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Abstract

This paper shows the universal representations of symmetric functions with multidimensional variable-size
variables, which help assessing the justification of approximation methods aggregating the information of each
variable by moments. It then discusses how the results give insights into economic applications, including
two-step policy function estimation, moment-based Markov equilibrium, and aggregative games.
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1 Introduction

Many economic problems require approximation methods, because of their complexity and computational
burden. Examples include two-step policy function estimation methods for dynamic models (Hotz and Miller,
1993, Bajari et al., 2007),1 and Moment-based Markov Equilibrium (MME; Ifrach and Weintraub, 2017) as an
approximation of Markov perfect Equilibrium (MPE). In these methods, precise approximations of functions
(e.g., value functions, policy functions) are essential for deriving correct implications.

One obstacle to the approximation of functions is the existence of variable-size variables. Consider a dynamic
investment competition model as in Ericson and Pakes (1995), where all the firms’ capital stocks at the beginning
of each period are the state variables. Policy function corresponds to the density of the value of each firm’s
investment as a function of states. Then, how should we estimate the policy function using data in multiple
markets in reduced form, if there are three firms in some markets, but two in other markets? Here, the states
are variable-size, because the size of states is heterogeneous across markets.

This study shows the universal representations of multidimensional symmetric functions with variable-size
variables using polynomial functions (Section 3), building on the machine learning and mathematics literature
since Zaheer et al. (2017). The results help assessing the justifications of approximation methods aggregating
the information of each variable by moments. It then discusses how the results give insights into economic
applications, including two-step policy function estimation, MME, and aggregative games2 (Section 4).
Regarding the example of the policy function estimation discussed above, it is justifiable to estimate a common
policy function as a function of own firm’s states and the sums of polynomial terms (moments) of competitors’
states under some conditions, regardless of the number of firms in each market, as long as the number of
moments is sufficiently large. Concerning the MME, this study shows that MME is equivalent to the MPE if
the number of moments reaches a certain level. Regarding aggregative games, we can easily show that any games
can be represented as multidimensional generalized aggregative, which introduces multidimensional aggregates
in the generalized (fully) aggregative games (Cornes and Hartley, 2012).

The rest of this paper is organized as follows. Section 2 describes the relations to the previous studies. Section
3 shows the mathematical results, and Section 4 discusses the economic application. Section 5 concludes.

Appendix A shows all the proofs of the main propositions. In Appendix B, we further discuss the implications
for models with dynamic demand and multi-product firms.

2 Literature

First, this study relates to and contributes to economic studies based on game theoretic models. It is sometimes
not easy to directly estimate or solve the models, and some approximation techniques in a broad sense are
introduced (e.g., two-step policy function estimation method, MME). By showing general mathematical results
based on the notion of symmetry, the current study evaluates the justification of these methods from a different
point of view. The mathematical results are very general and simple, and they would be useful for further
economic research.

Note that the idea of using symmetry is not new in the literature. For instance, Pakes and McGuire
(1994) discussed using symmetry to reduce the dimension of state variables in a dynamic game with finite
state space. Nevertheless, the strategy is applicable only to the model with fixed-size finite state space. In
contrast, the mathematical results in the current paper can be also applied to dynamic models with both
fixed-size/variable-size and discrete/continuous state space, and they are more general.

Kahou et al. (2021) also discussed using symmetric structures with fixed-size variables, mainly for
quantitatively solving heterogeneous agent macroeconomic models using deep learning techniques. The current
study complements their analysis by formally showing the representations allowing for the case of variable-size
variables. Note that they speculated in Section 6.3 that exploiting the symmetric structure enables researchers
to solve dynamic models with networks. Typically, network structure is characterized by variable-size variables,
because the number of each agent’s neighbors is heterogeneous.

1In two-step estimation methods, policy functions used in the second step are “approximated” by the ones consistently estimated
in reduced-form in the first step.

2The latter two consider the settings with fixed-size variables.
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Finally, this study builds on the machine learning and mathematics literature on symmetric functions (e.g.,
Zaheer et al., 2017). As discussed in Section 3, Wagstaff et al. (2022) also derived a representation of symmetric
functions with single-dimensional variable-size variables. Nevertheless, the construction is not intuitive, and not
easy to interpret in applications, especially economics. The current study shows a more intuitive representation
of symmetric functions with variable-size variables using moments.

3 Universal representation of symmetric functions with variable-size

variables

First, we define permutation invariance, which is one kind of symmetry.

Definition 1. A function V : ΩJ ′
⊂ R

I×J ′
→ R is permutation invariant,3 if, for all permutations π ∈ SJ ′ ,

V (π (x1, · · · , xJ ′)) = V (x1, · · · , xJ ′). A function V : ∪J ′≤JΩ
J ′

⊂ R
I×(≤J) → R is permutation invariant if

V |ΩJ′ is permutation invariant for every J ′ ≤ J .

For instance, a fixed-size function f : R3 → R such that f(x1, x2, x3) = x1x2+x1x3+x2x3 and a variable-size
function g :

(
R
2 ∪ R

3
)
→ R such that g(x1, x2) = x1x2, g(x1, x2, x3) = x1x2 + x1x3 + x2x3 are permutation

invariant. In the rest of this paper, let V
(
{xj}j∈J , y

)
be the permutation invariant function whose output is

invariant to the order of the elements xj(j ∈ J ) , but not necessarily on the order of {xj}j∈J and y. Besides,
let (x1, · · · , xJ) be a tuple with J elements. In the tuple, the order of elements matters.

The following definition is on the continuity of functions with variable-size variables:

Definition 2. A function V : ∪J ′≤JΩ
J ′

⊂ R
I×(≤J) → R is continuous if V |ΩJ′ is continuous for every J ′ ≤ J .

Next, we define the function called (multi)symmetric power sum:

Definition 3. ηI,J : [0,∞)I → R
κ(I,J)

(
κ(I, J) ≡

(
J + I
I

)
− 1

)
, defined by

η
(s)
I,J(x) = xs1i=1x

s2
i=2 · · · x

sI
i=I s ∈

{
(s1, s2, · · · , sI) ∈ Z

I
+|1 ≤ s1 + s2 + · · ·+ sI ≤ J

}

is called multisymmetric power sum4 of degree up to J in I variables.

In the special case I = 1, it is equivalent to polynomials up to J-th order: x, x2, · · · , xJ .
In the following, let minΩ ≡ {x ∈ Ω|x ≤ x′ ∀x′ ∈ Ω} and Ω≤J ≡ ∪J ′≤JΩ

J ′
. Then, we obtain the following

statement:5

Proposition 1. Let Ω be a compact subset of [0,∞)I . Suppose either of the following conditions holds for a
unique continuous permutation invariant function V : Ω≤J → R:

(a). minΩ > 0I

(b). V


x1, · · · , xJ ′ , 0, · · · , 0︸ ︷︷ ︸

J−J ′


 = V (x1, · · · , xJ ′)

Then, there exists a continuous function ψ : Rκ(I,J) → R such that:

V ({xj}j∈J ) = ψ

(
∑

k∈J

ηI,J(xk)

)
|J | ≤ J.

3In some literature in industrial organization (e.g., Doraszelski and Pakes, 2007), the property is called anonymity or
exchangeability. They discuss the use of symmetry in the dynamic model with discrete states. Our discussion is more general
in that we allow for the case with continuous states.

4In this definition, we exclude the term such that si = 0 ∀i.
5It is trivial that functions in the form of ψ

(∑
k∈J ηI,J (xk)

)
are permutation invariant. In contrast, whether permutation

invariant functions can be represented as ψ
(∑

k∈J ηI,J (xk)
)
is not necessarily trivial.
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Intuitively, condition (b) implies j-th (j = J ′ + 1, · · · , J) variables are negligible in the function V when
they take the values of zero, and they have no effect on the values of “aggregated variables”

∑
k∈J ηI,J(xk),

and consequently the values of V .
Besides, though the range of Ω ⊂ [0,∞)I might seem to be restrictive,6 we can transform the domain of

functions by applying the appropriate change of variables.7

Remark 1. Wagstaff et al. (2022) showed there exist continuous functions φ : [0, 1] → Im(φ) ⊂ R
J and

Ψ :
{∑

k∈J φ(xk);xk ∈ [0, 1], |J | ≤ J
}

→ R such that V ({xj}j∈J ) = Ψ
(∑

k∈J φ(xk)
)

|J | ≤ J for a
continuous permutation invariant function V : [0, 1]≤J → R. Though we can extend the proof to the case
with multidimensional variables, their construction of the function φ is not intuitive, unlike the case of η in
Proposition 1. Our result is easier to understand because we use polynomial functions. Also, by the construction
of Ψ and φ, the subset of the domain of Ψ,

{∑
k∈J φ(xk);xk ∈ [0, 1]

}
⊂ R

J , should be disjoint for different
values of |J |. It implies large domains of Ψ, which would be hard to approximate in practice.

The next result is more relevant to economic applications.

Proposition 2. Let Ω be a compact subset of [0,∞)I , and let Υ be a subset of R
C . Suppose either of the

following conditions holds for a unique continuous permutation invariant function V : Ω× Ω≤J−1 ×Υ → R:
(a). minΩ > 0I

(b). V
(
xj,
{
xj′
}
j′∈J−{j}

, y
)
= V

(
xj ,
{
xj′
}
j′∈J−{j} s.t. xj′ 6=0

, y
)
.

Then, there exists a continuous function ψ : Ω× R
κ(I,J−1) ×Υ→ R such that:

V
(
xj ,
{
xj′
}

j′∈J−{j}, y
)
= ψ


xj ,

∑

k∈J−{j}

ηI,J−1(xk), y


 |J | ≤ J.

4 Economic Applications

4.1 Two-step policy function estimation

It is known that consistent estimation of policy functions is essential for precise estimation and counterfactual
simulation of the empirical models of games, when applying two-step estimation methods (e.g., Bajari et al.
(2007)). The propositions give insights into the functional form of policy functions used in estimations.

Here, consider Ericson and Pakes (1995) type dynamic competition model, and suppose firms in all the
markets follow the same symmetric Markov perfect equilibrium (MPE), where all the firms in all the markets

share the same policy functions σ
(
sjm,

{
sj′m

}
j′ 6=j

, ym, νjm

)
, and invariant to permutations of competitors’

states
{
sj′m

}
j′ 6=j

. Here, sjm ∈ Ω ⊂ [0,∞)I denotes firm j’s states in market m, νjm denotes the firm’s private
shock, and ym denotes market m’s market-level states. Let Jm be the set of firms in market m. Let J be
the maximum number of firms in all the markets. Suppose the domain of sjm, Ω, and the policy function,
satisfy condition (a) or (b) in Proposition 2. If the firm with sjm = 0 has negligible impact on other firms’
policy function, condition (b) is satisfied. If not, we can apply change of variables so that condition (a) is

satisfied. Then, by the proposition, the policy function is in the following form: σ
(
sjm,

{
sj′m

}
j′ 6=j

, ym, νjm

)
=

∃σ̃
(
sjm,

∑
j′∈Jm−{j} ηI,J−1

(
sj′m

)
, ym, νjm

)
.

It implies probability or density of choosing ajm at state
(
sjm,

{
sj′m

}
j′ 6=j

, ym

)
can be represented as

Pr
(
ajm|sjm,

{
sj′m

}
j′ 6=j

, ym

)
= ∃g

(
sjm,

∑
j′∈Jm−{j} ηI,J−1

(
sj′m

)
, ym

)
.8 For instance, in the case I = 1, we

can represent Pr
(
ajm|sjm,

{
sj′m

}
j′ 6=j

, ym

)
= ∃g

(
sjm,

{∑
j′∈Jm−{j}

(
sj′m

)q}
q=1,··· ,J−1

, ym

)
, using a common

6In the case of fixed variable sizes, Ω can be R
I , and the conditions (a), (b) are not necessary, as shown in Corollary 2.3 of

Chen et al. (2022).
7For instance, for a state x ∈ [−M,M ] (M > 0), we can define an alternative state x̃ ≡ exp(x) ∈ [exp(−M), exp(M)].
8See Bajari et al. (2007) for the discussion on the continuous choice case.
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function g regardless of the number of firms in each market. Hence, we can estimate a policy function as a
function of unnormalized moments of competitors’ states, even when the number of firms is heterogeneous across
markets.9 Though the number of moments should be κ(I, J) in general, we can expect adding higher-order
moments yields minor differences. Although it depends on empirical contexts, a small number of moments
might be enough to approximate the functions well.

The use of (unnormalized) moments in policy function estimation has been used in the literature.10 The
results formally justify such a strategy, as long as the number of moments is sufficiently large.

4.2 Moment-based Markov equilibrium

Ifrach and Weintraub (2017) proposed Moment-based Markov equilibrium (MME) for dynamic oligopoly models
with a small number of dominant firms and a large number of fringe firms, where firms keep track of dominant
incumbent firms states and a few moments of fringe incumbent firms’ states. It alleviates the computational
burden of solving MPE through reduced state space. The results in Section 3 imply symmetric MME is
equivalent to MPE when we use a large number of symmetric power sums as moments.11

To make the point clear, we omit the existence of dominant firms and firms’ entry/exit decisions.12 Let
xj ∈ N

q be firm j’s states, such as the capacity or quality level of the firm’s product.
Suppose firms follow symmetric MPE. Then, Proposition 2 implies firms’ value function can be reformulated

as V
(
xj,
{
xj′
}
j′∈J−{j}

)
= V

(
xj,
∑

j′∈J−{j} ηI,J−1(xj′)
)
. Similarly, firms’ investment strategy can be

reformulated as the function of
∑

j′∈J−{j} ηI,J−1(xj′). Furthermore, Corollary 1 in Appendix A implies there
exists an one-to-one mapping between {xj}j∈J and

∑
j′∈J−{j} ηI,J−1(xj′). Hence, solving the model with

states
∑

j′∈J−{j} ηI,J−1(xj′) is equivalent to solving the MPE. The former corresponds to solving MME using∑
j′∈J−{j} ηI,J−1(xj′) as moments.
When the order of symmetric power sums is less than J , we can expect adding higher order terms

provides smaller information in many cases. In such cases, using small number of moments is sufficient to
well approximate MPE13.

4.3 Aggregative games

Section 3 ’s results also give insights into aggregative games. Let gj : A → R be player j’s payoff function, where
A ≡ {Aj}j∈J , and Aj denotes player j’s strategy set. The following is the definition of aggregative games.

Definition 4. (Cornes and Hartley, 2012) The game is called generalized (fully) aggregative, if there exist

functions g̃j : Aj × R → R and hj : Aj → R such that gj(a) = g̃j

(
aj ,
∑

j∈J−{j} hj′(aj′)
)
.

We can analogously define:

Definition 5. The game is called multidimensional generalized (fully) aggregative, if there exists an integer K

and functions g̃j : Aj × R
K → R and hj : Aj → R

K such that gj(a) = g̃j

(
aj,
∑

j′∈J−{j} hj′(aj′)
)
.

Then, we obtain the following statement:

Proposition 3. Suppose player i’s payoff function gj can be written as gj(a) = ˜̃gj
(
aj,
{
aj′ , x

0
j′

}
j′∈J−{j}

)
, ˜̃gj

is continuous, and permutation invariant with respect to
{
aj′ , x

0
j′

}
j′∈J−{j}

. Then, the game is multidimensional

generalized aggregative.

9Instead we can separately estimate policy functions for markets with the same number of firms. If the number of observations
is small and the number of firms is largely heterogeneous across markets, the strategy might work poorly.

10For instance, Ryan (2012) considered a capacity competition model in the cement industry, and estimated firms’ investment
policy function, as a function of the sum of competitors’ capacity.

11Ifrach and Weintraub (2017) showed MME becomes an exact approximation of MPE in the constant returns to scale model.
Still, the correspondence in more general settings has not been clear.

12Essential ideas would not be lost with this simplification.
13Ifrach and Weintraub (2017) derived the deviation error bounds when using MME as an approximation of MPE.
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Proposition 3 implies all the games satisfying the condition of permutation invariance and continuity of
payoff functions are in the form of multidimensional generalized aggregative. Generalized aggregative games
are the special cases with K = 1.

5 Conclusions

This paper have shown the universal representations of symmetric functions with multidimensional variable-size
variables, which helps assessing the justification of approximation methods aggregating the information of each
variable by moments. It has also discussed how the results give insights into economic applications, including
two-step policy function estimation, moment-based Markov equilibrium, and aggregative games.

Though we have mainly considered three economic applications based on the mathematical results, we would
be able to find more applications. I leave it for further research.
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A Proof

A.1 Proof of Propositions 1 and 2

Let M(I, J ;W ) ⊂ M(I, J : R) be the set of matrices whose column vector is in W ⊂ R
I , and the rows

are sorted based on the descending lexicographical order.14 Let aj be the j-th column vector of the matrix
A ∈ M(I, J ;W ), and let aij be the (i, j)-th element of the matrix A.

Besides, for a compact set Ω ⊂ [0,∞)I , let Ω̃ ⊂ [0,∞)I be another compact set such that Ω ⊂ Ω̃, min Ω̃ = 0I
and max Ω̃ = maxΩ.

Proposition 4. (Based on Chen et al., 2022)
Given a compact subset W ⊂ R

I , there exist a continuous function ηI,J : W (⊂ R
I) → Im(η) (⊂ R

K) and

a unique homeomorphism Λ :
{∑J

j=1 ηI,J(aj)|aj ∈ Ω
}

(⊂ R
K) → Im(Λ) (⊂ R

J) such that

η
(s)
I,J(Aj) = as1i=1a

s2
i=2 · · · a

sI
i=I s ∈ {(s1, s2, · · · , sI) ∈ Z+|0 ≤ s1 + s2 + · · · + sI ≤ J}

and

A = Λ




J∑

j=1

ηI,J(aj)


 ∀A ∈ M(I, J ;W ).

The statement can be derived following the proof of Theorem 2.1 of Chen et al. (2022). Using the
proposition, we can easily derive the following:

Corollary 1. Given a compact subset W ⊂ R
I , there exist a continuous function ηI,J : W (⊂ R

I) → Im(η) (⊂

R
K−1) and a unique homeomorphism Λ :

{∑J
j=1 ηI,J(aj)|aj ∈ Ω

}
(⊂ R

K) → Im(Λ) (⊂ R
J) such that

η
(s)
I,J(Aj) = as1i=1a

s2
i=2 · · · a

sI
i=I s ∈ {(s1, s2, · · · , sI) ∈ Z+|1 ≤ s1 + s2 + · · ·+ sI ≤ J}

,and

A = Λ




J∑

j=1

ηI,J(aj)


 ∀A ∈ M(I, J ;W ).

Proof. First, we define a homeomorphism γ :
{∑J

j=1 ηI,J(aj)|aj ∈ Ω
}

→
{∑J

j=1 ηI,J(aj)|aj ∈ Ω
}

such

that γ(x1, · · · , xK−1) = (J, x1, · · · , xK−1). Then,
∑J

j=1 ηI,J(aj) = γ
(∑J

j=1 ηI,J(aj)
)

holds because
∑J

j=1 η
(s=(0,··· ,0))
I,J (xj) =

∑J
j=1 1 = J , and we have A = Λ

(∑J
j=1 ηI,J(aj)

)
= Λ

(
γ−1

(∑J
j=1 ηI,J(aj)

))
. Hence,

by defining a function Λ ≡ Λ ◦ γ−1, we obtain the statement.

The next lemma is used to extend the results above to the case of functions with variable-size variables.

Lemma 1. For a compact subset Ω ⊂ [0,∞)I such that minΩ > 0, let Ω̂ ≡ Ω ∪
∏I

i=1 [0,minΩi]. For a

continuous permutation invariant function V : Ω≤J → R, define a function V : M(I, J, Ω̂) → R such that

V (x1, · · · , xJ) =
∑

{j∈{1,··· ,J}:xj∈Ω}⊂J̃⊂{1,··· ,J}

[∏
j∈J̃ a(xj)

]
·
[∏

j∈{1,··· ,J}−J̃ b(xj)
]
·V
(
{max{xj ,minΩ}}

j∈J̃

)
,

where a(x) ≡
∏

imin
{
1, x(i)

minΩ(i)

}
(x ∈ [0,∞)I) and b(x) ≡

∏
i max

{
0, minΩ(i)−x(i)

minΩ(i)

}
(x ∈ [0,∞)I).

Then,
(a).V is continuous, and

(b).V satisfies V


x1, · · · , xJ ′ , 0I , · · · , 0I︸ ︷︷ ︸

J−J ′


 = V

(
{xj}j=1,··· ,J ′

)
(xj ∈ Ω; j = 1, · · · , J ′).

14The sorting guarantees the uniqueness of Λ in Proposition 4.

7



Proof. Proof of (a).
It suffices to show limxJ↑m V (x1, · · · , xJ−1, xJ ) = V (x1, · · · , xJ−1, xJ = minΩ).

Because limxJ↑m b(xJ) = b(m) = 0, the terms associated with J̃ such that J /∈ J̃ disappear when taking
the limit:

lim
xJ↑m

V (x1, · · · , xJ−1, xJ < m)

= lim
xJ↑m

∑

{j∈{1,··· ,J−1}:xj∈Ω}⊂J̃⊂{1,··· ,J}


∏

j∈J̃

a(xj)


 ·


 ∏

j∈{1,··· ,J}−J̃

b(xj)


 · V

(
{max{xj ,minΩ}}

j∈J

)

=
∑

{j∈{1,··· ,J−1}:xj∈Ω}∪{J}⊂J̃⊂{1,··· ,J}


∏

j∈J̃

a(xj)


 ·


 ∏

j∈{1,··· ,J}−J̃

b(xj)


 · V

(
{max{xj ,minΩ}}j∈J

)

= V (x1, · · · , xJ−1, xJ = minΩ).

Hence, we obtain the statement.
Proof of (b).
Let x1, · · · , xJ ′ ∈ Ω. Because a(0I) = 0, the terms associated with J̃ 6= {j ∈ {1, · · · , J} : xj ∈ Ω}, i.e.

J̃ 6= {1, · · · , J ′} disappear, and

V (x1, · · · , xJ ′ , 0I · · · , 0I)

=


 ∏

j∈{1,··· ,J ′}

a(xj)


 ·


 ∏

j∈{1,··· ,J}−{1,··· ,J ′}

b(xj)


 · V

(
{max{xj ,minΩ}}

j∈J

)

=


∏

j∈J

1


 ·


 ∏

j∈{1,··· ,J}−{1,··· ,J ′}

1


 · V

(
{xj}j=1,··· ,J ′

)
(∵ a(xj) = 1 for xj ∈ Ω, b(0I) = 1)

= V
(
{xj}j=1,··· ,J ′

)
.

A.1.1 Proof of Proposition 1

Proof. First, by Tierze extension theorem, we can take a function such that V :

∪J
J ′=1

[∏I
i=1 [minΩi,maxΩi]

]J ′

→ R. If minΩ > 0, by Lemma 1, we can construct a continuous function

V : M(I, J ; Ω̃) (⊂ R
I×J) → R such that V


x1, · · · , xJ ′ , 0I , · · · , 0I︸ ︷︷ ︸

J−J ′


 = V

(
{xj}j=1,··· ,J ′

)
, for the function

V : Ω≤J → R. Let V = V if condition (b) holds.

By Corollary 1, there exists a continuous function and Λ̃ :
{∑J

j=1 ηI,J(xj)|xj ∈ Ω̃ ⊂ R
I
}
→ Im(Λ) (⊂ R

J)

such that



x1, · · · , xJ ′ , 0I , · · · , 0I︸ ︷︷ ︸

J−J ′



 = Λ̃

(∑J ′

j=1 ηI,J(xj)
)
. Hence, by defining ψ ≡ V ◦ Λ̃, we obtain:

V ({x1, · · · , xJ ′}) = V


x1, · · · , xJ ′ , 0I , · · · , 0I︸ ︷︷ ︸

J−J ′




= V


Λ̃




J ′∑

j=1

ηI,J(xj)




 = ψ




J ′∑

j=1

ηI,J(xj)


 .
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A.1.2 Proof of Proposition 2

Proof. As in the proof of Proposition 1, we can construct a continuous function V : Ω×M(I, J−1; Ω̃)×Υ → R

such that V
(
xj, {xk}k∈J−{j} , y

)
= V

(
xj , {xk}k∈J−{j} s.t. xk 6=0 , y

)
, for the function V : Ω×Ω≤J−1 ×Υ → R.

Hence,

V
(
xj , {xj}k∈J−{j} , y

)
= V


xj,


{xk}k∈J−{j} , 0, · · · , 0︸ ︷︷ ︸

J−|J |


 , y




= V


xj,∃Λ̃


 ∑

k∈J−{j}

ηI,J−1(xk)


 , y


 (∵ Corollary 1)

= ∃ψ


xj ,

∑

k∈J−{j}

ηI,J−1(xk), y


 .

A.2 Proof of Proposition 3

Proof. By Proposition 2, we can take functions g̃j : Aj × R
K → R and h̃j : Aj × {x0j} → R

K such that

˜̃gj
(
aj ,
{
aj′ , x

0
j′

}
j′∈J−{j}

)
= g̃j

(
aj,
∑

j′∈J−{j} h̃j′(aj′ , x
0
j′)
)
. By defining hj′ : Aj → R

K such that hj′ ≡

h̃j′
(
aj′ , x

0
j′

)
, we obtain the statement.

B Additional results

In this section, we further discuss the implications of the results to other economic models.

B.1 Models with dynamic demand

In the models with dynamic demand, firms need to keep track of many state variables, such as the distribution
of heterogeneous consumers’ inventory in durable goods, to optimally make pricing and investment decisions
(e.g., Goettler and Gordon, 2011). Our results also give insights into such models.

Here, let B be K-dimensional state variables firms need to keep track of. For simplicity, consider the case
of a monopolistic firm, and suppose we want to approximate the firm’s value functions V (B). When K is large
and we don’t use any knowledge of the structure of V , in general it is difficult to solve the high-dimensional
model. Though it seems no symmetric structure exists in the function V , we can find it based on the knowledge
of model structures.

Suppose k-th state variable B(k) is parameterized by n-dimensional parameters θ(k), and the value function

can be rewritten as V
({(

B(k), θ(k)
)}

k=1,··· ,K

)
. Here, the function is permutation invariant with respect to

(
B(k), θ(k)

)
. For instance, consider the model of durable goods, where a monopolistic firm keeps track of

discrete type consumers’ product holdings. In this case, state variables correspond to the fraction of each type
of consumers for each age of the product, and they can be parameterized by the preference parameters θpref

and the age of old products θage. It is plausible to assume that the order of
(
B(k), θ

(k)
pref , θ

(k)
age

)
does not matter.

Then, Proposition 1 implies V can be reformulated as V
({(

B(k), θ(k)
)}

k=1,··· ,K

)
=

∃ψ
(∑K

k=1 η1+n,K

(
B(k), θ(k)

))
, where ψ : R

κ(1+n,K) → R. Hence, we can alternatively use moments

η1+n,K

(
B(k), θ(k)

)
as states.
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B.2 Models with Multi-product firms

Though the results in Section 3 cannot be directly applied to the models with multi-product firms, we can
further extend the results. The following proposition is relevant to the models with multi-product firms.

Proposition 5. (Nested structure)
Let Ω ⊂ [0,∞)I be a compact subset of RI , and let Υ be a subset of RC . Suppose either of the following

conditions holds for a continuous permutation invariant function V : Ω≤J ×
(
Ω≤J

)≤(F−1)
×Υ → R:

(a). minΩ > 0I

(b). V
(
{xj}j∈Jf

,
{
{xj}j∈J

f̃

}

f̃∈F−{f}
, y

)
= V

(
{xj}j∈Jf s.t. xj 6=0,

{
{xj}j∈J

f̃
s.t. xj 6=0

}

f̃∈F−{f} s.t. ¬(xj=0 ∀j∈Jf′ )
, y

)

Then, there exist unique continuous functions ψ1 : R
κ(I,J) → R

κ(IJ,F−1) and ψ2 : R
κ(I,J)×R

κ(IJ,F−1)×R
C →

R such that

V

(
{xj}j∈Jf

,
{
{xj}j∈J

f̃

}
f̃∈F−{f}

, y

)
= ψ2


∑

k∈Jf

ηI,J(xk),
∑

f̃∈F−{f}

ψ1


∑

k∈J
f̃

ηI,J(xk)


 , y


 .

The proof is shown at the end of this subsection.
Here, consider the dynamic model where each firm decides whether to introduce each product in each

period, as in Sweeting (2013). Let xj be product j’s states, namely, whether the product is already introduced
at the beginning of the period. We assume that firms follow symmetric MPE, and firm f ’s value function is
permutation invariant with respect to the order of products of the same firms, and to the order of competitors.

The proposition implies that firm f ’s value function can be reformulated as:

V

(
{xj}j∈Jf

,
{
{xj}j∈J

f̃

}
f̃∈F−{f}

)
= ∃ψ2


∑

k∈Jf

ηI,J(xk),
∑

f̃∈F−{f}

∃ψ1


∑

k∈J
f̃

ηI,J(xk)




 .

. It indicates that value function can be represented as a function of the sum of each rival firm’s products’

summary statistics
(∑

f̃∈F−{f}
ψ1

(∑
k∈J

f̃
ηI,J(xk)

))
and the sum of the moments of own firm’s products’

states
(∑

k∈Jf
ηI,J(xk)

)
.

Proof of Proposition 5

Proof. First, for a I × J × F dimensional array A, let Af ≡ A[:, :, f ] ⊂ R
I×J and ajf ≡ A[:, j, f ]. We further

define A−f ⊂ R
I×J×(F−1) which corresponds to A skipping Af . Analogous to the case of two dimensional

matrices, let M(I, J, F ;W ) ⊂ M(I, J, F : R) be the set of I × J × F dimensional arrays whose column
vectors (A[:, j, f ] j = 1, · · · , J, f = 1, · · · , F ) are in W ⊂ R

I , and they are sorted based on the descending
lexicographical order.

Then, by Corollary 1, there exists a unique homeomorphism Ψ1 :
{∑J

j=1 ηI,J(ajf )|ajf ∈ Ω̃ ⊂ R
I
}

→

Im(Ψ1) (⊂ R
I×J) such that:

Af = Ψ1




J∑

j=1

ηI,J(ajf )


 ∀f,Af ∈ M(I, J ; Ω̃). (1)

Furthermore, there exists a unique homeomorphism Ψ2 :
{∑

f ′∈{1,··· ,F}−{f} ηIJ,F−1(Af ′)|Af ′ ∈ Ω̃J ⊂ R
I×J
}
→

Im(Ψ2) (⊂ R
I×J×(F−1)) such that:

A−f = Ψ2


 ∑

f ′∈{1,··· ,F}−{f}

ηIJ,F−1(Af ′)


 ∀A−f ∈ M(I, J, F − 1; Ω̃). (2)
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As in the case of Proposition 1, we can construct a continuous permutation invariant function V :

M(I, J ; Ω̃) × M(I, J, F − 1; Ω̃) × Υ → R such that V (Af , A−f , y) = V

(
{xj}j∈Jf

,
{
{xj}j∈J

f̃

}
f̃∈F−{f}

, y

)

for the function V : Ω≤J ×
(
Ω≤J

)≤(F−1)
×Υ → R. Here, Af is a matrix where




xj∈Jf

, 0I , · · · , 0I︸ ︷︷ ︸
J−|J |





are sorted

based on the descending lexicographical order, and A−f is a matrix where




A

f̃∈F−{f}
, 0I×J , · · · , 0I×J︸ ︷︷ ︸

F−|F|





are

sorted based on the descending lexicographical order.
Using equations (1) and (2), we obtain:

V (Af , A−f , y)

= V


Ψ1




J∑

j=1

ηI,J(ajf )


 ,Ψ2


 ∑

f ′∈{1,··· ,F}−{f}

ηIJ,F−1


Ψ1




J∑

j=1

ηI,J(ajf ′)






 , y




= ∃ψ2




J∑

j=1

ηI,J(ajf ),
∑

f ′∈{1,··· ,F}−{f}

∃ψ1




J∑

j=1

ηI,J(ajf ′)


 , y


 .

Hence, by the relation between V and V , we obtain the statement.
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