expressed in terms of the cosmological

constant as RH =
√

3
Λ , meaning that the expected value of γ1 is

µγ1|γ2,rmax
= −3

2

√
3Λ

(
1− 4β

5− 18β

)
. (B17)

Statistical analysis of the results

Given the observed value of Λ, we want to test two things. Firstly, how many standard deviations the observed
value of γ2 is from the predicted mean of 0, and secondly how many standard deviations the observed value of γ1
needed for fitting is. Given that we know the two values follow a bivariate gaussian distribution, we can perform a
Z-test. Given that we have a free parameter D0, this would allow us to understand the range of possible values of the
decoherence constant required for thee results to sit within 1 standard deviation of their expectation.

To perform the Z-test of γ2 we recall that the observed value is γ2 = Λ
3 and compute

Zγ2 =
Λ/3√
Σ22

, (B18)

where Σ22 is the variance of γ2 and we use the value of the maximal radius as the Hubble radius. We obtain

Zγ2 =
Λ
√
D0,TVH

GN

√
(1− 4β)(13− 36β)

5− 18β
. (B19)

We want the Z score of γ2 to be less than 1, such that the observed value of γ2 lies withing one standard deviation
from the mean. Given that VH ≈ 1079, plugging the values in the formula, we obtain

D0,T ≤
Z2
γ2G

2
N

VHΛ2
f(β), (B20)

with f(β) =
√

(1−4β)(13−36β)
5−18β . When substituting the back the units of c, the formula gives

D0,T c
3 ≤ 1.34 · 10−21f(β)

m3

s · kg2
. (B21)

Therefore, we see that we are within one standard deviation for any value of D0 with an order of magnitude less than

10−21f(β) m4

s·kg2 .

We can now perform the same computation for the observed value of γ1 This could be the MOND value a0
c2 ≈

1.33 · 10−27 or the value of γ found in [20] The conditional variance of the result is given by

σ2
γ1|γ2,rmax

= Σ11(1− ρ212)

=
G2r2max

4D0,TV (15− 54β)
,

(B22)

which we can now use to perform the Z-test using the Hubble parameters

Zγ1 =
γobs − µγ1|γ2,rmax

σγ1|γ2,rmax

=
2
√
D0,TVH(15− 54β)

GNRH

(
γobs +

3(1− 4β)ΛRH
2(5− 18β)

)
,

(B23)

which we can rearrange to obtain

D0,T ≤
G2
NR

2
HZ

2
γ1

VH

(5− 18β)

3(2(5− 18β)γobs + 3(1− 4β)ΛRH)2
. (B24)
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When substituting numbers, restoring units of c and setting Zγ1 = 1, we obtain (for β = −1)

D0,T c
3 ≤ 1.09 · 10−22 m3

s · kg2
, (B25)

which means that if D0 is such that the observed MOND acceleration is withing one standard deviation of the
conditional expected value, it will automatically be such that the observed value of Λ is withing one standard deviation
of the model.

Appendix C: The stochastic action for the isotropic metric, and the Newtonian limit

For the purpose of this section, we only consider a static matter distribution with negligible contributions from
matter pressure, frame velocity and specific energy density. In other words, we are only interested in higher-order
corrections coming from the gravitational potential Φ itself. We implicitly choose a homogeneous isotropic universe
in which resides an isolated Post-Newtonian system with coordinates such that the outer region far from the isolated
system is in freefall with respect to the surrounding cosmological model but at rest with respect to a frame in which
the universe appears isotropic. It is then possible to show that one can construct a local quasi-Cartesian system in
which metric and matter degrees of freedom can all be evaluated consistently with the Post-Newtonian approximation.
Lastly, one might need to take into account the extent of preferred frame effects including frame dragging and the
coordinate velocity of the frame relative to the mean rest frame of the universe. All the aforementioned effects can be
summarised through what is known as the Parametrised Post-Newtonian formalism (PPN), whose first formulation
dates back to Eddington in 1922. When formulated in a coordinate frame moving along with the physical system of
interest, post-Newtonian effects can be summarised through the metric (with units of c):

g00 ≈ −c2
(
1 +

2Φ

c2
+

2βΦ2

c4
+ f(αi, β, γ, ζi, Vi,Wi)

)
+O(c6),

gij ≈
(
1− 2γΦ

c2

)
δij +O(c4),

g0i ≈ h(αi, γ, ζi, Vi,Wi) +O(c5),

(C1)

where αi, ζi with i = {1, 2, 3} represents respectively the extent of preferred frame effects and the extent of failure in
the conservation of energy, β measures the amount of nonlinearity in the superposition law for gravity, γ the amount
of curvature produced by a unit rest mass and Vi,Wi effects related to the frame velocity [114, 115]. The strength of
the Parametrised Post Newtonian formalism is that it can be applied to theories of gravity outside of general relativity.
However, to describe the post-Newtonian limit of general relativity one takes αi = ζi = 0 and β = γ = 1, which is
what we will do in this paper.

Given these premises, we write the isotropic metric as

ds2 = −c2e
2Φ
c2 dt2 + e−

2Φ
c2 δijdx

idxj . (C2)

One may worry that the exponential form of this metric may not be consistent at higher orders in the expansion,
for example, not all terms in the expansion may be physically relevant. However, for all effects and purposes, in this
paper, we will never exceed order O(c4), such that the metric matches perfectly with the PPN formalism. For the
matter distribution, we will take the Stress-Energy tensor to be that of pressureless dust, being given by

T00 = me2Φ, T ij = 0, T 0i = 0. (C3)

Using the isotropic metric (with c = 1), the components of the action of Eq. (A4)

GµνGµν = e4Φ
(
3 (∇Φ)

4
+
(
(∇Φ)

2 − 2
(
∇2Φ

))2)
, (C4)

G2 = 4e4Φ
(
(∇Φ)

2 −∇2Φ
)2
, (C5)

The coupling to matter can be deduced from the final line of Eq (A2) since in the classical limit the system decoheres
and for a decohered system, there is no distinction between T̄µν and Tµν . The components are given by

GµνTµν = −me2Φ
(
(∇Φ)

2 − 2
(
∇2Φ

))
, (C6)

TµνTµν = m2, (C7)

Tµµ = −m. (C8)
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where T is the trace of the stress energy tensor.
The full action for the isotropic metric is thus

I = − D0c
5

64π2G2
N

∫
d3x⃗dt e

2Φ
c2

[(
∇2Φ− (∇Φ)2

2c2
− 4e−

2Φ
c2 πGm

)2

+
3

c4
(∇Φ)4 − 4β

(
∇2Φ− (∇Φ)2

2c2
− 4e−

2Φ
c2 πGm

)2
]

(C9)
where we have put in powers of c as one can use it to perform an expansion in powers of 1/c2. One immediately sees
that at 0′th order in 1/c2, we recover the Newtonian action of (4).

Appendix D: Entropic forces

A canonical example of an entropic force is that due to a polymer which is initially curled up in a low entropy
state, but will unfurl or diffuse into a higher entropy state, with its ends exerting a force [116, 117]. Another is a gas
in a box fitted with a piston on one side, which is slowly pushed out as the gas diffuses. Note that in the main body
of this article, we do not consider deriving gravity as an entropic force [118–122], but rather consider the entropic
force that gravity exerts. The purpose of this section is to define entropic forces as applicable out of equilibrium and
based only on the equations of motion. It will also give an example that can be solved in a similar manner to the
gravitational case and has similar features.

Consider Newton’s law F (q) = mq̈. This is a deterministic equation, but we can consider the case where the system
is in a probability distribution over q, in which case we still expect Newton’s law to be satisfied on expectation

⟨mq̈ − F (q)⟩ = 0. (D1)

The important ingredient is that the mean value of the force felt by the particle depends on the second and higher
moment of its position, and so it generally doesn’t follow its deterministic trajectory because the average of the
position equation of motion is not the same as the equation of motion of the average position. We therefore define
the entropic force FS to be

FS(q) = F (⟨q⟩)− ⟨F (q)⟩, (D2)

since it captures the extra force due to diffusion. A simple example is given by F = −αq2 for the cubic potential
corresponding to V (q) = αq3/3. The time derivative of the particle’s mean momentum obeys ⟨ṗ⟩ = α⟨q2⟩ which can
be significantly larger than ⟨q⟩2. Another example is Brownian motion of a particle in a box with a piston. The
presence of a wall on the other side suffices to ensure that the mean value of the particle’s position q will change with
time as the piston is pushed out. If there were no diffusion or wall, the particle’s average position does not change.
The wall placed at q = 0 makes it impossible for ⟨qf ⟩ = q0 when ⟨q2⟩ is non-zero. After all, given enough time, the
reflecting boundary at the origin will skew the average final position in the direction opposite to the wall.

Indeed, as ⟨q2⟩ becomes greater and greater than ⟨q⟩2, (possibly due to elapsed time or a temperature increase of
the heath bath) the presence of the wall makes it so that the average final position will be further and further away
from the mean. We will call this the diffusion regime, since the second moment of the observable is comparable to
its variance and is influencing the observable equations of motion, in comparison to the case where the mean value of
the observable is given by its deterministic value, which for a free Brownian particle corresponds to the final position
being identical to its initial position ⟨qf ⟩ ≈ q0.
We will now explicitly show the example of a Brownian particle with a wall, and show that it has very similar

features to the gravitational example discussed in the main body of the paper, and see that it can be solved in a
similar way.

Brownian motion with a wall

Consider the path integral for a free particle undergoing Brownian motion with no drift. The probability of finding
a particle at q(tf ) = qf given that at t = 0 it was at q(0) = q0 and had velocity v0 and acceleration a0 is given by the
Onsager-Machlup path integral

P (qf |q0, q̇0, q̈0) =
1

N

∫ qf

q0

Dq e−
1

2D2

∫ tf
0 (q̈)2dt. (D3)
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Note that the path integral acts to suppress the probability of paths which do not satisfy q̈ = 0, by an amount
controlled by the diffusion constant D2. The larger D2 is, the more stochasticity we are likely to find in the paths
which are realised. This is an equivalent description of the dynamics often described by the Langevin equation,
q̈ = F (q)/m+ j(t), with F/m the drift produced by a deterministic force F (here set to 0), and j(t) a stochastic white
noise process. The dynamics can also be described via the Fokker-Planck equation [123] or Ito calculus [124] and we
refer the interested reader to [123] for a derivation of the Onsager-Machlup path integral, or [31] for a discussion of
Brownian motion in the context of path integrals of similar form to Eq. (D3).

We now imagine that there is a step function VΘ(−q) potential (we could take V → ∞). This prevents the particle
from going to the negative values. we can express this by modifying the OM Lagrangian to be

LOM (q̈) = − 1

2D2

(
d2

dt2
|q|
)2

, (D4)

the variation of the Lagrangian provides the fourth-order Euler-Lagrange equation for the most probable paths:

d4

dt4
|q| = 0, (D5)

with general solution

qMPP (t) = α0 + α1t+
1

2
α2t

2 +
1

6
α3t

3. (D6)

This is remarkably similar to (15). When substituting back into the action, we see that the terms corresponding to
the deterministic solution α0 and α1 (which is the global minimum) drop out due to the second-order time derivative.
Therefore, we are allowed to fix them through initial conditions on q(0) and q̇(0). The action then takes the form of
a bivariate Gaussian distribution, which when integrated from the initial time t0 = 0 to the final time tf becomes:

eSOM = exp

(
− tf
3D2

(
3α2

2 + 3α3α2tf + α2
3t

2
f

))
. (D7)

At this point, we can relate α2 and α3 to other known initial conditions or final conditions, and the action will act
as the probability weight of the most probable path given the specified conditions. However, we could also use it to
find the average final position. For the sake of simplicity and to obtain an analytical expression, we assume that the
particle starts with no acceleration and that at the final time is at positon Q. In particular, we fix q(0) = q0 > 0
and q̇(0) = q̈(0) = 0, such that the particle begins on the right-hand side of the wall with zero initial velocity and
acceleration. This fixes α1 = α2 = 0. The last condition is fixed by setting q(tf ) = Q ≥ 0, the final position of the
particle, arriving at

q(t) = q0 +
(Q− q0)t

3

t3f
. (D8)

We can now substitute the solution into the Lagrangian to perform a saddle point approximation and integrate it up
to the final time. We arrive at the action which determines the probability weighting of the most probable path given
initial and final conditions:

SOM (Q) = −6(Q− q0)
2

D2t3f
, (D9)

we can now integrate over all possible final positions to normalise the integral∫ ∞

−∞
dQP (Q|q0, q̇0, q̈0) =

1

N

∫ ∞

−∞
dQe

− 6(Q−q0)2

D2t3
f = 1, (D10)

to find

N =

√
D2π t3f

6
. (D11)
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At this point, we can compute the average final position by keeping in mind that there is a wall at q = 0 such that

⟨Q⟩ =
√

6

D2π t3f

∫ ∞

−∞
dQ |Q|e

− 6(Q−q0)2

D2t3
f

=
1

12

[
6q0 +

(
1 + ΓR

(
−1

2
, 0,

6q20
D2t3f

))
+

√
6D2

π
t
3/2
f e

− 6q20
D2t3

f − 6q0Erf

(√
6

D2t3f
q0

)]
,

(D12)

where Erf is the error function and ΓR is the regularised Gamma function.

This solution is very insightful. As the diffusion vanishes D2 → 0 or the final time goes to zero tf → 0, the argument
of the error function, the exponential and the regularised gamma function go to infinity. The error function and the
exponential vanish while the gamma function becomes 1, leaving ⟨Q⟩ = q0. As one would expect for a situation where
there is either no diffusion or no time has elapsed, the final average position is the same as the initial one, which
is also the deterministic behaviour. Even more interesting, the same happens when q0 is very large; indeed, if the
particle is very far from the wall, it will not feel its effect until enough time has passed, as it can be seen in Figure 3,
such that there is an opposite effect between the growth of q0 and that of tf .
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FIG. 3. Average final position as a function of initial position according to Equation (D12) for fixed final time tf = 5 and
diffusion coefficient D2 = 1

2
. In the presence of a wall, the closer the Brownian particle starts to the reflective wall at q = 0,

the more its average final position will diverge from its deterministic value. The particle is assumed to start with zero velocity
and acceleration.

Lastly, one could assume the particle is not too far from the wall and perform a short time expansion to arrive at

⟨Q⟩ = q0 +
1

2

√
D2

6π
t3f , (D13)

such that one sees that the average final position increases as t3/2. In Figure 4 we show the probability density
function of the final positions obtained from a Monte Carlo simulation.
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FIG. 4. Monte Carlo simulation of the probability density function of the final position for the Brownian particle with a wall
with tf = 5. As one can see, the initial position is q0 = 2. In the deterministic case, this should correspond to the final position
in the absence of initial velocity and acceleration. However, the average final position is skewed to the right, as the presence of
the wall produces an entropic force which creates a deviation.
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