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Figure 1. AM-RADIO is a framework to distill multiple pretrained vision foundation models, such as CLIP [51], DINOv2[48], SAM [35],
into a single model that we call RADIO. As a result, a single vision foundation model agglomerates unique properties of the original models.
This unifying approach obtains state-of-the-art feature representations in a single forward pass while also enabling unique properties such
as zero-shot classification (CLIP) or open set instance segmentation (SAM) at negligible additional cost.
Image description: (left) PCA feature visualization of different models. Our proposed RADIO model can process any resolution and
aspect ratio, and produces semantically rich dense encodings; (middle) the overview of the AM-RADIO framework; (right) benchmarks
on classification, segmentation, and vision-language modeling tasks, see section 5.

Abstract
A handful of visual foundation models (VFMs) have re-

cently emerged as the backbones for numerous downstream
tasks. VFMs like CLIP, DINOv2, SAM are trained with dis-
tinct objectives, exhibiting unique characteristics for vari-
ous downstream tasks. We find that despite their conceptual
differences, these models can be effectively merged into a
unified model through multi-teacher distillation. We name
this approach AM-RADIO (Agglomerative Model – Reduce
All Domains Into One). This integrative approach not only
surpasses the performance of individual teacher models
but also amalgamates their distinctive features, such as
zero-shot vision-language comprehension, detailed pixel-
level understanding, and open vocabulary segmentation ca-
pabilities. Additionally, in pursuit of the most hardware-

*Equal contribution

efficient backbone, we evaluated numerous architectures in
our multi-teacher distillation pipeline using the same train-
ing recipe. This led to the development of a novel architec-
ture (E-RADIO) that exceeds the performance of its prede-
cessors and is at least 6x faster than the teacher models at
matched resolution. Our comprehensive benchmarking pro-
cess covers downstream tasks including ImageNet classifi-
cation, semantic segmentation linear probing, COCO ob-
ject detection and integration into LLaVa-1.5.

Code: https://github.com/NVlabs/RADIO.

1. Introduction

Knowledge Distillation [26] has been a very successful
and popular technique for transferring the knowledge of a
“teacher” model (or ensemble of models) into a typically
smaller “student” model. In the original formulation, both
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Model Params Resol- Throughput ImageNet1K Segmentation (linear) Vision-Language (LLaVa-1.5 [40]) SAM [35]
(M) ution Zero-shot k-NN ADE20k VOC GQA POPE TextVQA VQAv2 COCO

OpenCLIP-H/14 [11] 632 224 503 77.19 81.10 40.04 68.03 57.94 83.61 50.48 72.24 -
MetaCLIP-H/14 [64] 632 224 486 80.51 82.12 35.39 62.62 60.57 84.76 53.65 75.71 -
SigLIP-L/14 [74] 428 384 241 82.61 85.16 40.53 70.31 57.70 84.85 56.65 71.94 -
Intern-ViT-6B [10] 5,902 224 63 83.20:: 78.43 47.20 76.85 60.18 84.02 52.45 76.75 -

5,537 448 14 :: 68.64 42.78 74.43 61.19 87.23 60.36 78.83 -
*DFN CLIP-H/14 [19] 633 378 170 83.90 85.27 39.00 70.29 61.73 85.91 56.78 78.78 -
*OpenAI CLIP-L/14 [51] 305 336 414 75.54 79.80 36.51 67.04 62.20 86.09 57.92 78.49 -
*DINOv2-g/14-reg [14] 1,137 224 294: - 83.41 48.68 82.78 61.88 85.62 47.18 76.23 -
*SAM-H/16 [35] 637 1024 12 - 22.12 28.08 34.34 49.92 81.76 43.91 57.65 77.18

E-RADIO-L (Ours) 391 512 468 80.73 83.89 48.22 81.64 61.70 85.07 51.47 76.73 76.31
RADIO-ViT-H/16 (Ours) 653 432 158 82.93 86.06 51.34 84.71 63.01 86.20 56.32 79.28 76.23

Table 1. Comparison of vision foundation and RADIO models. “Zero-Shot” and k-NN are computed on ImageNet-1K. ADE20K [77] and
VOC (PascalVOC2012) refer to linear probe semantic segmentation mIOU. GQA, POPE (popular), TextVQA, and VQAv2 are obtained
via LLaVa 1.5 [40] by replacing the vision encoder. COCO is the instance segmentation metric introduced by [8] to evaluate SAM [35]
distillation. RADIO attains the best metrics on most benchmarks, and is competitive with the rest, while E-RADIO enables high quality
results in resource constrained settings. Note that Zero-Shot and COCO use teacher’s decoder head that is not finetuned. Throughput
computed using NVIDIA A100 GPU, stated resolution, and TensorRT v8601. *Denotes teachers used to train our final RADIO. :We failed
to export DINOv2-g-reg to TensorRT, so we report DINOv2-g here, which should be fairly close. ::We were unable to get zero shot working
using their model code.
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Figure 2. AM-RADIO - is a multi-teacher distillation framework
that efficiently trains new vision foundation models of arbitrary ar-
chitecture. It unifies unique attributes (like zero-shot text ground-
ing, dense correspondence) of each teacher into a single model that
even outperforms them on a majority of the tasks.

the student and the teacher operate on the same in-domain
dataset, and the student simultaneously matches the logits
of the teacher, and the ground truth labels. Instead of us-
ing labeled images, an alternative approach is to train the
student model to match the features of the teacher model
[1, 25, 28, 53, 56, 61, 72].

Instead of using a smaller student model, [63] employ

an iterative learning procedure with a high-capacity model
where a student of equal or greater capacity than the teacher
is trained with heavy augmentation applied to the student.
Once trained, they expand the dataset by pseudo-labeling
new data using the trained student. They then make the stu-
dent become the teacher, and repeat the process. An im-
portant finding in this work is that the student is capable of
surpassing the performance of the teacher.

The authors of [26] explore the concept of ensemble dis-
tillation, where there are multiple teachers, each of which
having restricted domain knowledge. [78] provides an
overview of multi-teacher distillation, and proposes that in-
stead of matching the summary of an ensemble of teachers,
the student can match the features of each individual teacher
via some learned non-shared mapping from the representa-
tion space of the student to each teacher. Of interest in their
approach is that the student and teacher don’t need to share
the same architecture, and also that treating teachers indi-
vidually yields improved performance.

Recently, the concept of Foundation Models (FMs) [3]
has emerged, with the general understanding that these
models are large, general, and expensive to train. Through
training on very large datasets they are broadly applicable
to numerous downstream tasks. A seminal example of such
models is CLIP [51], which trains on web-scale weakly su-
pervised (image, caption) pairs, and results in exceptional
zero-shot performances on a wide array of computer vision
benchmarks. While CLIP is firmly a FM, another model,
DINOv2 [48] has emerged with broad capabilities, often
surpassing CLIP on dense tasks that require strong spatial
features, such as ADE20k [77] and Pascal VOC [18]. Sep-
arately, SAM (Segment Anything) [35] is gaining popular-
ity for its excellent open-vocabulary instance segmentation
abilities, whose vision encoder we hypothesize has strong
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dense feature representations.
We introduce AM-RADIO with the goal of learning from

multiple foundational models simultaneously. We observe
that, when given a student model of sufficient capacity,
it is often able to exceed any of its teachers on impor-
tant axes. In addition to performing well on representative
foundational benchmarks, by virtue of the training frame-
work, our student models are able to mimic their teacher
models, and thus are able to perform downstream tasks
that are otherwise performed by the teachers. Examples
of this include CLIP-ZeroShot applications, since the lan-
guage model trained by CLIP is compatible with our stu-
dent, and also Segment-Anything tasks, as the student is
able to replace the vision encoder and interface with the
already-trained mask decoders.

We also study the effect of using a more hardware-
efficient model architecture. Most works on efficiency
are not directly comparable as they use different training
recipes, even when evaluated on the same dataset such as
ImageNet-1k, and may be over-tuned. To this end, we eval-
uate more than 10 promising architectures under the same
training recipe for a direct comparison. We reveal that
CNN-like architectures are faster but struggle to distill ViT
VFMs. This led us to the development of a novel hybrid
architecture, E-RADIO, that exceeds the performance of its
predecessors and is at least 6x faster than teacher models at
matched resolution.

Our main contributions are as follows:
• We describe a general methodology for distilling multi-

ple distinct foundation models into one, including models
with incompatible input resolutions.

• We show that these student models are able to outperform
their teachers on representative benchmarks.

• We demonstrate that these student models can either
drop-in replace their teachers, or their features can be
used directly in downstream applications such as provid-
ing visual encoding for LLaVA [40, 41].

• We benchmark a number of efficient architectures and
propose a new architecture (E-RADIO) that allows for
similar model quality at significant speedups.

2. Related Work
Knowledge Distillation The underpinning of our work is
based on the method of Knowledge Distillation [4, 5, 26,
34, 47] which aims to train a “student” model using soft
targets produced by an already-trained “teacher” model, us-
ing the the teacher’s output logits as “soft” labels. Alterna-
tively, distillation can be performed using intermediate net-
work activations [1, 25, 28, 53, 56, 61, 72]. In general, due
to the heterogeneous nature of the different teacher founda-
tion models that we employ, we ignore any potential labels
coming from the data, and we ignore the logits of teachers,
and simply opt to match the feature representations of the

teachers before any task-specific processing stages.
Multi-Teacher Distillation There is also a body of work
that studies distilling a student model jointly from multi-
ple teacher models simultaneously [2, 20, 26, 36, 42, 50,
68, 69, 71, 75, 78]. Because of the heterogeneous domains
that our teacher models cover, we don’t apply approaches
that marginalize teachers into a unified label, and instead
map students to each teacher independently using teacher-
specific projection heads from the unified student represen-
tation. Although the reason behind this method in [78] is
different, we find the same overall strategy to be effective.
While [61] doesn’t study matching the features of multi-
ple teachers simultaneously, we are able to extend their
paradigm via the different projection heads. To preserve
drop-in compatibility with teacher frameworks, we elimi-
nate the feature normalization in the loss function.
Distilling Foundation Models Foundation Models [3] are
meant to be generalist models that are trained on massive
amounts of data, and are typically resource intensive to train
from scratch. In the vein of single-teacher distillation, [48]
employ self-distillation to train their smaller variants from
the larger teacher. [61] distills their model from a CLIP
[51] teacher. Instead of focusing our energy on one teacher
in particular, we instead grab high-quality versions of CLIP
[51] (using OpenCLIP [30]), DINOv2 [48], and SAM [35].
Concurrently with our work, [60] describe a methodology
for merging a CLIP model into a pretrained SAM model via
distillation, which is, in spirit, quite similar to our approach.
In contrast to theirs, we include DINOv2 and also simplify
the objective to straightforward feature matching. Since we
don’t rely on the student model to be pre-trained, it also
gives us the flexibility to have the student be an architecture
distinct from any teacher.

3. Knowledge Agglomeration
We propose a framework to train a vision foundation model
from scratch via multi-teacher distillation as shown in Fig-
ure 2. We demonstrate that each teacher brings unique prop-
erties to the foundational vision model, and the resulting
trained model will agglomerate these attributes.

3.1. Overview

As an initial assumption, we expect that the teacher mod-
els are capable of representing a broad swath of images
found on the internet, coming from datasets such as Ima-
geNet (1k or 21k) [15], LAION-400M [54] or DataComp-
1B [21]. With this in mind, we choose to study 3 seminal
teacher model families: CLIP [51], DINOv2 [48], and SAM
[35] as they have demonstrated outstanding performance
over a broad range of tasks (as in CLIP), or specifically
strong performance on downstream dense tasks, such as se-
mantic segmentation under linear probe (as in DINOv2), or
open-vocabulary segmentation (as in SAM). Because these
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teacher models come from such diverse domains, we omit
any form of supplemental ground truth guidance and treat
the aforementioned datasets simply as sources of images.
To assess the quality of our models, we adopt a set of repre-
sentative metrics across a few broad domains.
• Image level reasoning: (i) k-NN Top-1 accuracy on

ImageNet-1K, and (ii) Zero-Shot accuracy using the
CLIP teacher’s language model [51]. k-NN [9, 48, 62]
embeds the model’s summary feature vector for every im-
age in the training set, and then for each validation image,
it uses a weighted sum of the k nearest training vectors to
elect a label.

• Pixel-level visual tasks: segmentation mIOU on (i)
ADE20K and (ii) Pascal VOC - under the linear probe
setting, details in Section 5.3.

• Large Vision-Language Models: we plug our frozen
vision encoder model into LLaVA-1.5 [40] and evaluate
it on a wide set of tasks including GQA [29], TextVQA
[55], ScienceQA [46] and VQAv2 [23]. Details in Sec-
tion 5.4.

• SAM-COCO instance segmentation: From [8], we
adopt their COCO instance segmentation methodology to
evaluate our ability to replicate SAM visual features.

Results on these tasks, both for teacher models and our AM-
RADIO variants, are summarized in Table 1.

3.2. Adaptor Heads

We opt for simplicity in design of the adaptor heads, and
leave alternative architectures as future work. To this end,
we employ a simple 2-layer MLP, with a LayerNorm and
GELU in between. The input dimension is the student em-
bedding dimension, the intermediate dimension is the max-
imum embedding dimension of all teachers, and the output
dimension matches the specific teacher. For each teacher,
we employ two heads, one for the summary vector, and one
for the spatial features.

3.3. Distillation Dataset Choice

In table 2 we study the effect of different datasets on down-
stream metrics. While the highest image classification met-
rics are achieved using ImageNet-1K as the training dataset,
we argue that it doesn’t fairly measure “zero shot” perfor-
mance as the student directly learns the teacher features
in the evaluation domain. For this reason, we opt for the
DataComp-1B dataset.

3.4. Loss Formulation

Because we don’t have ground truth data for each teacher
for each image, we instead opt to match the features coming
from each teacher’s vision encoder. In particular, we distin-
guish between the summary feature vector and the spatial
feature vectors for each teacher. The summary feature is
computed differently based on the model. For CLIP and

Dataset k-NN Zero Shot ADE20K

ImageNet 1K 84.79 80.44 48.11
ImageNet 21K 84.61 80.10 48.65
LAION-400M 83.77 77.46 48.6
DataComp-1B 83.91 78.51 49.01

Table 2. Ablation study on the choice of training dataset. We use
MetaCLIP ViT-H/14 [16] and DINOv2 ViT-g/14 teachers, and a
ViT-L/14 student model with CPE [33]. Both “k-NN” and “Zero
Shot” are for ImageNet-1k. ADE20k refers to mIOU linear probe
on ADE20k.

Teachers Zero Shot k-NN ADE20K

None 75.77 82.59 41.18
CLIP 75.64 82.60 44.42
DINOv2 74.68 83.02 47.05
Both 74.85 82.96 48.13

Table 3. Ablation over which teachers we supervise the spatial fea-
tures. We use a ViT-L/14 student model and train on the LAION-
400M dataset. Adding this loss term is always beneficial. DINOv2
appears to provide better spatial features than CLIP, but training
the student to match both teachers produces the best results. We
don’t ablate SAM as we solely want it for its spatial features.

DINOv2, we use the “class token” as the summary feature
vector, and we don’t match a summary for SAM.

Let f px|Θ0q be the student vision encoder with parame-
ters Θ0, and ysi “ h

psq

i px1|Θ
psq

i q be the learned student head
matching teacher summary features zpsq

i “ t
psq

i px|Φiq with
student adaptor parameters Θpsq

i and teacher parameters Φi.

x1 “ f px|Θ0q ; y
psq

i “ h
psq

i

´

x1|Θ
psq

i

¯

;

z
psq

i “ t
psq

i px|Φiq ,
(1)

Lsummarypxq “
ÿ

i

λiLcospy
psq

i , z
psq

i q (2)

We found empirically that cosine distance loss produced
better models compared to L1, MSE, Smooth-L1 [22]. Ad-
ditionally, supervising the spatial features of the model by
matching the teacher was not only important for down-
stream dense tasks, but also improved the holistic quality
of our model.

For matching the spatial features, we employ a combi-
nation of cosine similarity and smooth L1. Similar to equa-
tion (2) where we found that cosine similarity produced the
best results, we found the same to be true for the spatial
features. However, we want to allow our student model to
be a drop-in replacement in the teacher frameworks, thus
it’s important that we match the magnitude of the teacher
vectors, and so we include smooth L1. In (3) we show the
formulation of this loss. Let hpvq

i px1|Θ
pvq

i q be the learned
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Method Zero Shot k-NN ADE20K

Naive 70.63 79.50 44.71
Uncertainty [12] 70.92 79.37 44.57
AdaLoss [27] 71.31 79.77 44.36

Table 4. Loss term balancing methods comparison. We use a
ViT-B/14 student, and CLIP+DINOv2 teachers. We found that
AdaLoss produces the best results on the ImageNet tasks, but the
worst on ADE20K.

student head for matching teacher feature vectors, and cor-
responding tpvq

i px|Φ
pvq

i q be the teacher feature vectors, with
x1 “ fpx|Θ0q, then the spatial feature loss is:

Lmatchpx, yq “ αLcospx, yq ` βLsmooth-l1px, yq

Lfeaturespxq “
ÿ

i

γiLmatch

´

h
pvq

i px1|Θ
pvq

i q, t
pvq

i px|Φ
pv
i qq

¯

(3)
We choose α “ 0.9 and β “ 0.1 to mostly rely on the

empirically better cosine distance, but to also match vector
magnitudes.

3.4.1 Loss Balancing

Due to the number of possible combinations of loss weights
between the different teachers, and even which teachers,
and possible formulations of loss functions, we mostly
opted toward naive loss balancing with all teachers equally
weighted for spatial features (γi “ 1). For summary fea-
tures, we have λCLIP “ λDINO “ 1 and λSAM “ 0.

We did experiment with automatic loss balancing using
predicted uncertainty [12], AdaLoss [27] (momentum 0.99)
and separately with AMTML-KD [42], as ways to learn the
balance of λi and γi. In the case of AMTML-KD, the model
would always collapse its entire weight around the CLIP
teacher and would yield worse results than naive manual
balancing. Based on the results in table 4, there is very little
advantage to the more exotic balancing schemes, so we opt
for the ”Naive” method throughout the rest of the paper.

4. Implementation Details
Performing heterogeneous multi-teacher distillation is not
trivial due to a mismatch in feature dimensions, input res-
olutions, concepts for loss computation, and downsampling
ratios, as well as challenges in fitting multiple teachers into
a single GPU.
General. We train all student models using the AdamW
[45] optimizer, batch size 1024, cosine annealing learning
rate schedule and base learning rate of 0.001. We train for
600k steps, resulting in 614M total examples seen. For our
best student model, we train using DFN CLIP ViT-H/14
378px, OpenAI CLIP ViT-L/14 336px, DINOv2 ViT-g/14

224px, and SAM ViTDet-H 1024px. We apply random
scale + cropping to both student and teacher inputs. We
chose the DataComp-1B dataset due to it having the highest
quality results of the web-scale datasets we had access to.
We train in two stages, first with CLIP+DINOv2 for 300k
steps at 256px, and second with CLIP+DINOv2 at 432px
plus SAM at 1024px for 300k steps.
Student architecture. We study two settings for student
model architecture:
• Standard ViT [16] architecture to match the architecture

of teachers. Our best model is a ViT-H/16.
• Efficient architecture variants prioritizing high through-

put on GPUs. See Section 5.1.
Multi-scale Teachers. We choose ViT-H/16 architecture
for our student model. To match resolution of SAM fea-
tures, we feed the expected resolution of 10242. Given that
our CLIP and DINOv2 teachers are patch-14 models, we
opt to feed the student 4322 inputs, as that is the same ef-
fective resolution as 3782 for patch-14. We found that in-
terpolating DINOv2 features doesn’t degrade results, so the
teacher operates at 224px and we upsample the outputs to
match the student.
Rank/Teacher Partitioning. We group teacher models
by (batch size, student resolution), and then distribute the
groups to different GPUs, such that each GPU processes a
consistent batch size and input resolution. We also sample
groups at different rates. For our training setups that in-
clude SAM, we train with 64 GPUs, half of which get the
CLIP+DINOv2 group with batch size 32 per GPU and in-
put resolution 432, and the other half get SAM with batch
size 2 per GPU and input resolution 1024. This results in an
effective batch size of 1,152. For CLIP+DINOv2 training,
we use 32 GPUs, resulting in batch size 1024.
Multi-Resolution ViTs. Many of our student models use
ViT [16] as the base vision architecture. Traditionally, ViTs
use a learned position embedding for each input patch in an
image, which in turn enforces that the model always oper-
ates at a constant resolution. We employ the Cropped Posi-
tion Embedding (CPE) [33] augmentation with the number
of positions being equal to 1282. The position embeddings
are then randomly cropped and interpolated to match the
number of input patches for the student model. Even when
training with CLIP+DINOv2 at 224 resolution, we found
that this technique results in a negligible drop (Table 5) in
summary metrics, but improved semantic segmentation lin-
ear probing mIOU. For heterogeneous-resolution students,
this is a seamless technique that allows ViT to operate at
arbitrary resolutions within some envelope. In addition to
enabling arbitrary resolutions, as shown in figure 3, CPE
reduces the noise artifacts in the position embeddings as
compared to other ViT models [6, 66, 67].
High-Resolution ViT Student. In SAM, they employ the
ViTDet [37] architecture as a way to reduce the computa-
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Method k-NN ADE20K

Non-CPE 82.96 47.30
CPE 82.84 48.52

Table 5. Comparing identical ViT-L/14 student models, with and
without CPE [33] formulation. While the student only ever trains
at 2242 resolution, CPE allows us to generalize to 5182 resolu-
tion, not only improving over non-CPE, but even outperforming
DINOv2-g itself.

(a) RADIO 2048px (b) DINOv2-g-reg 518px

(c) DFN CLIP 378px (d) OpenAI CLIP 336px

Figure 3. PCA visualization of the position embeddings for var-
ious models. The CPE method not only allows RADIO to learn
an arbitrarily large absolution position embedding map, but also
goes a long way towards regularizing the space and eliminating
high frequency artifacts. As seen with the other models, position
embeddings normally have regular frequency patterns, leading to
undesirable output artifacts from the ViT [6, 66, 67].

tional and memory burden of ViT models at high-resolution.
We reformulate this arch instead into a training augmenta-
tion, where we sample a window size from a set of possible
window sizes. This allows us to reduce the computational
burden of training the student model with the SAM teacher,
and, as we make the window size flexible, it provides an
additional throughput scaling mechanism during inference.
Table 8 demonstrates our ability to replace SAM’s encoder.
Separately, we found that high resolution training was un-
stable, so we apply spectral reparametrization [73] and a
weight decay of 0.02 to prevent attention entropy collapse.
Student/Teacher Resolution Mismatch. When the student
and teacher downsample images through their processing
stack at different rates, it results in the output feature vec-
tors having different resolutions. For example, if the teach-
ers use a ViT-H/14 architecture and student a ViT-H/16, it
means that the student outputs a 142 feature map, and the

Zero Shot k-NN ADE20K VOC VQAv2

CLS token 78.55 83.91 49.01 83.51 77.66
Avgpool 80.12 83.83 38.36 77.04 78.28

Table 6. Comparing identical ViT models, with CLS token and
average pooling summarization.

teachers a 162 feature map. For Lfeatures we bilinearly in-
terpolate the outputs to match the larger resolution between
the student and teacher features.
Feature Summarization. In 3.4 we explained how teacher
summary features are extracted using the “class token” of
their respective ViT models. We now turn our attention to
the summarization of student features. ViTs have 2 options:
(i) a separate summarization “CLS” token or (ii) average
pooling patch tokens. We evaluate both options in Table 6.
We observe that average pooling improves summary loss,
but has a more significant detrimental effect on the feature
loss. Given the importance of the latter we choose to use
separate CLS tokens.

5. Results
In this section, we analyze models obtained with the pro-
posed AM-RADIO framework. First, we touch upon back-
bone efficiency, then compare with the original teachers
(CLIP, DINOv2, SAM), and benchmark models under vi-
sion question answering in the LLaVa framework. We will
see that the proposed models outperform the original teach-
ers in multiple metrics, including throughput. Results are
shown in Figure 1 and Table 1.

5.1. Efficient Students

We aim to find an efficient model architecture to speed up
the inference of VFM. There are a number of architectural
designs aimed at high throughput on GPU devices. We
use our distillation framework to evaluate several backbones
with no change in training hyperparameters.

Upon reviewing the literature on efficient vision back-
bones focused for high GPU throughput, we pick the fol-
lowing list of architectures: EfficientNetV2 [58], ResNetv2
[57], RegNetY [52], FasterViT [24], EfficientViT [8], Con-
vNext [44], NFNet [7], SwinV2 [43], MaxViT [59], Pool-
formerV2 [70] and MViTV2 [38]. We train all the back-
bones via distillation on the ImageNet-21k dataset, using
OpenCLIP ViT-H/14 (laion2B-s32B-b79K) and DINOv2
g/14 as teachers. Results are compiled in Table 7.

We observe that many models lag behind teachers. Addi-
tionally, CNN-like models are significantly faster than ViTs,
while the latter are more accurate. The relatively low perfor-
mance of existing efficient backbones on the dense ADE20k
segmentation task is not unexpected since all of them apply
a spatial dimension reduction factor of 32 for final feature
maps of size 72 for input resolution of 2242px, thus hardly
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Figure 4. All models followed the same training protocol. The results from three benchmarks show that RADIO and E-RADIO models
outperform others in efficiency. This under-performance in other models might be due to overfitting architectures on supervised ImageNet-
1K training. E-RADIO notably delivers results 10 times faster and with a 20% improvement over teacher models. We study E-RADIO at
224px resolution, with a window size of 7.

Backbone Param. Through- Zero k-NN ADE20k FD loss
Count put Shot

Teachers

DINOv2 G/14 1.14B 313 N/A 83.41 47.53
OpenCLIP H/14 632M 556 77.19 81.10 40.04

Existing Efficient Models

EfficientNetV2-S 21M 9017 65.37 70.72 27.75 0.415
ResNetv2-101 44M 7283 69.58 75.32 29.61 0.405
RegNetY-064 30M 6573 69.84 74.59 28.9 0.394
EfficientViT-L1 38M 6048 71.73 79.90 33.12 0.376
ConvNext-B 88M 1805 75.43 81.73 38.95 0.358
NFNet-F3 254M 1777 76.93 80.50 38.31 0.340
SwinV2-S 49M 1497 74.70 81.12 35.57 0.364
MaxViT-B 119M 1486 77.49 79.34 38.46 0.340
PoolformerV2-M36 56M 1194 74.46 80.49 35.05 0.377
MViTV2-B 51M 975 75.92 81.39 41.39 0.345

Proposed architecture

E-RADIO-B 118M 6422 75.19 82.21 44.03 0.319
ë w/o upsample 113M 7040 75.45 82.05 41.26 0.353

E-RADIO-L 265M 3472 77.87 83.73 45.5 0.265

Table 7. Comparison of backbones. Throughput is measured using
TensorRT 9.0.1 on A100 in mixed FP16/FP32 precision at batch
size 128 on 2242px resolution. Sorted by descending through-
put order. FD loss is the Feature Distillation training loss against
the DINOv2 teacher, it exhibits high correlation with the ADE20k
mIoU. Bolded models form the speed/quality Pareto front.

capable of capturing fine-grain spatial information.
E-RADIO: To overcome this issue, we propose a novel
hybrid architecture, named E-RADIO (Efficient RADIO).
This design borrows ideas from existing literature and in-
cludes an input stem with strided convolutions to downsam-
ple the input image by 4x. It then proceeds with 2 stages
of YOLOv8 C2f convolution blocks and 2 stages of trans-
former. For the transformer variant we pick windowed at-
tention (like in SWIN [43]), and interleave local windowed

attention with “global” windowed attention as done in [24]
and ViTDet [37]. To perform “global” attention we first
downsample the feature map by 2x, apply windowed atten-
tion, and then upsample the feature maps back to the origi-
nal resolution. Up-/down-sampling is performed by strided
convolution with a kernel size 3x3 and a stride of 2. The
last idea is borrowed from EdgeViT [49], which uses local-
global-local attention. See Appendix for details. Finally,
E-RADIO upsamples final feature maps by 2x via a decon-
volutional layer and adds them to feature maps from the
third stage, resulting in only a 16x spatial resolution re-
duction. Such upsampling gives an improvement in dense
task while being only 10% slower. Results of E-RADIO in
Table 7 demonstrate that the proposed architecture signifi-
cantly outperforms the competition, and can be seen as an
efficient replacement for the much slower full ViT.

5.2. Comparison with teachers

A comprehensive set of results is presented in Table 1. We
notice that MetaCLIP is better than OpenCLIP, and DFN
CLIP better than MetaCLIP. DINOv2 provides important
properties for dense tasks: ADE20k and VOC. Our E-
RADIO-L model is significantly faster than all ViT mod-
els. At the same time, it strongly outperforms MetaCLIP
on most metrics at matched throughput, while also enabling
Zero-shot capability that is absent in DINOv2 and SAM.
Our full model, ViT-H/16, is as fast as the teachers but out-
performs them on 6 out of 9 tasks, demonstrating the effi-
ciency of the proposed distillation framework.
Drop-In SAM Replacement. Following [8], we use their
evaluation harness to compute the mIOU for instance seg-
mentation using pretrained SAM with vision encoder re-
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COCO 2017 drop-in SAM replacement at 1024x1024

Family Arch mIOU Throughput

SAM
Base 75.78 50.94
Large 77.02 20.62
Huge 77.18 11.83

E-RADIO (ours) Large 76.31 121.74

RADIO (ours) ViTDet-H/16-W8: 76.09 29.09
ViTDet-H/16-W16: 76.23 27.91

Table 8. We substitute SAM’s vision encoder with our RADIO
model. RADIO aligns with SAM’s features just before the en-
coder’s neck layer. We also examine the impact of varying ViT-
Det window sizes. Differences in throughput owe to the fact that
RADIO doesn’t use relative positional embeddings and we re-
duced shuffling with our patch reordering algorithm (in appendix).
Throughput is computed on an NVIDIA A100 GPU using Ten-
sorRT and batch size 16. :This is the same model, just with a
different window size setting.

placed by our model. Table 8 shows the results of the
COCO Instance Segmentation task using the baseline SAM
models and RADIO.

5.3. Semantic Segmentation Linear Probing

We train a linear head on top of the frozen features of the
teachers and students alike and evaluate performance in the
MMSeg [13] framework using the mIoU metric on ADE20k
and PascalVOC2012 datasets. We use a training and eval-
uation crop size of 512 for RADIO, 518 for DINOv2, and
the native resolution for the others. We use the “slide” eval-
uation mode with a stride of 2

3 the crop size. We train the
linear head for 160k steps using a total batch size of 16, a
base learning rate of 10´3 and the AdamW optimizer.

5.4. Visual Question Answering

We replace the vision encoder in a LLaVA 1.5[40] setup
with our own encoder. A 2-layer MLP is used to project
frozen visual features into the language token space. Under
the default LLaVA 1.5 settings, we pretrain a multimodal
projection MLP and then run instruction tuning to finetune
a Vicuna 7B-1.5 model[76]. We evaluate models using the
validation sets of GQA [29], TextVQA [55], POPE [39]
(popular), and we score the model on the Test-Dev set of
VQAv2 [23] using EvalAI[65]. We use the vision encoder’s
native input resolution, resizing the long edge and padding
the short edge. Experimental results are compiled in Ta-
ble 1. Owing to the increased input resolution flexibility of
RADIO, we resize the long edge of the image to 432px as-
pect preserving, only padding to the nearest multiple of the
patch size. This results in 462 tokens on average, versus
the 576 tokens required by the 336px patch-14 encoders, a
20% reduction.

Backbone Depth Surface Multi-view
Normals corr.

DFN CLIP-H/14 52.5 23.0 20.3
OpenAI CLIP-L/14 53.7 25.3 20.7
DINOv2-g/14-reg 83.2 59.6 59.9
SAM-H/16 68.2 50.3 45.3
RADIO-ViT-H/16 (ours) 81.0 58.5 62.1

Table 9. Probing 3D Awareness: we use the code from [17] and
evaluate our RADIO model and its teachers on monocular depth,
surface normals and multi-view correspondance tasks, using the
NAVI[31] dataset. For each task we report the accuracy, averaged
over all thresholds.

5.5. 3D Awareness Probing

Following the work from [17], we probe our model’s ability
to extract 3D features such as depth, surface normals and
multi-view keypoint correspondance. Our results are sum-
marized in Table 9 and show that our model’s performance
is on par with the bigger DINOv2-g-14-reg[14] and signifi-
cantly better than other comparably-sized teachers.

6. Conclusion and Key Insights
Most VFMs have unique properties such as language
grounding (CLIP), dense correspondences (DINOv2), and
detailed segmentation (SAM), but also large holes in capa-
bility. Distillation allows uniting all these properties in a
single model that often outperforms any of the teachers. We
have also observed that better teachers yield better students,
which allows RADIO to absorb and challenge the current
SOTA foundation models at a given point in time.
Feature distillation loss. We observe the crucial impor-
tance of full feature distillation to boost the performance of
the teacher in dense image understanding tasks, such as an
18% relative improvement on ADE20K.
SAM vs DINOv2. We find that, out of the box, SAM is not
well-suited for downstream tasks, whereas DINOv2 signif-
icantly outperforms in zero- and few-shot tasks. For exam-
ple, ADE20K segmentation via linear probing is 1.7x bet-
ter with the latter, and the ImageNet1k k-NN metric is 4x
better. SAM excels in detecting edges and segmenting ob-
jects but performs poorly in high-level object description
and combining the semantics of multiple objects (Figure 4).
Dense features. As seen in figure 1, RADIO is capable of
producing high resolution and low-noise features. An issue
we identified, however, shown in figure 5 is that RADIO
appears to have a latent ‘low resolution’ and ‘high resolu-
tion’ mode, likely due to the partitioned training between
CLIP+DINO and SAM objectives, which we intend to fix
in future work.
Efficient backbone. Based on our analysis of distilling ef-
ficient backbones, we conclude that most model designs are
overly tailored towards supervised training on ImageNet1K,
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Figure 5. RADIO “mode switches” when resolution is increased.
In the plot, we show the MSE error between the RADIO features
coming from its DINOv2 head at different resolutions, versus the
features actually produced by DINOv2 at 518px. We bilinearly
interpolate the RADIO features to match the DINOv2 feature res-
olution. At 720px, there is a sudden jump in the error, which cor-
responds with a complete change in color space in the image.

and as a result, do not scale well to VFM settings. We
designed a new vision backbone, E-RADIO, with a hy-
brid CNN-Transformer architecture that improves upon the
Pareto frontier.
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AM-RADIO: Agglomerative Vision Foundation Model
Reduce All Domains Into One

Supplementary Material
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Figure 6. High level architecture of the ERADIO network architecture. Overall architecture is composed of multiple stages: 1) the stem,
2) 2 convolutional blocks from YOLOv8, 3) 2 transformer blocks with multi-resolution windowed self attention.

Figure 7. Multi-resolution attention for E-RADIO

A. E-RADIO architecture details
The architecture of E-RADIO is illustrated in Figure 6. It is a hybrid CNN-Transformer architecture. First 2 stages follow
convolution paradigm and have the C2f architecture from YOLOv8 model [32]. The last 2 stages have the Transformer
architecture with windowed attention and multi-resolution attention (MRA) structure. Every stage, except the last one, are
followed by downsample block. We implement it as a strided convolution with 3x3 kernel and stride 2, followed by batch
normalization layer.

A.1. Multi-Resolution Attention

Standard transformers struggle to scale with high input image resolution because of quadratic complexity of the attention.
SWIN [43] proposed to use windowed attention to reduce the complexity of attention. We reuse windowed attention in the
E-RADIO. To address for missing communication between windows, SWIN introduced window shifting, unfortunately, it
has non-negligible compute cost. Instead, we propose multi-resolution attention inspired by EdgeViT’s Local-Global-Local
attention [49]. The idea is illustrated in Figure 7. Every layer in the transformer will have a local windowed attention
with optional subsampling via convolutional operator. For example, if susbampling is dissabled, then it is just a standard
windowed attention. If the subsampling ratio is 2, then the feature map is downsampled by a factor of 2, windowed attention
is performed, and then the feature map is upsampled to the original resolution with deconvolution. For FasterVIT2 models,
we interleave subsampled attention with ratio 2 and the normal attention with no subsampling.

A.2. Configurations

All models in the family follow the same configuration except the embedding dimension (hide dimension). We simply scale
it up with bigger models. Other parameters:
• Input resolution is 224
• In-stem contains 2 3x3 convolutions with stride 2
• Total stages: 2 convolutional and 2 transformer
• First stage takes input feature size of 56x56, has 3 layers with C2f structure from YOLO8 [32].
• Second stage takes input feature size of 28x28, has 3 layers of C2f.
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• Third stage takes features of size 14x14, has 5x multi-resolution attention, window size 7.
• Forth stage takes features of size 7x7, has 5x windowed attention of window size 7.
• Embedding dimension for different model variants: XT - 64, T - 80, S - 96, B - 128, L - 192. The smallest XT and T

models have [1, 3, 4, 5] layers for each of 4 stages.
• Output features have resolution of 14x14 and are obtained by upsampling the features of stage 4 by 2x with deconvolution

and adding to stage 3 features of size 14x14.

B. PCA Visualizations

We visualize various models using PCA to reduce the model’s spatial feature dimensionality down to 3 dimensions, and
directly map those to RGB. Most models are only able to handle square inputs at fixed resolutions, however DINOv2 and
RADIO can handle arbitrary resolutions and aspect ratios, so we visualize them in both settings.
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B.1. Square Models
Model Resolution Images

OpenCLIP-H/14 224

MetaCLIP-H/14 224

SigLIP-M/14 384

InternViT-6B 224

448

DFN CLIP 378

OpenAI CLIP 336

DINOv2-g 518

SAM-H 1024

RADIO 512

1024
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B.2. Flexible Models
Model Resolution Images

DINOv2-g 518

1022

2044

RADIO 512

1024

2048

C. ViTDet Augmentation

The following python code shows how the alternating window/global architecture of ViTDet [37] can be applied to a trans-
former. We take advantage of the fact that transformers are permutation invariant after position encodings have been applied,
and thus it’s easy to organize the patch order such that contiguous chunks of patches belong to the same window. Once
reordered in this way, alternating between windowed and global attention is achieved simply by absorbing the windows into
the batch dimension or returning to the original shape respectively. We also enforce that the final transformer layer always
applies global attention.

from e i n o p s import r e a r r a n g e
def r e o r d e r p a t c h e s ( p a t c h e s : t o r c h . Tensor ,
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p a t c h e d s i z e : Tuple [ i n t , i n t ] ,
w indow s ize : i n t ) :

p i d x s = t o r c h . a r a n g e ( p a t c h e s . shape [ 1 ] )
p i d x s = r e a r r a n g e ( p i d x s , ’ ( wy y wx x ) −> ( wy wx y x ) ’ ,

wy= p a t c h e d s i z e [ 0 ] / / window size , y= window size ,
wx= p a t c h e d s i z e [ 1 ] / / window size , x= window s ize )

p i d x s = p i d x s . r e s h a p e ( 1 , −1 , 1 ) . e x p a n d a s ( p a t c h e s )

re turn t o r c h . g a t h e r ( p a t c h e s , p i d x s ) , p i d x s

def v i t d e t a u g ( b l o c k s : nn . S e q u e n t i a l ,
p a t c h e s : t o r c h . Tensor ,
p a t c h e d s i z e : Tuple [ i n t , i n t ] ,
w i n d o w s i z e s : L i s t [ i n t ] ,
num windowed : i n t ) :

B , T , C = p a t c h e s . shape
window s ize = sample ( w i n d o w s i z e s )
s q w i n d o w s i z e = window s ize ** 2
p a t c h e s , p i d x s = r e o r d e r p a t c h e s ( p a t c h e s , p a t c h e d s i z e , w indow s ize )
p e r i o d = num windowed + 1
f o r i , b l o c k in enumerate ( b l o c k s [ : − 1 ] ) :

i f i % p e r i o d == 0 :
p a t c h e s = p a t c h e s . r e s h a p e (B * s q w i n d ow s i z e , −1 , C)

e l i f i % p e r i o d == num windowed :
p a t c h e s = p a t c h e s . r e s h a p e (B , T , C)

p a t c h e s = b l o c k ( p a t c h e s )

# Always use g l o b a l a t t e n t i o n w i t h t h e l a s t b l o c k
p a t c h e s = p a t c h e s . r e s h a p e (B , T , C)
p a t c h e s = b l o c k s [ − 1 ] ( p a t c h e s )

# F i n a l l y , p u t t h e p a t c h e s back i n i n p u t o r d e r
r e t = t o r c h . e m p t y l i k e ( p a t c h e s )
r e t = r e t . s c a t t e r ( dim =1 , i n d e x = p i d x s , s r c = p a t c h e s )
re turn r e t

D. Comparison with SAM-CLIP [60]
Concurrently with our work, SAM-CLIP was introduced as a method of fusing SAM and CLIP into a single model. Due to
the concurrency of effort, we don’t compare our model with the full suite of metrics demonstrated in their method, however,
we do have some overlap in key metrics such as Zero-Shot ImageNet-1k, and ADE20k semantic segmentation via linear
probing. We present the comparison in table 10, however we note that there are enough differences between these two
models that we can’t conclude one way or another what is the superior approach. Instead we’ll argue that DINOv2 does a
better job of ADE20k linear probing than SAM, and thus our significantly higher quality on this metric is likely due to the
inclusion of DINOv2, which is a key introduction with our approach.

E. Automatic Loss Balancing
E.1. Uncertainty

Following [12], we have:

Lpxq “
ÿ

k

1

2σ2
k

Lkpxq ` log σk (4)
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Family Model Zero-Shot ADE20k
SAM ViTDet-H/16 28.2

DFN CLIP ViT-H/14 83.9 31.7
SAM-CLIP ViTDet-B/16 71.7 38.4

RADIO ViT-H/14 82.7 51.3

Table 10. We compare our common key metrics with those demonstrated in SAM-CLIP [60]. We note that there are numerous differences
between the two approaches, including model capacity and architecture. SAM-CLIP uses the ViT-B variant of SAM as a starting point,
which implies it’s a ViTDet-B/16 architecture. As a result of this choice, their metrics are computed at a resolution of 1024. RADIO
trains a vanilla ViT-H/14 from scratch, and as a result of the flexibility gained via the CPE method, we evaluate Zero-Shot ImageNet1k at a
resolution of 432, and we run ADE20k linear probing at a resolution of 512 using the exact same weights. We note that Zero-Shot quality
is largely determined by the quality of the CLIP teacher and the capacity of the student. We attribute our superior quality on ADE20k
semantic segmentation largely to our inclusion of DINOv2 as a teacher.

where the σk values are predicted by the student. In practice, the student predicts b :“ log σ2
k for numerical stability, to

avoid division by zero, and to regress unconstrained scalar values.
We make some minor modifications to (4) to make training a bit more stable in our setting. We replace the manual λ

scalars with the learned uncertainty weights, and add the loss term for large uncertainties. Altogether, this yields:

λk “
e´bk

2

Lpxq “
ÿ

k

λkLkpxq `
bk
2

(5)

Let bps|vq

i px1|Θ
psq

i q be a learned function predicting balance parameters for teacher i and summary weight psq or feature
vector weight pvq, we transform equation (5) slighty to:

ψpxq “ logp1 ` exq

λ
pmq

i “ e´b
pmq

i px1
q

Lpxq “
ÿ

i

ÿ

mPts,vu

λ
pmq

i L
pmq

i pxq ` ψ
´

b
pmq

i px1q

¯

(6)

The function ψpxq is the familiar “softplus” nonlinear activation function. We drop the division by 2 on the left because,
assuming outputs are initially b „ N p0, σ2q, then the loss weights will initially have an expected value of 1, matching the
naive weighting. On the right, we replace bk

2 with ψpxq for a few reasons:
• When x Ç 4, then ψpxq « x, yielding the same expression as before.
• When x « 0, then ψ1pxq « 1

2 , yielding the same expression as before.
• When x ă 0, which translates to a loss weight ą 1, ψ1pxq Ñ 0, improving stability as the weight gets larger.
• It has range p0,8q which aesthetically enforces the loss to be greater than zero.

E.2. AdaLoss

In addition to uncertainty auto-balancing, we also explored AdaLoss [27]. In this formulation, we have:

λ
pmq

i “
1

EpL
pmq

i q

Lpxq “
ÿ

i

ÿ

mPts,vu

λ
pmq

i L
pmq

i pxq
(7)

F. Visual Question Answering Samples
Figures 9 to 13 show sample questions from our Visual Question Answering datasets, together with sample answers when
using our vision encoders in a LLaVA setup.
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Figure 8. Visualization of the LLaVA attention maps over the visual features produced by a RADIO encoder. We use one sample image
from the GQA[29] validation set and one associated question: ”What color is the helmet in the middle of the image?”. For each layer in
the language model, we retrieve attention scores for all positions of the visual tokens, average them over all attention heads, and overlay
corresponding heat maps with the input image. We can see that as we progress through the layers, the model’s attention focuses on the
relevant part of the image. The model’s answer is ”Blue”.
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MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Does the boat to the left of the flag look small or large? A: small

Small Small Small Small

Q:Is the boat to the left of the other boat small and white? A: yes

No Yes Yes Yes

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Which kind of furniture is right of the drawers? A: shelves

Shelves Shelf Table Shelf

Q:Is the lamp to the right or to the left of the pot? A: right

Right Right Right Right

Q:Is the pan to the right of a bowl? A: no

No No No No

Q:How are the items of furniture to the right of the vegetables that are not rotten called? A: shelves

Shelves Shelves Shelves Shelves

Q:Which kind of appliance is to the right of the shelf? A: stove

Oven Blender Oven Oven

Q:Are there stoves to the left of the shelf? A: no

No No No No

Q:Which kind of furniture is to the left of the pot? A: shelf

Shelf Shelf Shelf Shelf

Q:Which kind of material makes up the stove? A: wood

Wood Wood Wood Brick

Q:Is the floor gray or red? A: gray

Gray Gray Gray Gray

Q:Is the wood stove to the right or to the left of the shelf? A: right

Right Right Right Right

Q:Which kind of furniture is to the left of the shelves? A: drawers

Shelf Shelf Shelf Shelf

Q:What is the color of the container that is filled with water? A: brown

Brown Brown Black Blue

Q:Are the shelves and the drawers made of the same material? A: yes

No Yes Yes No

Q:Is the wood table to the left of the appliance the pot is on? A: no

No No No No

Q:Is there any kettle on the appliance that the vegetable is to the left of? A: no

Yes No Yes No

Q:Is the container that looks brown filled with water? A: yes

Yes Yes Yes No

Q:What are the shelves made of? A: wood

Wood Wood Wood Wood

Q:On which side of the image is the pot? A: right

Left Right Right Right

Q:In which part of the picture is the container, the top or the bottom? A: bottom

Top Top Top Top

Q:Are there any lamps or beds in the photograph? A: yes

No No No No

Q:What is on the stove? A: pot

Pot Pot Pot Pot

Q:Are the drawers in the bottom part or in the top of the picture? A: top

Bottom Top Top Bottom

Q:What is the floor made of? A: brick

Brick Stone Stone Stone

Q:Is the floor made of hardwood? A: no

No No No No

Q:Is the wood stove to the right of the wood table? A: no

Yes No No Yes

Q:What is the item of furniture to the left of the shelves made of wood? A: shelf

Chair Shelf Shelf Shelf

Q:What is the stove made of? A: wood

Wood Wood Wood Wood

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Who is in front of the gray building? A: passengers

People People People People

Q:What are the passengers in front of? A: building

Building Building Building Airport

Q:Is there a window that is not large? A: yes

No No No No

Q:Are there any doors or cars in the picture? A: no

No Yes No Yes

Q:Who is before the building? A: passengers

People People People People

Q:Who is boarding the airplane? A: passengers

People People People People

Q:Who is boarding the plane? A: passengers

People People People People

Q:Are there any trucks? A: no

No No No No

Q:Is the gray building behind the passengers that are boarding the airplane? A: yes

Yes Yes Yes Yes

Q:Does the logo look white and large? A: no

Yes Yes Yes Yes

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the color of the fence made of metal? A: green

Brown Green Green Green

Q:Which kind of animal is to the right of the sheep? A: cow

Goat Goat Goat Goat

Q:What is the small animal? A: cow

Goat Sheep Sheep Goat

Q:Is the sheep white or black? A: black

Black Black White White

Q:Are there both fences and goats in this photograph? A: yes

No Yes Yes Yes

Q:Are there either fences or toilets? A: yes

No Yes Yes Yes

Q:What type of animal is to the right of the black animal? A: cow

Sheep Sheep Sheep Sheep

Q:Do the animals in this photo have different species? A: yes

Yes Yes No No

Q:What is the animal to the right of the goat on the left? A: cow

Sheep Sheep Sheep Sheep

Q:Are there either horses or sheep that are not black? A: no

No No No No

Q:Are there both a fence and a goat in this photo? A: yes

No No Yes Yes

Q:Does the goat's tail look small and gray? A: yes

Yes Yes Yes Yes

Q:Is the sheep to the right or to the left of the animal that is not big? A: left

Right Right Right Right

Q:What animal is to the left of the small animal? A: goat

Goat Sheep Sheep Goat

Q:Are there any horses or cows that are not small? A: no

No No No No

Figure 9. Sample questions from the GQA[29] and their answers from our LLaVA models, using various image encoders. Answers are
painted green when they match the ground truth, pink otherwise.
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MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Is the woman to the left or to the right of the man that is wearing trousers? A: right

Left Left Right Right

Q:Who is wearing a shirt? A: man

Man Man Man Woman

Q:Is the bag in the top part or in the bottom of the photo? A: bottom

Bottom Bottom Bottom Bottom

Q:Is the bag to the right of the other bag tan or black? A: black

Black Tan Tan Tan

Q:Who is wearing the glasses? A: man

Man Man Man Woman

Q:What is the color of the logo? A: black

White White White Red

Q:Do you see women to the left of the man that is wearing pants? A: no

No Yes No Yes

Q:What does the man to the left of the traffic light wear? A: suit

Jacket Jacket Jacket Jacket

Q:What vehicle is the black logo painted on? A: van

Van Van Van Sign

Q:What's painted on the door? A: logo

Nothing Nothing Nothing Logo

Q:What is the color of the car? A: yellow

White Yellow Yellow White

Q:Is the jacket different in color than the logo? A: no

Yes Yes No No

Q:Which color is the sweater the woman wears? A: white

Black Black Brown Black

Q:What does the woman wear? A: sweater

Jacket Jacket Skirt Jacket

Q:Is the blue bag in the bottom or in the top? A: bottom

Bottom Bottom Bottom Bottom

Q:What is the color of the jacket the man wears? A: black

Black Black Black Black

Q:What is painted on the van to the right of the man? A: logo

Logo Logo Logo Logo

Q:Is the car in the top part of the photo? A: no

No No No No

Q:Is the yellow vehicle to the right or to the left of the man that wears jeans? A: left

Left Left Left Left

Q:Who is wearing a jacket? A: man

People Man Man People

Q:Is the woman to the right of the man carrying a bag? A: yes

Yes Yes Yes No

Q:What is the woman that is to the right of the man carrying? A: bag

Bag Bag Bag Bag

Q:Does the door look white? A: yes

Yes No No Yes

Q:Who is wearing jeans? A: man

People Man People People

Q:Are there either chairs or bags? A: yes

Yes Yes Yes No

Q:Are there blue bags or cars? A: yes

Yes Yes Yes Yes

Q:Which side of the picture is the van on? A: right

Right Right Right Right

Q:On which side of the picture is the woman? A: left

Left Left Right Left

Q:Is the blue bag to the right or to the left of the woman that wears a sweater? A: left

Left Left Left Left

Q:Is the man to the left of the bun wearing shorts? A: no

No No No No

Q:Who is wearing the pants? A: man

Man Man Man Woman

Q:Is the car different in color than the jacket? A: yes

Yes Yes Yes Yes

Q:Is the color of the door different than the van? A: no

No No No No

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Does the remote control to the left of the other remote control look black? A: yes

Yes Yes Yes Yes

Q:What is the device above the box? A: controller

Television Television Television Television

Q:Which kind of device is above the box? A: controller

Television Television Television Television

Q:Is the controller above the container to the left of the speaker? A: yes

Yes Yes Yes Yes

Q:Are there any tables or couches that are not tan? A: no

No No No No

Q:What is the color of the table? A: tan

Brown Brown Brown Brown

Q:What is the device on the carpet? A: speaker

Remote control Remote control Speaker Television

Q:Is there any speaker on the carpet? A: yes

Yes Yes Yes No

Q:What device is on the carpet? A: speaker

Remote control Remote control Speaker Television

Q:Which color is the speaker that is to the right of the remote? A: black

Black Black Black Black

Q:Is the remote in the top part or in the bottom of the photo? A: bottom

Bottom Bottom Bottom Bottom

Q:What size is the device that is in the top of the image? A: small

Large Large Large Large

Q:Is it outdoors? A: no

No No No No

Q:In which part of the photo is the box, the bottom or the top? A: bottom

Bottom Bottom Bottom Bottom

Q:In which part is the small device, the bottom or the top? A: top

Bottom Bottom Bottom Bottom

Q:What is on the tan table? A: remote control

Remote control Remote Remote Television

Q:Which kind of device is on the table? A: remote control

Remote control Remote control Remote control Television

Q:What type of device is on the table? A: remote control

Remote control Remote control Remote Television

Q:What color is the carpet? A: gray

Gray Brown Gray White

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Is it indoors or outdoors? A: outdoors

Outdoors Outdoors Outdoors Outdoors

Q:Which side of the photo is the orange vegetable on? A: right

Right Right Right Right

Q:Does the shirt look green? A: no

No No No No

Q:On which side of the picture is the person? A: right

Right Right Right Right

Q:Does the bracelet look blue? A: yes

Yes Yes Yes Yes

Q:What animal is to the left of the house? A: giraffe

Giraffe Giraffe Giraffe Giraffe

Q:Is the giraffe to the left or to the right of the person that is on the right? A: left

Left Left Left Left

Q:Which place is it? A: field

Field Zoo Field Field

Q:Are there both fences and giraffes in the image? A: yes

Yes Yes Yes Yes

Q:Which kind of animal is this, a giraffe or a bear? A: giraffe

Giraffe Giraffe Giraffe Giraffe

Q:Is the person to the right or to the left of the animal near the fence? A: right

Right Right Right Right

Q:Is the person to the right of the animal near the fence? A: yes

Yes Yes Yes Yes

Q:Is the house on the right side? A: yes

Yes Yes Yes Yes

Q:What kind of vegetable is to the right of the giraffe? A: carrot

Carrot Carrot Carrot Carrot

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Does the belt look tan? A: no

No No No No

Q:Is the baseball the same color as the field? A: no

Yes Yes Yes Yes

Q:Which kind of clothing is gray? A: trunks

Pants Pants Pants Pants

Q:Which place is it? A: field

Field Field Field Field

Q:Is the shirt the same color as the belt? A: yes

Yes Yes Yes Yes

Q:Is the cap black? A: yes

Yes No Yes Yes

Q:What color are the trunks, gray or yellow? A: gray

Gray Gray Gray Gray

Q:What are the gray clothing items called? A: trunks

Pants Pants Pants Pants

Q:What color does the shirt have? A: black

Black Blue Black Black

Q:Do the baseball and the number have a different colors? A: yes

No No Yes No

Figure 10. Sample questions from the GQA[29] and their answers from our LLaVA models, using various image encoders. Answers are
painted green when they match the ground truth, pink otherwise.
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MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the brand of this camera? A: dakota, clos culombu,

nous les gosses, dakota digital

Dakota Dakota digital Dakota Dakota

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What does the small white text spell? A: copenhagen,

thursday

Drupalcon copenhagenRupertcon Drupalcon copenhagenPalcon copenhagen

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What kind of beer is this? A: self righteous, sublimely

self-righteous ale, ale, stone

Self-righteous Stone self-rich Ale Stone self-rich

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What brand liquor is on the right? A: bowmore , bowmore,

bowmore islay, dowmore islay

Ownmor Morangie Bowmore Morangie

Q:How long has the drink on the right been aged? A: 10 year,

10 years , 10, 10 years, martial arts

10 years 10 years 10 years 10 years

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What number is on the player's jersey? A: 22

22 22 22 22

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the time? A: 5:42, 5:41, 8:00, 5:40

11:00 11:00 11:55 11:00

Q:What brand of watch is that? A: unanswerable, audemars,

ap, af

Tissot Tissot Tudor Rolex

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Who is at the center of all of this? A: agile experience

design makeup, bryan owens, alexa curtis, mahou

Aithell Man Chris O'Leary Owens

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Who was the photographer? A: philippe molitor, philippe

molitar, no, phillipe meltow, l, clardajne, phillipe molida

Philippe molitor Philippe molitor Philippe molitor Philippe molitor

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Are these switches on or off? A: off

Off Off Off Off

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What candy bar is down there on the bottom? A: hershey's,

hersheys

Honey maid Honey maid Honey maid Honey maid

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What does the light sign read on the farthest right window?

A: all 2 liters, bud light

Bud light Light Light 452

Q:How much for a can of skoal? A: $3.32, $3.82, 3.82

4.52 1.99 1.99 1.99

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Is this denny's? A: pet center, yes, one man show

Yes Yes Yes No

Q:What color are the letters on this sign? A: red, answering

does not require reading text in the image, first, reds

Red Red Red Yellow

Figure 11. Sample questions from the TextVQA [55] dataset and their answers from our LLaVA models, using various image encoders.
Answers are painted green when they match the ground truth, pink otherwise.
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MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the 3 letter word to the left of casa in the text? A:

fica, tua

Libano Casa Jes Dos

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What year was this made? A: 2012

2012 2012 2012 2012

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Is this a reference book? A: foreign words, yes

Yes Yes Yes No

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the license plate number? A: jiba, no numbers but

the letters jiba, items handes into london undergrounf lost

property

JIBA BURLINGAME Jiba Burl

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the alcohol content? A: 9%, 2009, 9.0, 9.0% alc/vol.,

9, smashed pumpkin, 9.0%, lego

9.0% 9.0% 9.0% 9.0%

Q:What is the name of this ale? A: smashed pumpkin,

shipyard, shipyard smashed pumpkin

Smashed pumpkin aleShipyard smashed pumpkin aleShipyard Shipyard smashed pumpkin ale

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the beer brand front center? A: coors light, coors,

coors light , secret

Coors light Coors light Coors light Coors light

Q:What is the company name to the left of the coors logo? A:

safeway, calculator, safeway 

Coors Coors Safeway Pg&e

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Who is usa today's bestselling author? A: cathy williams

Cathy williams Cathy williams Cathy williams Cathy williams

Q:What is the name of this bestselling books? A: secrets of a

ruthless tycoon, cathy williams, secret of ruthless tycoon

Cathy williams Harlequin PresentsCathy williams Harlequin presents

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is this food place selling? A: bratwurst, wurst,

krainerwurst, burenwurst, hotdogs, krainerwurst and

burenwurst, krainerwurst burenwurst, krainerwurst,

burenwurst

Hot dog Hot dog Fran Debreziner Hot dog

Q:What is the top word on the sign on the left? A: krainerwurst

Krainerwurst Hot dog Krainerwurst Hot dog

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What does his jacket say? A: fox

Fox Coca cola Fox Coca cola

Q:What brand is in white letters with a red background? A:

cocacola, fox, coca-cola, coca cola

Coca cola Coca cola Coca cola Coca cola

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What brand of diaper area is this? A: koala bear, koala kare

Koala kare Koala kare Koala kare Koala kare

Q:What animal is shown on the changing table? A: koala bear,

bear, koala

Koala Koala Koala Koala

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What time is it? A: 7:28

7:28 7:28 7:28 7:28

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What's the name of the book on the top of the pile? A: ariel

Saint joan The painted veil The painted veil The painted veil

Q:What is the title of the green book that is second from the

bottom? A: the speaking eye

Saint joan The painted veil The painted veil The painted veil

Figure 12. Sample questions from the TextVQA [55] dataset and their answers from our LLaVA models, using various image encoders.
Answers are painted green when they match the ground truth, pink otherwise.
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MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What brand of cellphone is this? A: like you, verizon,

verizon nokia

Verizon Verizon Verizon Verizon

Q:Was this picture sent? A: le web, yes

Yes Yes Yes Yes

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What brand is the remote control? A: kicker

Kicker Kickstick Kicker Kick

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What channel is this helicopter from? A: joma, fox hd, fox

Fox Fux nit Fux Fux

Q:What is the text to the right of fox? A: hd

Fox NIT Fox 1 Nitro

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What's the name of the store? A: tanamira, tanamera,

tanamela

Ana Ana mer Anamelia Ana mer

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Who is the author of this book? A: kimberly kay hoant,

kimberely kay hoang, kimberly kay hoang

Kimberly Kay HoangKimberly Kay HoangKimberly Kay HoangKimberly Kay Hoang

Q:What is the book title? A: dealing in desire

Dealing in Desire: Asian Ascendancy, Western Decline, and the Hidden Currencies of Global Sex WorkDealing in Desire: Asian Ascendancy, Western Decline, and the Hidden Currencies of Global Sex WorkDealing in Desire: Asian Ascendancy, Western Decline, and the Hidden Currencies of Global Sex WorkDealing in desire: Asian ascendancy, Western decline, and the hidden currencies of global sex work

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the company on the box? A: silicongraphics, silicon

graphics, silicon graphics , silicon grphics

Silicon graphics Silicon graphics Silicon graphics Silicon graphics

Q:How wide is the diagonal screen? A: 17.3, 17.3 inch, 17.3

inches

1600 1600 1600 1600

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:How much does the coin weight? A: 1oz, 1 oz., 1 ounce, 1 oz

104 104 1 oz 104

Q:Now coin using or not? A: unanswerable, no, answering

does not require reading text in the image

Not Not Not Not

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What is the flavor of the beer on the left? A: amber, ambree

Tourmente Blonde Blonde Blanche

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What word is on the box? A: reynolds, frict, reynolds 

Reynolds Reynolds Reynolds Reynolds

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What does the sign at the top right say is not allowed? A:

minors, no minors, smoking, minor

Smoking Smoking Smoking Smoking

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:Which program is seen on the screen? A: office, microsoft

office

Office Office Office Office

Q:What program is being opened on the computer? A: office

Office Office Microsoft office Office

MetaCLIP DINO-g14 RADIO-H14 E-RADIO

Q:What brand is this laptop? A: motorola

Motorola Motorola Motorola Motorola

Q:What kind of coins are printed in gray area of the screen? A:

unanswerable, bitcoin

Motorola Bitcoin None Dollars

Figure 13. Sample questions from the TextVQA [55] dataset and their answers from our LLaVA models, using various image encoders.
Answers are painted green when they match the ground truth, pink otherwise.
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