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Abstract

System-prompting is a standard tool for customizing language-model
chatbots, enabling them to follow a specific instruction. An implicit as-
sumption in the use of system prompts is that they will be stable, so
the chatbot will continue to generate text according to the stipulated in-
structions for the duration of a conversation. We propose a quantitative
benchmark to test this assumption, evaluating instruction stability via
self-chats between two instructed chatbots. Testing popular models like
LLaMA2-chat-70B and GPT-3.5, we reveal a significant instruction drift
within eight rounds of conversations. An empirical and theoretical analysis
of this phenomenon suggests the transformer attention mechanism plays
a role, due to attention decay over long exchanges. To combat attention
decay and instruction drift, we propose a lightweight method called split-
softmax, which compares favorably against two strong baselines. Code:
https://github.com/likenneth/persona_drift.

1 Introduction

Figure 1: An example of instruction drift on
gpt-3.5-turbo-16k. Although the chatbot
initially follows the system prompt well, it
fails when the same question is asked again
after an extended conversation. Any LLM
user might relate to this issue.

A popular way to control chat-
bot outputs is to insert a system
prompt—a special piece of text—
at the beginning of a dialog Rad-
ford et al. (2019). The hope is that
the right prompt (e.g., “You are a
rockstar programmer who always
writes comments”) will customize
the language model’s behavior for
a particular purpose (e.g., produc-
ing clear, correct code). Indeed,
Wang et al. (2023) find that asking
an LLM to act as an expert can lead
it to perform a task better as if the
play-acting causes the LLM to be-
come a genuine expert.

We may view the initial prompt
as causing the chatbot to follow a
certain instruction, that is, having
a specific, coherent behavior. In-
formally, this may correspond to
a specific personality or directly
relate to the semantics of the out-
put (as above, for a coding chatbot,
a prompt that stipulates it should
always write comments). It may
also be related to aspects that are
orthogonal to the semantics (e.g.,
a prompt specifying “Always re-
spond with a haiku”).

*Correspondence to: Kenneth Li <ke li@g.harvard.edu>.
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Figure 2: An illustration of the proposed evaluation pipeline of instruction stability. (A)
Initially, two language models engage in a conversation: the simulated user LM (red, A),
guided by system prompt sA, and the agent LM (purple, B), with system prompt sB. The
user LM begins the conversation with a randomly selected starter prompt a1. (B) After the
conversation reaches a preset length (8 rounds in our experiment), we test how the agent
LM adheres to its system prompt sB. At each turn i, we replace the original user message ai
in the conversation history with the probe question pB and ask the agent LM to generate
its answer for a second time. The answer is then judged by the stability measure fB(·) to
compute the stability score.

This paper explores whether chatbots maintain prompted behavior over lengthy dialogs.
Anecdotal evidence suggests that instruction stability may “degrade” over the course of a
dialog, with chatbot responses straying from what was specified by the prompt. Besides
being a potential problem for prompt engineering, the lack of instruction stability also carries
significant safety implications. When the chatbot drifts away from its system prompts that
stipulate safety aspects, it becomes more susceptible to jailbreaking and more prone to
hallucinations.

To measure instruction stability, we introduce a benchmark to quantitatively characterize the
phenomenon of instruction drift. Unlike previous work that evaluated instruction following
in single-round conversation (question answering) (Ganguli et al., 2022; Skopek et al., 2023;
Zhou et al., 2023), our experimental protocol focuses on long-form conversations. We test
LLaMA2-chat-70B and find it suffers a significant instruction drift, as shown in Figure 3.
This discovery leads us to investigate the cause of the drift and to propose a mitigation
method.

A natural guess is that instruction drift relates to the transformer attention mechanism.
When a chatbot generates a new token, it takes into account all previous tokens in the dialog
but with varying weights. One might speculate that the longer the dialog, the less weight
is placed on the initial tokens that make up the prompt. We measure this effect precisely
and find that there is indeed a strong attention decay effect. Intuitively, it seems plausible
that the prompt’s efficacy will decrease as attention to initial tokens wanes. We back up
this intuition mathematically by showing that, in an idealized model, the space of possible
outputs from a language model will steadily enlarge over time.

Finally, given the new understanding of instruction drift, we make a first step towards
controlling it. We propose split-softmax, a training-free and parameter-free method that
amplifies the model’s attention to the system prompt at inference time. By comparing it with
a strong prompting-based baseline and a recent technique from the literature (Sanchez et al.,
2023), we demonstrate how split-softmax provides a better trade-off between performance
and stability.

This paper presents four contributions. (1) We provide a quantitative benchmark for evalu-
ating instruction drift that does not depend on human annotation or API calls to proprietary
LLMs. This reproducible benchmark enables the measurement of progress in controlling
instruction drift for both open- and closed-source models (Section 3); (2) We discuss the
phenomenon of attention decay and theoretically explain why it may occur (Sections 4
and 4.3); (3) We hypothesize that attention decay is the cause of instruction drift and devise
a simple technique called split-softmax as a first step towards controlling it (Section 5.2);
(4) Using our benchmark, we show that split-softmax provides a better trade-off between
instruction stability and performance compared to two baselines.
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System Prompt sA You are very happy! Always respond with lots of joy.
System Prompt sB Always reply in French.
Conversation Starter a1 What’s your take on celebrity culture?
Probe Question pB What do you do in London as a tourist?

Stability measure fB(·)

Table 1: Examples of required material for our experimental protocol.

2 Related Work

Prompting Prompting has become the go-to method for adapting language models to
downstream use cases. Among the more popular techniques are in-context learning (Min
et al., 2022) and chain-of-thought prompting (Wei et al., 2022). Despite being flexible,
prompting cannot match the performance of fine tuning (Mosbach et al., 2023; Lu et al.,
2021). For dialog systems based on large language models, a system prompt is placed at the
beginning of context window to define the general behavior of the chatbot. In the line of
prompting, we test a simple remedy that repeats the system prompt many times before each
user utterance in Section 5.
Instruction Tuning Instruction tuning has been widely adopted to further align the model
to task instructions after pre-training (Gupta et al., 2022; Wei et al., 2021). Given pairs
of inputs and outputs that follow the instruction, the model is fine-tuned to generate the
desired output. For the purpose of mitigating instruction drift, instruction tuning has played
a major role, especially in addressing safety concerns using RLHF Ouyang et al. (2022).
However, instruction tuning has a high cost of collecting training data and is not as flexible
as prompting.
Controlled Decoding Controlled decoding methods can be adapted to avoid instruction
drift. Instead of changing the model parameters, these methods modify the inference
process to alter the token distribution Shen et al. (2017); Dathathri et al. (2019); Krause et al.
(2020); Li et al. (2023a). For example, for a certain prompt, Todd et al. (2023) find a set
of function vectors in the model’s hidden space that could be added to novel prompts to
steer the model outputs. This can be thought of as a way to distill the prompt without
repeating it in the context window. Weston & Sukhbaatar (2023) propose System-2 attention,
where the language model first decides where to attend to before making the final responses.
Classifier-free guidance (CFG) (Sanchez et al., 2023) works by running the model twice,
once with and once without the system prompt, and computing the next token distribution
by a scaled contrast of the two distributions. We will evaluate CFG in our experiments
in Section 5.
Studies of Instruction Following in Dialog Systems Li et al. (2023b); Wu et al. (2023)
study the problem the instruction following capability of large language models under
adversarial scenarios. Concurrent to this work, Zhou et al. (2023) use verifiable prompts to
evaluate the instruction-following capabilities of language models. However, they all focus
on one-turn situations without user input. Zeng et al. (2023) emphasize the difficulty for
language model to evaluate instruction-following even using close-source language models,
motivating us to use deterministic functions for evaluation.

3 Measuring Instruction Drift

We aim to quantify instruction drift without the need for human judgment or API calls of
proprietary LLMs. To that end, we introduce a simple experimental protocol, along with a
benchmark dataset.

3.1 Experimental Protocol

The idea behind the protocol is straightforward: to measure instruction drift, we create a syn-
thetic dialog between two chatbots A and B and evaluate how far the dialog [a1, b1, a2, b2, ...]
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drifts from the original prompts. To automate this process, we need four elements: two
system prompts sA, sB, a conversation starter a1, a probe question pB, and a stability
measure fB(bi). Table 1 shows an example set of these elements.

The protocol consists of the following two steps ( Figure 2):

1. Given the two system prompts, sA for the user LM and sB for the agent LM, we
pit two copies of the same chatbot against each other but with different system
prompts, as specified by their different system prompts. The agent LM is the agent
under test for its instruction stability. We then create a synthetic multi-round dialog
between the two chatbot instances by feeding each one’s response to the other.
The user LM speaks first with a randomly sampled conversation starter a1. Such
simulation yields a conversation history {(ai, bi)}N

i=1, where N is the total number
of rounds*. We use N = 8 in our experiments.

2. To measure how well the agent LM follows its system prompt during the course
of the conversation, in the i-th round, the user LM, instead of making its original
prompt ai, asks the predefined probe question pB. Checking the returned answer b′i
with fB(·), we get a quantitative indication of how well the original system prompt
sB is followed. We call fB(b′i |ai = pB) instruction stability. The stability measure
function can be Python code that calls a library to determine the confidence that a
reply is in French.

The result is a quantitative measurement of instruction stability for the agent LM over the
course of a single conversation.

3.2 Benchmark Dataset

Of course, no single conversation can yield statistically significant results. To assess the
degree to which a chatbot is vulnerable to instruction drift, we need to average the results
of many conversations. We manually curate a benchmark set of 100 system prompts,
categorized into 5 categories: multi-choice responses, character of the agent, answer-string
format pattern, memorization of certain facts, and languages the agent speaks. Each system
prompt sB comes with its own probe question pB and stability measure fB(·), expressed
as a Python function. Each stability measure fB(·) takes as input the agent LM’s response
bi and returns a number p in the range 0 ≤ p ≤ 1 deterministically; the larger the value
of p, the better the system prompt is followed. Table 1 shows one such triplet of system
prompt, probe question, and stability measure. We will release the full dataset as well as the
conversation starters we use.

3.3 Experimental Results

We use this protocol and benchmark data to measure instruction drift in LLaMA2-chat-70B
and gpt-3.5-turbo-16k (Appendix D). Averaging the instruction stability scores across 200
conversations configured with random pairs of system prompts, we arrive at the blue line
in Figure 3 A. We observe that the agent LM gradually stops following its system prompts,
aligning with our empirical daily usage experiences.

As a side experiment, we are curious if the agent LM adopts the user LM’s system prompt.
This is plausible since the user LM’s utterances generated according to pA have a strong
appearance in the context window. For this purpose, we swap ai with pA and check
fA(b′i |ai = pA). Surprisingly, the agent LM even gradually adopts the instruction of the user
LM over extended rounds of conversation, as shown by the orange line in Figure 3 A. This
could potentially be exploited by adversarial attacks, raising serious safety concerns.

In another safety check (Figure 3 B), we ablate the system prompt of the user LM with
an empty string, so it falls back to the default mode of the underlying language model.
This rules out the possibility that this could contribute to the significant instruction drift
discovered earlier.

*A “turn” is one utterance like a2; a “round” is when each chatbot takes a turn like a2, b2
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Figure 3: (A) The phenomenon of instruction drift. As the interaction progresses, not only
does the agent LM lose stability to its original system prompt, but it also begins to adopt the
instruction of the simulated user LM. The effects were measured on 200 randomly sampled
pairs of system prompts on LLaMA2-chat-70B using the procedure shown in Figure 2. The
error bar represents one standard deviation. (B) Measuring instruction stability of the agent
LM when user LM’s system prompt is set to an empty string.

Experiment details. We use LLaMA2-chat-70B for this experiment and follow the format
of composing input sequence from Touvron et al. (2023). Taking the perspective of agent
LM as an example, the input sequence looks like [sB, a1, b1, . . . , ai−1, bi−1, ai], and it is tasked
with generating bi as a reply to the last utterance from user LM.† Each s, a, and b here is a
string and may contain multiple tokens. Generation is performed with temperature 1.0 and
nucleus sampling with p = 0.9 (Holtzman et al., 2019).

4 Attention Decay: a Hypothesis

It is reasonable to hypothesize that instruction drift results from a decaying influence of the
prompt over time. To investigate why this happens, we focus on the attention distribution
over context tokens in transformer self-attention heads. Although the intuitive hypothesis
broadly captures the underlying phenomenon, our empirical and theoretical analyses
uncover nuanced discrepancies.

Figure 4: The phenomenon of attention decay demonstrated in the 11th attention head in
the 24th layer of LLaMA2-7B, which has a maximum context window size of 4, 096 tokens.
We generate 12 conversations while tracking the portion of attention allocated to system
prompt tokens. The plots are specifically for the agent LM, grouped by the rounds in which
the answers are generated; the values are absent for the user LM. We observe sharp drops in
attention between turns and rough plateaus within turns.

†Omitting formatting tokens like <s>, <<SYS>> or [INST].
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4.1 Preliminaries

Suppose the input tokens are {wi}t
i=1, each belonging to the vocabulary V. To generate the

next token wt+1 ∈ V, the current tokens are first embedded into D-dimensional vectors
{h0

i }
t
i=1 with the embedding matrix We ∈ R|V|×D. These are then processed sequentially by

L transformer layers, resulting in a grid of activations after each layer and for each token
{hl

i}
t,L
i=1,l=1. As the multi-layer perception (MLP) and layer norm are context-independent,

we leave them out for simplicity. The feed-forward process of the transformer can be
summarized as:

hl
i = hl−1

i +
H

∑
m=1

W l,m
o Attl,m(hl−1

1 , . . . , hl−1
i ), (1)

wt+1 ∼ p(w|w≤t) = softmax(We hL
t ). (2)

The combination of the softmax and We work as a predictor from hL
t to distribution p(w|w≤t)

of next token wt+1. Attl,m is the single head attention operator with output in a lower
dimensional space and W l,m

o ∈ RD×d maps them back into RD, the residual stream space.

Crucial to our experiment, we expand the attention operator to show it aggregates activa-
tions from previous time steps based on an attention distribution:

αl,m
t,j=1:t = softmax

(
(W l,m

k hl−1
1:t )⊤(W l,m

q hl−1
t )

√
d

)
. (3)

Then the attention operation is a weighted sum of linearly transformed activations from the
last layer:

Attl,m(hl−1
1 , . . . , hl−1

t ) =
t

∑
j=1

αl,m
t,j

(
W l,m

v hl−1
j

)
, (4)

where W l,m
v ∈ Rd×D, W l,m

k ∈ Rd×D, W l,m
q ∈ Rd×D are the value, key, and query weight

matrices, respectively.

4.2 The Phenomenon of Attention Decay

While generating the next token given an input sequence containing t tokens, in each atten-
tion head, the last token will compute a normalized attention distribution over all previous
tokens (including itself), denoted by αt,i=1:t in Equation 3. Tokens in the system prompt are
a special subset of all previous tokens, and we denote the sum of the attention weights allo-
cated to them as π(t) = ∑

|sB |
i=1 αt,i. It ranges between 0 to 1 and represents the comparative

importance that the system prompt has throughout the generation process. We monitor
this percentage π(t) along the decoding time steps t and across turns of conversations in
LLaMA2-7B. We only plot π(t) from the perspective of the agent LM.

As shown in Figure 4, within each turn, π(t) remains almost constant, but there are sig-
nificant decreases across turns. This observation runs our a naive hypothesis of attention
decay—if the attention distributes uniformly over previous tokens, π(t) should decay
hyperbolically and be independent of number of turns.

It’s also worth-noting that this highlights a unique issue in chatbots, distinct from language
models, where out-of-distribution text from interlocutors is absent. The case of the language
model completing its input partial sequence is technically equivalent to the agent LM
generating answers for a single turn, which displays a plateau in π(t).

This observation shows merely the co-occurrence of instruction drift and attention de-
cay. However, it inspires the hypothesis that attention decay may internally contribute
to instruction drift, suggesting that addressing the former could help mitigate the latter
(Section 5.2).
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4.3 A Geometric View of Attention Decay

To shed light on attention decay in Figure 4, both the plateau within utterance and the drop
across utterances, we provide a theoretical explanation in a simplified situation. Liang et al.
(2022) show empirically and theoretically that the internal representation of deep neural
networks usually live in a narrow cone in the high-dimensional space. Motivated by their
observations, we characterize attention decay from a similar geometric perspective.

We will consider two settings of model generation:

1. New tokens are generated autoregressively given initial tokens h1, . . . , h|sB |, which
models the process of the agent LM generating answers;

2. New tokens are drawn by the user. A user LM could put out-of-distribution tokens
into the context window of agent LM in a potentially adversarial fashion (Zou et al.,
2023).

For the first setting, we will show that tokens generated by the model always remain in an
approximately low-dimensional convex cone in Theorem A.1. In the second setting, we
can characterize the expansion using spherical measure and show that randomly drawn
tokens will lead to an expansion of the underlying convex cone with the growth of intrinsic
dimension of token embeddings, as shown in Proposition A.3. More details in Appendix A.

5 Mitigating Instruction Drift

If instruction drift is related to attention decay, that suggests we can mitigate drift by
manipulating the level of attention on the original prompt. Before presenting an attention-
based mitigation method, however, we describe two baselines.

5.1 Baseline Methods

System Prompt Repetition (SPR) We inject the system prompt with probability 0 ≤ p ≤ 1
before each user utterance. The repeated system prompts, like the standard system prompt
at the start of the input sequence, only appear when the language model is prompted; users
do not see them.

Classifier-Free Guidance (CFG) The second method is classifier-free guidance
(CFG, Sanchez et al., 2023), which runs the base model twice, firstly with system prompt
to get log p(w|w≤t, sB) and then without system prompt to get log p(w|w≤t). It then uses
a contrastive linear operation inside the logit space to strengthen the effects of the system
prompt on answer generation. The new next-token probability distribution is defined by:

log p̂(w|w≤t, sB) = log p(w|w≤t) + α(log p(w|w≤t, sB)− log p(w|w≤t)). (5)

CFG comes with a hyperparameter α ≥ 1 that controls how far we shift the predicted logits.
When α = 1, it reduces to prompting with the system prompt; larger α produces stronger
intervention.

5.2 Proposed Method: Split-softmax (SS)

Motivated by the attention decay phenomenon, we introduce a method that requires no
retraining, split-softmax, aimed at reducing this decay with minimal overhead. The basic
idea is straightforward: if the problem is that the model pays too little attention to the
prompt, then force the model to pay more. In practice, we find that a power-law scaling of
attention seems to be effective.

In particular, split-softmax (SS) works by inserting a scaling operation between Equation 3
and Equation 4 for every attention operation. After obtaining the attention distribution

7
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{αt,i}t
i=1 which sums up to 1 (omitting superscript for simplicity), we reweight it by:

π(t) =
|sB |

∑
i=1

αt,i, α′t,i =


πk(t)
π(t) αt,i if i ≤ |sB|
1−πk(t)
1−π(t) αt,i if i > |sB|

, (6)

where the introduced exponent 0 ≤ k ≤ 1 as a hyperparameter to control the strength of our
intervention. The smaller k is, the stronger the intervention is; when k = 1, the intervention
is nullified. The new set of attention {α′t,i}t

i=1 sums up to 1 as well and will replace {αt,i}t
i=1

so that more attention is paid to the system prompt tokens. Given 0 ≤ π(t) ≤ 1, 0 ≤ k ≤ 1

thus πk(t)
π(t) ≥ 1, split-softmax increases the proportion of attention paid to system prompts.

See Appendix E for more discussion.

5.3 Calibration Using Performance Drop on MMLU

Figure 5: Comparing trade-offs between instruc-
tion stability and performance. For each of the
three methods, we vary a hyperparameter that re-
flects the strength of the intervention. Each curve
plots the effect on stability and performance over
the hyperparameter sweep. Compared to two base-
lines (classifier-free guidance and system prompt
repetition), split-softmax produces equal or higher
stability for a given level of performance degrada-
tion.

Each method (split-softmax and the
two baselines) represents a potentially
large intervention; any instruction sta-
bilization may come at the expense of
other capabilities of the model. How-
ever, each method has a hyperparame-
ter that corresponds to the strength of
the intervention. To compare methods,
therefore, we need to measure both the
increase in instruction stability and the
performance drop for various values
of the relevant hyperparameter. This
is analogous to measuring a precision-
recall curve for a classifier.

To measure any performance
changes, we use the Massive Mul-
titask Language Understanding
(MMLU, Hendrycks et al., 2020). To
compare the different methods, look
at the stability improvement at equal
levels of performance drop. Sweeping
hyperparameters for each method
allows us to measure and plot each
method’s stability-performance curve,
revealing different trade-offs between
our stability metric and MMLU
performance.

As expected, we do see an inverse re-
lationship between performance and
instruction stability in all three of our
methods Figure 5. This corroborates
earlier findings by Gu et al. (2024) that control methods over language model often come at
the cost of general capability. The performance drop on MMLU should be thought of as a
budget when correcting model behaviors, and two methods should only be compared on
stability when their respective hyperparameters cause similar MMLU performance drop.

To quantify stability, we use a 16-turn conversation as described in Figure 2. We modify
these conversations by applying each method to the agent LM. Then we probe the agent
LM at each round to test its instruction stability in the same fashion as section 3. Stability is
measured for individual turns, and the overall stability measure is the average of the stability
at each turn of agent LM. Given the conversation history of agent LM under intervention,
we sample one and ask questions from MMLU at an intermediate turn (the 4th turn in our
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Figure 6: Comparison of instruction stability across turns, with MMLU performance drop
around the value of 0.5, for system prompt repetition (SPR), classifier-free guidance (CFG),
and split-softmax (SS). The whisker represents one standard deviation.

experiments); and the answers are used to calculate MMLU accuracy. Note that due to
the added system prompt and chat history, the MMLU performance is different from what
is reported by LLaMA team even without intervention (Touvron et al., 2023). However,
only the difference between post- and pre-intervention performances is meaningful, as the
primary purpose of using MMLU in our case is to calibrate the strength of the intervention.

5.4 Experimental Results

All experiments are conducted on LLaMA2-70B-chat. To save computational cost, we choose
one system prompt from each of the five categories, and run experiments over the total
twenty ordered pairs of system prompts.

In Figure 5 we plot instruction stability versus performance drop on MMLU as we vary
the strength hyperparameter for each method. In general, split-softmax presents a better
trade-off between performance drop and instruction stability. It can match performance
with system prompt repetition while avoiding using the additional context window. If
more drop in performance on MMLU is allowed, split-softmax enables greater instruction
stability.

In Figure 6, we break down the instruction stability measurement across turns. Similar
to what Sanchez et al. (2023) show, classifier-free guidance helps the model adhere to the
system prompt remarkably well for the first round of the conversation, but it does not
generalize well into extended conversations. Both system prompt repetition and split-
softmax demonstrate higher effectiveness in mitigating instruction drift, though they exhibit
different trends. The former excels in regions with a larger number of turns, while the latter
performs better at the beginning of the conversation. Note that system prompt repetition
consumes a substantial portion of the context window.

6 Conclusions and Future Work

Our experiments indicate that instruction drift is a potentially significant issue for prompt
engineering. To help address this challenge, we contribute a new protocol and benchmark
to help measure this phenomenon, as well as an idealized mathematical model of its cause.
In addition, we proposed a technique, split-softmax, that can help mitigate instruction drift,
providing a better stability-performance trade-off than two existing baselines.

There is ample room for future work in this space. For example, it would be natural to ex-
plore making changes in architecture or to training to combat instruction drift. Furthermore,
all the techniques we discussed involve an apparent trade-off between performance and
reliability. Is this a necessary compromise, or are there methods that maintain instruction
stability at no cost? It would also be good to deepen our theoretical understanding, adding
realism to the idealized “cone” model of instruction drift that we proposed. Finding new
ways to measure and prevent instruction drift is an important step in ensuring AI safety
and reliability.
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A Sketch of the Theory in Section 4.3

A.1 Setting One: Agent Utterances

In linear algebra, a cone is a subset of a vector space that is closed under positive scalar
multiplication. In other words, C is a cone if x ∈ C implies sx ∈ C for every positive scalar s.
Moreover, C is called a convex cone if αx + βy ∈ C for any positive scalars α and β, and any
x, y ∈ C.

The dimension of a cone is the dimension of the vector space spanned by the elements of
the cone. For convenience, we define two new notions related to low dimensional cones in
the space RD. Given any d-dimensional convex cone C ⊂ RD (1 ≤ d ≤ D), for ϵ ∈ (0, 1) we
define the corresponding ϵ-approximate d-dimensional cone as

Cϵ := {w ∈ C ⊕ span(C)⊥ ⊂ RD : w = u + v

for some u ∈ C, v ∈ span(C)⊥ ∼= RD−d, ∥v∥ ≤ ϵ∥w∥}.

Given some c ∈ SD−1 and θ ∈ (0, π/2), a d-dimensional spherical cone is the set defined by

Pd[c, θ] := {u ∈ U ⊂ RD : U ∼= Rd, ⟨c, u⟩ ≥ ∥u∥ cos θ}.

Theorem A.1. Assume that the token embeddings of the system prompt given by h1, . . . , h|sB | lie in

the d-dimensional approximate cone Cϵ, and that any output-value matrix W l,m
ov = W l,m

o W l,m
v ∈

RD×D satisfy that W l,m
ov u ∈ Cϵ for any u ∈ Cϵ. Then all proceeding tokens generated by our

simplified transformer lie in the convex hull of Cϵ. In particular, if Cϵ is contained in some
spherical cone Pd[c, θ] , then all generated tokens lie in the ϵ̃-approximate cone Cϵ̃ where ϵ̃ =

ϵ/
√

ϵ2 + cos2 θ(1 − ϵ2).

For the initial tokens, θ indicates how concentrated their embeddings are, and d is roughly
the intrinsic dimension of these embeddings. Note that d ≤ |sB| and the number of tokens
in the system prompt |sB| is usually much smaller than the dimensions of hidden space D,
which is 8192 in the case of LLaMA2-70B-chat. Thus, the assumption that initial embeddings
occupy a low-dimensional cone is reasonable.

Theorem A.1 shows the convex cone for token embeddings remains stable during the
generating process if there is no user input, which leads to the plateau within an utterance.

A.2 Setting Two: User Utterances

Again we assume that the system tokens h1, . . . , h∥sB∥ are from some Cϵ
0 , and let Cn be

the smallest convex cone containing C0 and user tokens {h|sB |+i}n
i=1. Then the expansion

C0 ⊂ C1 ⊂ · · · ⊂ Cn reflects the attention decay under the influence of user utterances. To
get some intuition on the expanding process, we show the following:

Proposition A.2. If user tokens are drawn i.i.d. uniformly from SD−1, then with probability 1 − η

after n ≥ 4D + 2 log 1
η user tokens Cn expands to the whole space RD.

Proposition A.2 suggests that when user utterances are inserted, the size of the convex cone
for token embeddings will grow significantly, which gives rise to the drop of π(t) across
utterances. To further quantify the expansion of convex cones, we can consider the spherical
measure σD−1, which is the Borel measure on the (D − 1)-sphere such that σD−1(S

D−1) = 1.
For any ϵ-approximate convex cone Cϵ, define the volume of Cϵ by

µ(Cϵ) := σD−1(Cϵ ∩ SD−1).

Then intuitively µ(Cϵ
0)/µ(Cϵ

n) indicates the degree to which the current tokens in Cϵ
n align

with the system tokens in Cϵ
0 , similar to the quantity π(t) defined in the previous section.

In real applications, user messages are not i.i.d. uniform variables from SD−1. However,
there usually exists an evident proportion of user tokens distinct from the system tokens.
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They could probably be tokens unique in the specific topics that the user inquires about or,
more typically, tokens from a new language. It could also happen that the user is attacking
the LM by sending adversarial tokens (Zou et al., 2023). The following proposition quantifies
how attention decays in terms of µ(Cϵ

0)/µ(Cϵ
n) as such embedding dimension increases.

Proposition A.3. Suppose C0 is a d1-dimensional convex cone contained in some d1-dimensional
spherical cone Pd1 [c1, ψ1] while Cn is a d2-dimensional convex cone containing a d2-dimensional
spherical cone Pd2 [c2, ψ2]. Then we have

µ(Cϵ
0)

µ(Cϵ
n)

≲ ϵd2−d1 .

The geometric perspective we proposed provides a concrete explanation of why inserting
user prompts will cause attention decay while autoregressive generation from the model
will almost have no harm. However, one limitation here is that we have only compared the
cone structure without tracking the distribution of token embeddings within the cones. In
particular, if we force the majority of tokens generated from Cϵ

n to be contained or close to
Cϵ

0 , the issue of attention decay could possibly be mitigated, which motivates our method in
the proceeding section.

B Proofs for Appendix A

We start by making simplifications to the model and token-generating process. First, the
model is simplified by omitting the MLP and layer norms as in Equation 1. For the token-
generating process, the embedding of the next token ht+1 is close to hL

t among all tokens in
the vocabulary in Equation 2. Thus, for convenience we directly put ht+1 := hL

t /∥hL
t ∥ in our

simplified model, meaning that all embeddings lie on the unit hypersphere SD−1 := {v ∈
RD : ∥v∥ = 1}.

Proof of Theorem A.1. Let Cϵ be the convex hull of Cϵ. The Cϵ is a convex cone containing Cϵ.
Theorem A.1 can be proven in two steps.

Step I. We establish that ht ∈ Cϵ by induction. h1, . . . , ht0 already satisfy the claim by
assumption. Supposing that h1, . . . , ht ∈ Cϵ (t ≥ t0), we show that ht+1 is also in Cϵ. Here
we look into hl

j (j = 1, . . . , t, l = 1, . . . , L) in the process of generating ht+1. We perform

induction on l. For l = 0, we have hl
j = hj ∈ Cϵ. Supposing that hl

j ∈ Cϵ for j = 1, . . . , t, it

suffices to prove that hl+1
j ∈ Cϵ.

By induction hypothesis that hl
j ∈ Cϵ (j = 1, . . . , t) we can find k j ∈ N+, xj,1, . . . , xj,kj

∈ Cϵ,
and wj,1, . . . , wj,kj

> 0 for j = 1, . . . , t such that

hl
j =

kj

∑
i=1

wj,ixj,i.

Thus, by Equation 1 we have

hl+1
j = hl

j +
H

∑
m=1

W l+1,m
o Attl+1,m(hl

1, . . . , hl
j)

= hl
j +

H

∑
m=1

j

∑
s=1

αl+1,m
j,s W l+1,m

o W l+1,m
v hl

s

= hl
j +

H

∑
m=1

j

∑
s=1

ks

∑
i=1

αl+1,m
j,s ws,iW l+1,m

o W l+1,m
v xs,i.

14



Preprint

Note that αl+1,m
j,s > 0 since it is calculated from softmax and by assumption we have

W l+1,m
o W l+1,m

v xi,s ∈ Cϵ as xs,i ∈ Cϵ. Thus, we conclude that hl+1
j ∈ Cϵ. By induction we

know for l = 1, . . . , L and j = 1, . . . , t we have hl
j ∈ Cϵ. Thus, ht+1 = hL

t /∥hL
t ∥ ∈ Cϵ holds.

And by induction again we conclude that ht ∈ Cϵ for all t ≥ 1.

Step II. Let γ = cos θ. We prove that Cϵ ⊂ Cϵ̃ where ϵ̃ = ϵ/
√

ϵ2 + γ2(1 − ϵ2). For any
y ∈ Cϵ, there exists k ∈ N+, x1, . . . , xk ∈ Cϵ, and w1, . . . , wk > 0 such that y = ∑k

i=1 wixi.
By definition of Cϵ, xi can be written as xi = ui + vi where ui ∈ C and vi ∈ span(C)⊥

and ∥vi∥ ≤ ϵ∥xi∥. By definition of Pd[c, θ] we have ⟨c, ui⟩ ≥ γ∥ui∥ for all i = 1, . . . , k. Let
ũi := ⟨c, ui⟩c. Then ⟨ũi, ui − ũi⟩ = 0 and hence ⟨∑k

i=1 wiũi, ∑k
i=1 wi(ui − ũi)⟩ = 0. Therefore,

we have ∥∥∥ k

∑
i=1

wiui

∥∥∥ ≥
∥∥∥ k

∑
i=1

wiũi

∥∥∥ =
k

∑
i=1

〈
c,

k

∑
i=1

wiui

〉
≥ γ

k

∑
i=1

wi∥ui∥.

On the other hand, we know∥∥∥ k

∑
i=1

wivi

∥∥∥ ≤
k

∑
i=1

wi∥vi∥ ≤ ϵ√
1 − ϵ2

k

∑
i=1

wi∥ui∥.

Therefore, it holds that ∥∥∥ k

∑
i=1

wiui

∥∥∥ ≥ γ
√

1 − ϵ2

ϵ

∥∥∥ k

∑
i=1

wivi

∥∥∥,

which implies that ∥∥∥ k

∑
i=1

wivi

∥∥∥ ≥ ϵ√
ϵ2 + γ2(1 − ϵ2)

∥∥∥ k

∑
i=1

wixi

∥∥∥.

Thus, we conclude that Cϵ ⊂ Cϵ̃.

To prove Proposition A.2 we need the following lemma.

Lemma B.1 (Wendel, 1962). Let N points be scattered uniformly at random on Sm ⊂ Rm+1. Then
the probability that all points lie on some hemisphere is given by

am,N = 2−N+1
m

∑
k=0

(
N − 1

k

)
.

Proof of Proposition A.2. If there is no hemisphere containing ht0+1, . . . , ht0+n, then the origin
lies in Cn and is not on the boundary, meaning that Cn = RD. Thus, we only need to show
that for n ≥ 4D + log 1

η , it holds that aD,n ≤ η. Since

2−n
D

∑
i=0

(
n
i

)
≤ 2−n

D

∑
i=0

ni

i!
= 2−n

D

∑
i=0

D!
i!

( n
D

)i
≤ 2−n

( en
D

)D
.

It suffices to prove that 2−n ( en
D
)D

< η. For convenience let α := 4 + 2
D log 1

η ≤ n
D . Then we

can check that (
log 2 − 1

2
)
eα/2 >

( 1
η

)1/D.

Note that

eα(log 2− 1
2 )−1 ≥ α

(
log 2 − 1

2
)
,

which is equivalent to

eα ≤ eα(log 2− 1
2 )

log 2 − 1
2

=
2α

eα/2
(
log 2 − 1

2
) .
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Thus, we have

2−n
( en

D

)D
≤ (eα)D

2αD ≤ 1(
log 2 − 1

2
)DeαD/2

< η.

To show Proposition A.3 we need the following lemma.

Lemma B.2 (Li, 2010). The spherical measure of the spherical cap Pm+1[c, θ] ∩ Sm is given by

σm(Pm+1[c, θ] ∩ Sm) =

∫ θ
0 sinm−1 xdx

2
∫ π/2

0 sinm−1 xdx
=

Γ(m+1
2 )√

πΓ(m
2 )

∫ θ

0
sinm−1 xdx,

where Γ(x) is the Gamma function.

Proof of Proposition A.3. First we lower bound µ(Cϵ
n) by identifying as many disjoint spheri-

cal caps with angle θ := arcsin ϵ as possible and applying Lemma B.2.

Let M be the largest number such that there exists a set of points a1, . . . , aM ∈ Pd2 [c2, ψ2 −
θ] ∩ SD−1 to ensure PD[ai, θ] ⊂ Pd2 [c2, ψ2] (i = 1, . . . , M) are disjoint from one another
(“disjoint” meaning that the measure of intersection is zero). We claim that

{
Pd2 [ai, 2θ]

}M
i=1

is a covering of Pd2 [c2, ψ2]. Otherwise, choosing a0 ∈ Pd2 [c2, ψ2] ∩ SD−1 \⋃i Pd2 [ai, 2θ] we
can check that PD[a0, θ] does not intersect with any of PD[ai, θ]. Thus, these M + 1 spherical
caps do not overlap, which contradicts the definition of M. Hence Pd2 [c2, ψ2] ⊂

⋃
i Pd2 [ai, 2θ],

and by Lemma B.2 we have

Γ( d2
2 )√

πΓ( d2−1
2 )

∫ ψ2

0
sind2−2 xdx = σd2−1(Pd2 [c2, ψ2] ∩ SD−1)

≤
M

∑
i=1

σd2−1(Pd2 [ai, 2θ] ∩ SD−1) = Mσd2−1(Pd2 [ai, 2θ]) = M
Γ( d2

2 )√
πΓ( d2−1

2 )

∫ 2θ

0
sind2−2 xdx.

On the other hand, since PD[ai, θ]’s are disjoint from each other and that PD[ai, θ] ⊂
PD[c2, ψ2] (because ϵ = sin θ), we know

µ(Cϵ
n) ≥

M

∑
i=1

σD−1(PD[ai, θ] ∩ SD−1) = MσD−1(PD[ai, θ] ∩ SD−1)

= M
Γ(D

2 )√
πΓ(D−1

2 )

∫ θ

0
sinD−2 xdx

≥
Γ(D

2 )

Γ(D−1
2 )

∫ ψ2
0 sind2−2 xdx

∫ θ
0 sinD−2 xdx∫ 2θ

0 sind2−2 xdx
.

Next we upper bound µ(Cϵ
0). For any (x1, · · · , xn) ∈ Bn := {(x1, . . . , xn) : ∑n

i=1 x2
i ≤ 1}, we

introduce the hyperspherical coordinate system, which consists of a radial coordinate r, and
n − 1 angular coordinates ϕ1, . . . , ϕn−1, where the angles ϕ1, · · · , ϕn−2 range over [0, π] and
ϕn−1 ranges over [0, 2π). In specific, the coordinates are defined through the transformation:

x1 = r cos ϕ1,
x2 = r sin ϕ1 cos ϕ2,
x3 = r sin ϕ1 sin ϕ2 cos ϕ3,

...
xn−1 = r sin ϕ1 · · · sin ϕn−2 cos ϕn−1,

xn = r sin ϕ1 · · · sin ϕn−2 sin ϕn−1.
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By assumption we know C0 ⊂ PD[c1, ψ1]. Therefore, using the notion of spherical elements
(Blumenson, 1960), we can write

µ(Cϵ
0) = σD−1(Cϵ

0 ∩ SD−1) =
1

Area(SD−1)

∫
Ω

sinD−2 ϕ1 sinD−3 ϕ2 · · · sin ϕD−2d(ϕ1, . . . , ϕD−1),

where

Ω =
{
(ϕ1, · · · , ϕD−1) : ϕ1 ∈ [0, ψ1], ϕ2, . . . , ϕD−2 ∈ [0, π], ϕD−1 ∈ [0, 2π], ∏d1−1

j=1 sin ϕj ∈ [0, ϵ]
}

.

Denoting

Ω1 =
{
(ϕ1, · · · , ϕd1−1) : ϕ1 ∈ [0, ψ1], ϕ2, . . . , ϕd1−1 ∈ [0, π], ∏d1−1

j=1 sin ϕj ∈ [0, ϵ]
}

,

then we have

µ(Cϵ
0) =

1
Area(SD−1)

∫
(ϕ1,...,ϕd1−1)∈Ω1

sinD−2 ϕ1 · · · sinD−d1 ϕd1−1d(ϕ1, . . . , ϕd1−1)∫ π

0
· · ·

∫ π

0

∫ 2π

0
sinD−d1−1 ϕd1 · · · sin ϕD−2dϕd1 · · · dϕD−1

=
Area(SD−d1)

Area(SD−1)

∫
(ϕ1,...,ϕd1−1)∈Ω1

sinD−2 ϕ1 · · · sinD−d1 ϕd1−1d(ϕ1, . . . , ϕd1−1)

≤ Area(SD−d1)

Area(SD−1)
ϵD−d1

∫ ψ1

0

∫ π

0
· · ·

∫ π

0
sind1−2 ϕ1 · · · sin ϕd1−2dϕ1 · · · dϕd1−1

=
Area(SD−d1)Area(Sd1−1)

2Area(SD−1)
σd1−1(Pd1 [c1, ψ1] ∩ SD−1)

=
Γ(D

2 )

Γ(D−d1+1
2 )Γ( d1−1

2 )
ϵD−d1

∫ ψ1

0
sind1−2 xdx.

Thus, we conclude that

µ(Cϵ
0)

µ(Cϵ
n)

≤
Γ(D−d1+1

2 )Γ( d1−1
2 )

Γ(D−1
2 )

∫ ψ1
0 sind1−2 xdx

∫ 2 arcsin ϵ
0 sind2−2 xdx∫ ψ2

0 sind2−2 xdx
∫ arcsin ϵ

0 sinD−2 xdx
ϵD−d1

≲ ϵD−d1
ϵd2−1

ϵD−1 = ϵd2−d1 .

Figure 7: Histogram of embedding vector norms.
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Norm of Embedding Vectors In Section 4, we assume that the embedding vectors have
the unit norm. To verify if this is reasonable, we plot the density of the norms of vocabulary
embeddings for the LLaMA2-7B-chat in Figure 7. We can observe that the norms are quite
concentrated around 1.

C Does RLHF help?

Given how RLHF Ouyang et al. (2022); Ziegler et al. (2019) train the model, the model
should be trained to pay more attention to the system prompt so to increase user satisfaction.
In Figure 8, we show that RLHF could increase the portion of attention paid to the system
prompts by comparing LLaMA2-7B and LLaMA2-7B-chat. The latter is trained on top of the
former with human feedback. It shows that RLHF indeed helps in combating instruction
drift, but it still cannot eradicate it entirely due to its nature of fine-tuning.

Figure 8: Comparison of attention decay between LLaMA2-7B before and after RLHF
training. Different from the categorical palette used in Figure 4 to differentiate number of
rounds when the answer is generated. The deeper the color, the later the round in which the
answer is generated.

D Additional Instruction Drift Experiments

To see how close-source model compares with LLaMA2-70B-chat, we test
gpt-3.5-turbo-16k with a total of 200 randomly sampled system prompt pairs.
Results are shown in Figure 9. It turns out that gpt-3.5-turbo-16k holds to its system
prompt better than LLaMA2-chat-70B, but still suffers a 10% drop on the stability of its
original system prompt.

E Discussion of Split-softmax Formula

We first quickly show how the post-intervention attention values in Equation 6 still form a
distribution by summing up to 1, dropping subscript t:

∑ α′i = ∑
i≤|sB |

α′i + ∑
i>|sB |

α′i

=
πk(t)
π(t) ∑

i≤|sB |
αi +

1 − πk(t)
1 − π(t) ∑

i>|sB |
αi

= πk(t) +
(

1 − πk(t)
)

= 1
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Figure 9: Measuring the instruction stability of gpt-3.5-turbo-16k via API using the same
protocol as Figure 3. On the left, the system prompt is given to the API via the “system”
argument; on the right, it is prepended to the user’s first utterance.

Meanwhile, it is worth-noting that the ratios of attention scores for tokens within the system
prompt and within conversation history remain unchanged, thereby minimizing disruption
to the attention mechanism.
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