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Abstract

The problem of optimizing discrete phases in a reconfigurable intelligent surface (RIS) to maximize the received

power at a user equipment is addressed. Necessary and sufficient conditions to achieve this maximization are given.

These conditions are employed in an algorithm to achieve the maximization. New versions of the algorithm are

given that are proven to achieve convergence in N or fewer steps whether the direct link is completely blocked or

not, where N is the number of the RIS elements, whereas previously published results achieve this in KN or 2N
number of steps where K is the number of discrete phases. Thus, for a discrete-phase RIS, the techniques presented

in this paper achieve the optimum received power in the smallest number of steps published in the literature. In

addition, in each of those N steps, the techniques presented in this paper determine only one or a small number

of phase shifts with a simple elementwise update rule, which result in a substantial reduction of computation time,

as compared to the algorithms in the literature. As a secondary result, we define the uniform polar quantization

(UPQ) algorithm which is an intuitive quantization algorithm that can approximate the continuous solution with

an approximation ratio of sinc2(1/K) and achieve low time-complexity, given perfect knowledge of the channel.

Index Terms

Intelligent reflective surface (IRS), reconfigurable intelligent surface (RIS), discrete phase configuration, global

optimum, linear time discrete beamforming for large IRS/RIS, discrete quadratic program, uniform quantization.

I. INTRODUCTION

IN wireless communications, the performance demand has significantly grown with the advancements

in technology, requiring to cope with many challenges in the propagation environment. In dense urban

outdoor-indoor areas, the problems of shadowing and fading can become severe. In specific scenarios where

the direct link between the base stations and users is blocked, despite the more extensive beamforming

capability of the base stations, the performance can be significantly degraded [1]. In order to catch up with

the ever-growing quality of service (QoS) and energy efficiency requirements in mobile communications,

the challenges due to blockages must be overcome to prevent performance degradation [2].

A reconfigurable intelligent surface (RIS), also known as intelligent reflective surface (IRS), can ma-

nipulate the incident electromagnetic waves to control the propagation environment by varying the phases

of the incident signals with its low-cost passive reflecting elements [3]. In recent years, RISs have been
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studied in many communication systems in the literature, and it is shown that RIS can become a crucial

enabler for communication environments, especially when there is a loss in line-of-sight (LOS) between

the base station (BS) and user equipment (UE) [4], [5].

For complex communication scenarios, algorithms are developed with the assumption of continuous

phase shifts at the RIS, for ease of optimization [6], [7], [8], [9]. In [6], to achieve a globally optimal

solution, the authors developed an algorithm which is based on the branch-and-bound method. In [7],

the authors developed a secure wireless communication system for a single-user case by adopting the

majorization-minimization and block coordinate descent (BCD) techniques. Assuming perfect knowledge

of the channels in [8], the authors jointly designed the active and passive beamforming to minimize

the transmit power, subject to individual signal-to-interference-ratio constraints of the users. In [9], the

authors consider an RIS-aided multi-antenna transmission with the effect of channel fading and phase

noise impairments at the RIS, to maximize the signal-to-noise-ratio (SNR) at the receiver.

Practical large RISs can usually employ quantized phase shift as they are more cost-effective [10]. A

two-stage approach to address the discrete phase shifts constraints is to project the continuous solution

to the closest value in the discrete set [10], [11], [12], [13]. Although, as shown in the present paper, the

quantization approach can potentially provide high performance and low computational complexity, it can

only give marginal insight on the actual optimum discrete phase shifts selection problem.

When it comes to designing algorithms with discrete phase shift constraints, as the number of possible

solutions increases exponentially with the number of RIS elements, exponential search techniques are

required [14], and a closed-form solution is practically unavailable, as we discuss in Section IV-A. As an

example, the authors in [15] stated that the discrete beamforming problem for the RIS turns out to be a

generally NP-hard discrete quadratic program (QP), and a generic K-ary discrete QP remains as an open

problem. To guarantee the optimal solution, most of the prior work in single-user scenarios had exponential

complexity, sometimes over the number of RIS elements (N) [10], and sometimes over the phase shift

levels (K) [16]. In this regard, probabilistic optimization techniques have also drawn attention [17], [18],

[19]. In [17], the idea of probabilistic data association (PDA) is used to address general binary quadratic

problems (BQPs) for multi-user detection in code division multiple access. Machine-to-machine wireless

communication with high reliability is considered in [18], where authors approached BQPs by developing

a PDA algorithm, achieving near-optimal results. Recently, authors in [19] developed a comprehensive

probabilistic technique to address the quantization error and scalability issues in a variety of discrete RIS

optimization problems, where the proposed technique outperforms general approaches such as the closest

point projection (CPP) method given in [13].

To the best of our knowledge, there is still a gap in the literature for further research in the optimal

discrete beamforming problem. Regarding the previously published work addressing the optimal discrete

beamforming, the authors in [20] pointed out that an N-step search algorithm for K-ary beamforming

can be developed. In [13], the authors provided an optimal algorithm for the binary case, where 2N + 2
steps are required for convergence. Also in [13], the authors provided an approximation algorithm (APX),

and a simple quantization algorithm for K-ary beamforming, where the performance is evaluated over

the estimated channels. The authors in [21] proposed a K-ary optimal discrete beamforming algorithm

with a polynomial search complexity, i.e., 2N(K − 1) steps to ensure optimality. Recently, the authors in

[15] proposed the first K-ary linear time algorithm with KN steps to converge, which could be reduced

to 2N steps when the direct link is not completely blocked.

In this work, we address the problem of optimizing discrete phases in an RIS to maximize the received

power at a UE for a single-input single-output (SISO) system with full channel state information (CSI).

We also extend our solutions to special cases of multiple-input multiple-output (MISO), multiple users,

and imperfect CSI scenarios. The main contributions are given as follows:

• We provide necessary and sufficient conditions to achieve this maximization. We employ these

conditions to develop a linear time algorithm achieving provable optimality convergence in N or

fewer steps, whether the direct link between the BS and the UE is blocked or not. Employing the
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geometric approach in [15], we develop a formal elementwise update rule to be used, so that in each

of those N or fewer steps, one or a small number of elements are updated, respectively.

• We prove the periodicity in elementwise updates for the optimal beamforming, and exploit this

periodicity to both reduce the number of steps, and to provide a simple initialization for the search

algorithms. With this, we show the relation between the channel phases and the pattern of elements

in which the periodicity must occur.

• Our developed algorithms are shown to give a substantial reduction of computation time, as com-

pared to the algorithms in the literature [13], [14], [15], [20]. Besides providing improved optimal

discrete phase shift selection algorithms, this work gives further insights on the discrete beamforming

optimization, with the periodicity rule.

• We formally define an intuitive, quantization-based, discrete phase shift selection algorithm, which we

will call uniform polar quantization (UPQ). We show that provided full CSI is available, it performs

well, in terms of both performance and the computational time complexity. With UPQ, we reveal

that the optimal discrete beamforming can be closely approximated as a quantization solution.

The received power maximization problem in this work is connected to generic K-ary discrete QP, where

the objective is to maximize xTQx, with rank(Q) = 1 [14], [15], where the single eigenvector is positive.

Therefore, the linear time algorithms with the elemental update rules in the present paper can be employed

in similar maximization problems, so that the global optimum can be achieved in linear time.

II. SYSTEM MODEL

Consider a point-to-point communication scenario aided by an RIS, where there is a non-line-of-sight

(NLOS) channel between the BS and the UE. The RIS has N elements located over Nz rows and Ny

columns, in a uniform planar array (UPA) structure, as shown in Fig. 1. We consider K discrete phase

shifts for the RIS, i.e., θn ∈ ΦK and ΦK = {ω, 2ω, . . . , Kω} with ω = 2π
K

and j =
√
−1. The set ΦK

can equivalently be described as {0, ω, 2ω, . . . , (K − 1)ω}. Hence, the RIS introduces amplitude βR
n and

phase shift θn for n = 1, 2, . . . , N in the N-element reflection coefficient vector

w =
[
βR
1 e

jθ1, βR
2 e

jθ2 . . . , βR
Ne

jθN
]

(1)

where for practicality, we let βR
n = 1 in this paper. Let s ∈ C be the transmitted symbol. The received

signal at the UE is given as [8]

y = (hH
u Whb + h0)s+ z, (2)

where W = diag(w), h0 ∈ C is the direct link between the BS and UE, hu ∈ CN×1 and hb ∈ CN×1

are the equivalent channels of the RIS-UE and BS-RIS links, respectively, and z is the additive white

Gaussian noise (AWGN) at the UE antenna.

Let h = h∗
u ⊙ hb, where ⊙ is the elementwise (Hadamard) multiplication of the two vectors, and the

additive noise z be a complex Gaussian random variable with variance σ2, i.e., z ∼ CN (0, σ2). Assuming

a mean power constraint at the BS, i.e., E[|s|2] ≤ P , the achievable ergodic data rate in bps/Hz is given

by

γ = E

[

log

(

1 +
P

σ2

∣
∣h0 + hTw

∣
∣
2
)]

. (3)

Therefore, the maximization of the channel power inside the logarithm in (3) amounts to maximizing the

ergodic data rate, which is a commonly used performance metric in wireless communications. With this,

the problem of maximizing the overall channel gain, i.e., the received signal power by performing discrete

beamforming at the RIS is given as

(P1) max
[w]n∈ΦK

|h0 + hTw|2. (4)

The received power maximization problem in (P1) is shown to belong to the class of general quadratic pro-

gramming problems, i.e., K-ary discrete QP, where the objective is to maximize xTQx, with rank(Q) = 1,
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which has been known to be NP-hard [14], [15], [22]. Furthermore, authors in [14] show that the problem

(P1) can be reformulated as

(P2) max
w̄1,..., w̄N+1∈ΦK

|g̃Hw̄|2 (5)

where w̄ = [ejθ1 , ejθ2, . . . , ejθN , ejθN+1]T and g̃ corresponds to the unique eigenvector of Q̃ with Q̃ =
[h, h0][h, h0]

H . So, the solution of (P1) can be extracted as ŵ = w̄(1:N)
w̄(N+1)

, where w̄(1 : N) correspond to

the first N elements in w̄ and w̄(N+1) is the element at the last index. Therefore, the problem of interest

is the maximization of the inner product either in (P1) or (P2) with discrete phase shift constraints at the

RIS1.

The equivalent maximization problems (P1) and (P2) frequently arise in RIS-aided communications

systems. For example, in RIS-assisted single-user multiple-input multiple-output (MIMO) localization

systems, in two-stage approaches to refine the localization performance, the objective boils down to solving

the discrete beamforming design for the RIS to maximize the passive beamforming gain [23], [24]. In fact,

in [23], the authors develop a discrete beamforming approach named Fast Passive Beamforming (FPB)

algorithm that can achieve the global optimum for the very same problem in (P2) and used for improving

the localization performance in mmWave MIMO. Also, a joint framework for channel estimation and

passive beamforming for an RIS is developed with the discrete phase shift constraints at the RIS [12],

where the exact problem (P2) needs to be solved for the channel-gain-maximization approach in the

progressive passive beamforming refinement.

The special case of single-antenna assumption has importance and draws attention in the literature,

as problems (P1) and (P2), especially for analyzing the potential of the RIS in general scenarios [4],

practical codebook design and optimization for RISs [25], [26], and experimental setups with an RIS

where the system is tested and optimized with discrete phase shifts [5], [27], [28]. Therefore, having

an efficient algorithm with provable global optimality as a benchmark is crucial to properly assess the

performance of the developed algorithms in experimental setups, as well as to determine how reliable the

direct quantization approach can be under different channels.

Beyond the extent of (P1) and (P2), ample research in the context of MISO and MIMO systems with

discrete beamforming at the RISs has been conducted in the recent literature [29], [30]. In [29], authors

performed joint active and passive beamforming with the generalized Benders decomposition (GBD)-based

algorithm with codebook-based passive beamforming at multiple RISs for a multi-user MISO system

to minimize the transmit power subject to signal-to-interference-and-noise-ratio (SINR). The results are

shown to approximate the global optimum. In [30], the authors consider a RIS-aided MIMO system with

transceiver hardware impairments, where the aim is to minimize the total mean squared errors (MSEs)

of multiple data streams. They propose a two-tier majorization-minimization (MM) based and a modified

Riemannian gradient descent (RGA) algorithm to obtain the sub-optimal solution of the RIS reflection

matrix. Thus, regarding the recent work with more comprehensive scenarios and problems than (P1) and

(P2), the aim of maximizing the channel gain has not attracted attention due to the non-convex and

NP-hard constraints as well as the solutions can only approximate the global optimum solution.

A. Special Case of Achieving Global Optimum with MISO

In this section, we remark on a special case of a point-to-point downlink MISO communication scenario

aided by an RIS, by considering a special case similar to [30] to achieve optimality, where the direct

BS-UE link is blocked. With this, (2) can be rewritten as

y = hH
u WGxs+ z, (6)

where x ∈ CM is the transmit beamforming vector, G ∈ CN×M is the equivalent channel of the BS-RIS

link, and W = diag(w). The channel from RIS to UE is denoted by hu ∈ CN . Taking the far-field regime

1Strictly speaking, it is the magnitude squared of a complex-valued inner product, but we will use the informal statement “inner product”

as in [14].
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Fig. 1. RIS structure.

into account with a physical model that is based on angle directions [31], the received signal power in

equation (6), i.e., |y|2, can be expressed as

|y|2 = |bWCx|2 (7)

where C = [a(ϑb,1, ϕb,1), a(ϑb,2, ϕb,2), · · · , a(ϑb,M , ϕb,M)], b = aH(ϑu, ϕu), with {ϑu, ϕu} is the departing

direction of the reflected signal and {ϑb,m, ϕb,m}, m = 1, . . . ,M is the arriving signal direction from BS

antenna m. Here, a(ϑ, ϕ) is the array response vector defined in (9) in the next section.

Similar to the analysis in the Appendix of the fifth version of [14], equation (7) can be rewritten as

|y|2 = |bWCx|2
= wH(PT ⊙R)w

= wHQw, (8)

where Q = PT ⊙ R, P = CxxHCH , and R = bHb. Since Q is a semi-positive definite matrix with

rank one, maximizing (8) boils down to maximizing |zHw|, where z is the eigenvector associated with

the maximum eigenvalue of Q.

In this paper, one of the primary objectives is to address the problem in (P1), equivalently (P2), with a

highly efficient algorithm. In fact, to the best of our knowledge, our proposed algorithms are the fastest

converging to the global optimum in the literature to perform discrete beamforming optimization for (P1),

and a general K-ary discrete quadratic programming. The extension of this framework with elementwise

updates for a general MISO scenario is left as a future work. In Section IV, we define the problem formally

and then introduce several algorithms to solve it.

III. CHANNEL MODEL

This section describes the channel model we employed. The RIS is placed such that the origin is at

the first row and the first column of the RIS, as shown in Fig. 1. We let {ϑb, ϕb} and {ϑu, ϕu} pairs

be the elevation and azimuth angles for the BS and the UE. The array response vector for the RIS is

calculated by considering two uniform linear arrays (ULA) along the y-axis and the z-axis with array

response vectors ay(ϑ, ϕ) and az(ϑ), which are calculated as

ay =
[

1, e−j2π
dy

λ
sinϑ sinϕ, · · · , e−j2π(Ny−1)

dy

λ
sinϑ sinϕ

]T

az(ϑ) =
[

1, e−j2π dz
λ

cosϑ, · · · , e−j2π(Nz−1)dz
λ

cosϑ
]T
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where dy ≤ λ/2 and dz ≤ λ/2 and where we used the shorthand notation ay for ay(ϑ, ϕ). In this

formulation, dy and dz are the spacing between the elements in respective axes, and λ is the wavelength

of the incident signal. Therefore, for the described uniform planar array (UPA) structure, the array response

vector can be calculated as

a(ϑ, ϕ) = ay(ϑ, ϕ)⊗ az(ϑ) (9)

where ⊗ is the Kronecker product and a(ϑ, ϕ) ∈ CN . Note that, in a(ϑ, ϕ), elements are ordered column-

wise.

We employ the channel model from [10], [32], where the BS-RIS link hb undergoes Rician fading:

hb = PLb

(√
κ

1 + κ
hLOS
b +

√

1

1 + κ
hNLOS
b

)

(10)

where PLb = 30 + 22 log10(db) is the path loss (in dB) in the BS-RIS link with db being the distance

between the BS and RIS, the LOS component is calculated with the RIS steering vectors given the angle-

of-arrival (AoA) information of the BS, i.e., {ϑb, ϕb}, with equation (9) as hLOS
b = a(ϑb, ϕb). The NLOS

component, hNLOS
b ∼ CN (0, IN×N), consists of circularly symmetric complex Gaussian random variables

and κ is the Rician factor. The RIS-UE link hu also undergoes Rician fading in (10) with the same

parameters except for the distance and the AoA information, i.e., du and {ϑu, ϕu}, respectively.

The developed algorithms do not require the direct BS-UE link to be present to converge to the global

optimum in the least number of steps. Whenever the direct link is not completely blocked, it follows

Rayleigh fading, i.e., h0 = 10−
PL0
20 × ρ0, where, PL0(d0) = 32.6 + 36.7 log10(d0) is the path loss (in dB)

with d0 being the BS-UE distance and ρ0 ∼ CN (0, 1) is a circularly symmetric complex Gaussian random

variable.

To compare the performance and time complexity of our proposed algorithms with the existing methods

from the literature with discrete phase shift constraints for the RIS, similar to [15], we consider NLOS

transmission in BS-RIS and RIS-UE channels with κ = 0. The transmit power is 30 dBm with -90 dBm

background noise power. Three-dimensional coordinate vectors (−2,−1, 0), (50,−200, 20), and (0, 0, 0)
are used as the locations of the RIS, BS, and the UE, respectively.

Finally, we remark that all of the developed algorithms can work not only with different Rician factors

but also with arbitrary αn selections. Therefore, the proposed algorithms can be applied to a general

K-ary discrete Quadratic Program, where the objective is to maximize xTQx, with rank(Q) = 1, or

equivalently, the inner product maximization of |bTx|2, as in (P2).

IV. PROBLEM DEFINITION

In this paper, we address the problem of finding the values θ1, θ2, . . . , θN to maximize |h0+
∑N

n=1 hne
jθn|

where θn ∈ ΦK and ΦK = {ω, 2ω, . . . , Kω} with ω = 2π
K

and j =
√
−1. The set ΦK can equivalently be

described as {0, ω, 2ω, . . . , (K − 1)ω}. The values hn ∈ C, n = 1, 2, . . . , N are the channel coefficients

and θn are the phase values added to the corresponding hn by a reconfigurable intelligent surface (RIS).

The problem can be formally described as

maximize
θ

f(θ)

subject to θn ∈ ΦK , n = 1, 2, . . . , N
(11)

where

f(θ) =
1

β2
0

∣
∣
∣
∣
β0e

jα0 +

N∑

n=1

βne
j(αn+θn)

∣
∣
∣
∣

2

, (12)

hn = βne
jαn for n = 0, 1, . . . , N , and θ = (θ1, θ2, . . . , θN). Also, g is defined as

g = h0 +
N∑

n=1

hne
jθ∗n (13)
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where θ∗n are the outcomes of the optimization in (11) and µ is defined as

µ =
g

|g| . (14)

Note that, in (11), β2
0 is a constant and therefore the maximization affects only the numerator. For that

reason, the case with h0 = 0 can be taken care of by maximizing the numerator only.

The solution to the problem can be achieved by making use of the following lemma.

Lemma: For an optimal solution (θ∗1, θ
∗
2, . . . , θ

∗
N), it is necessary and sufficient that each θ∗n satisfy

θ∗n = arg max
θn∈ΦK

cos(θn + αn − µ) (15)

where µ stands for the phase of µ in (14).

Proof: We can rewrite (13) as

|g| = β0e
j(α0− µ) +

N∑

n=1

βne
j(αn+θ∗n− µ) (16)

= β0 cos(α0 − µ) + jβ0 sin(α0 − µ)

+
N∑

n=1

βn cos(θ
∗
n + αn − µ)

+ j

N∑

n=1

βn sin(θ
∗
n + αn − µ). (17)

Because |g| is real-valued, the second and fourth terms in (17) sum to zero, and

|g| = β0 cos(α0 − µ) +
N∑

n=1

βn cos(θ
∗
n + αn − µ), (18)

from which (15) follows as a necessary and sufficient condition for the lemma to hold. �

Reference [15] attempts to decide a range of µ for which θ∗n = kω must hold. Towards that end, it first

defines a sequence of complex numbers with respect to each n = 1, 2, . . . , N as

snk = ej(αn+(k−0.5)ω), for k = 1, 2, . . . , K. (19)

Then, [15] defines, for any two points a and b on the unit circle C, arc(a : b) to be the unit circular

arc with a as the initial end and b as the terminal end in the counterclockwise direction; in particular,

it defines arc(a : b) as an open arc with the two endpoints a and b excluded. With this definition, [15]

states the following proposition holds.

Proposition 1: A sufficient condition for θ∗n = kω is

µ ∈ arc(snk : sn,k+1). (20)

Proposition 1 is compatible with the lemma given above. To see this, assume µ satisfies (20). Then,

µ ∈
(

αn +
(

k − 1

2

)

ω, αn +
(

k +
1

2

)

ω
)

. (21)

Since ω = 2π
K

,

αn − µ ∈
(

(−2k − 1)
π

K
, (−2k + 1)

π

K

)

(22)

considering the reversal of order due to the subtraction of µ. Now, let θn = kω = 2k π
K

. Then

θn + αn − µ ∈
(

− π

K
,
π

K

)

(23)
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and thus cos(θn + αn − µ) is the largest among all other possibilities for θn because the slice (− π
K
, π
K
)

corresponds to the largest values of the cosine function among all slices corresponding to different values

of θn ∈ ΦK for n = 1, 2, . . . , N .

We remark that, as an open arc, arc(a : b) does not contain the two endpoints a and b. This implies that

we omit the situation where µ = snk for some n, k, or similarly when µ lies right in between arc(sn,k−1 :
snk) and arc(snk : sn,k+1). To justify this, assume µ = snk for some n, k, i.e., µ = αn + (k − 1

2
)ω. With

this, the lemma in (15) results in not one but two possible solutions, θ∗n,1 = kω and θ∗n,2 = (k − 1)ω, for

which θ∗n,1+αn− µ = ω
2

and θ∗n,2 +αn− µ = −ω
2

, respectively. Note that θ∗n,1 and θ∗n,2 cannot make |g|
in (17) real-valued at the same time, because sin(θ∗n,1 + αn − µ) = (−1) sin(θ∗n,2 + αn − µ). Therefore

only one of them can be the optimum selection, which we already consider separately for scenarios when

µ ∈ arc(sn,k−1 : snk) and µ ∈ arc(snk : sn,k+1), i.e., µ is right before and right after snk, respectively.

We note that g in (13) is defined for optimal phases (θ∗1, θ
∗
2, . . . , θ

∗
N). The µ in (15), which comes from

the definition in (14) which follows from (13), is the optimum one. On the other hand, in the rest of the

paper, when we refer to µ, it is a value we are considering in search of the optimal µ.

A. UNIFORM POLAR QUANTIZATION

To address the discrete constraint on the RIS phase shifts, a straightforward approach is to project the

relaxed continuous solution to the closest discrete value in the discrete phase shift set ΦK . In [13], the

authors named the discretization process of the continuous solutions as the closest point projection (CPP).

Note that, by its definition, the CPP approach can be employed over any other algorithm that gives the

relaxed solutions. Thus, the time-complexity of the discrete beamforming problem with CPP is dependent

on the complexity of the algorithm that gives the preliminary continuous solution. For example, in [14],

the authors used Discrete Manifold Optimization (Discrete-Manopt), which corresponds to quantization of

the continuous phase shifts provided by Manifold Optimization, and the computational time complexity

to achieve the quantized solutions is extremely high.

In this section, we will define a practical intuitive algorithm that can achieve a suboptimal solution,

similar to the CPP approach in [13], which we call uniform polar quantization (UPQ). For this purpose,

we can redefine the received power maximization problem with relaxed continuous phase shifts as follows:

maximize
θ

cont
frx(θ

cont)

subject to θcont
n ∈ [0, 2π), n = 1, 2, . . . , N

(24)

where

frx(θ) =

∣
∣
∣
∣
β0e

jα0 +

N∑

n=1

βne
j(αn+θn)

∣
∣
∣
∣

2

. (25)

Note that in the magnitude of the objective term frx(θ), we are adding complex numbers, or equivalently

two-dimensional vectors on the complex-plane. Therefore, the bounds on the received power in (25) can

simply be given as 0 ≤ frx(θ) ≤
(
∑N

n=0 βn

)2

. In this case, assuming continuous phase shifts, the solution

to the maximization problem would be to find θcont
n such that

αn + θcont
n = α0, for n = 1, 2, . . . , N. (26)

Therefore, by letting θcont
n = α0−αn for n = 1, 2, . . . , N , we can select the discrete phase shifts with the

following rule, which we refer to as UPQ in this paper:

θUPQ
n =

⌊
α0 − αn

ω

⌉

× ω, for n = 1, 2, . . . , N, (27)

where ⌊·⌉ is the rounding function defined as

⌊x⌉ = sgn(x) ⌊|x|+ 0.5⌋ . (28)
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TABLE I

APPROXIMATION RATIO OF THE UPQ ALGORITHM TO THE CONTINUOUS SOLUTION.

K = 2 K = 3 K = 4 K = 6 K = 8

E∞(K) 0.4053 0.6839 0.8106 0.9119 0.9496

1/E∞(2) – 2.27 dB 3.01 dB 3.52 dB 3.70 dB

The importance of defining UPQ for the problem in (11), or equivalently for a discrete QP with the rank

constraint is to present a fair comparison in the computational complexity results, where UPQ performs

surprisingly well in terms of both performance and computational complexity given full CSI. We note

that, in terms of full CSI, UPQ only requires αn for n = 0, 1, . . . , N , and in a real scenario, look-up

tables can be employed to further simplify the beamforming process.

Similar to UPQ, there are approaches used under different names in the literature. Firstly, as mentioned,

[13] uses a similar approach for the CPP result where the authors show performance over estimated

channels. Another example is, in [5], the authors derive a measurement based beamforming algorithm that

is called the “Greedy Fast Beamforming Algorithm,” which is based on a similar quantization approach

employed for the binary case.

We note that, a secondary result of equation (26) is to show why the optimal discrete phase shift

selection problem was originally thought to be very difficult to solve. In (26), αn and α0 values are

continuous. When θcont
n are constrained by the set ΦK , it practically prevents a closed-form solution for

θn to be available, because in (25) each θn is related to each other. Yet, in the following sections, our

derivations with the optimal algorithm show that the optimum discrete phase shift selection problem turns

out to be simpler, actually.

1) Efficiency Calculation for UPQ: In [13], the authors provide a lower bound on the performance

of quantization. In this section, similar to the approach in [10], the performance loss in UPQ due to

quantization is quantified with respect to K. For this purpose, the expected value of the normalized

performance, i.e., EN(K), is calculated for asymptotically large N . For large N , equation (25) with the

UPQ solution can be rewritten as

frx(θ
UPQ) =

∣
∣
∣
∣
β0e

jα0 +
N∑

n=1

βne
j(αn+θ

UPQ
n )

∣
∣
∣
∣

2

=
∣
∣ejα0

∣
∣
2

∣
∣
∣
∣
β0 +

N∑

n=1

βne
j(αn+θ

UPQ
n −α0)

∣
∣
∣
∣

2

=

∣
∣
∣
∣
β0 +

N∑

n=1

βne
j(θUPQ

n −θcont
n )

∣
∣
∣
∣

2

≈
∣
∣
∣
∣

N∑

n=1

βne
j(θUPQ

n −θcont
n )

∣
∣
∣
∣

2

, (29)

where, for asymptotically large N , β0 from the BS-UE direct link in (29) is practically discarded. Therefore,

the received power for large N can be approximated as

frx(θ
UPQ) ≈

∣
∣
∣
∣

N∑

n=1

βne
j(θUPQ

n −θcont
n )

∣
∣
∣
∣

2

=
N∑

n=1

β2
n

+ 2
N∑

k=2

k−1∑

l=1

βkβl cos((θ
UPQ
k − θcont

k )− (θUPQ
l − θcont

l )). (30)
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Assume that in (30) all βk, βl, θk, and θl are independent from each other. Let δi = θUPQ
i − θcont

i for

i = 1, . . . , N , so that in (30), the argument of the cosine is equal to δk − δl. From equation (27), it

follows that δi ∈
[
− π

K
, π
K

]
. Assume δk and δl are i.i.d. uniform random variables in

[
− π

K
, π
K

]
, i.e.,

δk, δl ∼ U
[
− π

K
, π
K

]
, which results in E [cos (δm − δn)] = sinc2

(
1
K

)
. Therefore, the expected value of

frx(θ
UPQ) can be defined as

E[frx(θ
UPQ)] = NE[β2

n] +N(N − 1)E[βkβl] sinc
2

(
1

K

)

. (31)

With this, we normalized the received power by the expected value of the maximum achievable power,

i.e., E[(
∑N

n=1 βn)
2] = NE[β2

n] +N(N − 1)E[βkβl], which gives

EN(K) ,
NE[β2

n] +N(N − 1)E[βkβl] sinc
2
(

1
K

)

NE[β2
n] +N(N − 1)E[βkβl]

. (32)

Taking N → ∞, the expected value of the normalized performance can be represented as a function of

K as

E∞(K) = sinc2
(

1

K

)

, (33)

which quantifies the effect of K, i.e., the number of available discrete phase shift selections, as an

approximation to the optimal continuous solution. For example, as K → ∞, i.e., the continuous case,

E∞(∞) = 1, therefore E∞(K) also serves as an approximation ratio to the upper bound. Two examples

for different selections of K are given in Table I, where it can be observed that gains from using at least

K = 4 discrete phases over K = 2 are significant.

A final emphasis we want to make is to show that the optimal result can be achieved as a quantization

of the relaxed solution. In other words, the optimal solution θ∗n given µ using UPQ, i.e., θUPQ

n|µ , can be

achieved by employing the UPQ algorithm with θcont
n = µ − αn. To see this, assume µ satisfies (20).

From (22), we know that µ − αn ∈
(

(2k − 1) π
K
, (2k + 1) π

K

)

, in which case the quantization in UPQ

gives

θUPQ

n|µ =

⌊
µ− αn

ω

⌉

× ω = kω, (34)

for n = 1, . . . , N . Note that the quantization result in (34) is compatible with Proposition 1, which proves

that the optimum result is actually a quantization solution. As the two approaches (equation (15) and

quantization) are akin, UPQ can provide close-to-optimal solution given full CSI knowledge. However,

as µ is unknown and one needs to search for the optimal µ, we present this as an insight on the problem

rather than an operational idea.

Finally, although both CPP and UPQ give the quantized continuous solution without modification,

they have a basic difference. CPP is applied over any continuous solution and defined by θCPP
n =

argminθn∈ΦK
|θn − θcont

n | [13]. On the other hand, UPQ is specifically defined for the problem in (11)

by using the rounding operator in equation (28) to determine θUPQ
n directly from αn and α0. Using the

argmin operator not only gives marginal insight on the problem of interest, but it can lead to incorrect

results for specific values of θn ∈ [0, 2π) and θcont
n ∈ [0, 2π).

In the next section, we will define our discrete phase shift selection algorithm that guarantees the

global optimal solution. We further improve it in the sequel to converge with the least number of steps,

and achieve significantly lower computational complexity.

V. A NEW ALGORITHM

Reference [15, Algorithm 1], as published, employs the criterion

θ∗n = arg min
θn∈ΦK

|(θn + αn − µ) mod 2π| (35)
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Algorithm 1 Update for [15, Algorithm 1]

1: Initialization: Compute snk = ej(αn+(k−0.5)ω) for n = 1, 2, . . . , N and k = 1, 2, . . . , K.

2: Eliminate duplicates among snk and sort to get ejλl such that 0 ≤ λ1 < λ2 < · · · < λL < 2π.
3: Let, for l = 1, 2, . . . , L, N (λl) = {n| snk = λl}.
4: Set µ = 0. For n = 1, 2, . . . , N , calculate θn = argmaxθn∈ΦK

cos(θn + αn − µ).
5: Set g0 = h0 +

∑N

n=1 hne
jθn , absgmax = |g0|.

6: for l = 1, 2, . . . , L− 1 do

7: For each n ∈ N (λl), let (θn + ω ← θn) mod ΦK .

8: Let

gl = gl−1 +
∑

n∈N (λl)

hn

(
ejθn − ej(θn−ω) mod ΦK

)

9: if |gl| > absgmax then

10: Let absgmax = |gl|
11: Store θn for n = 1, 2, . . . , N
12: end if

13: end for

14: Read out θ∗n as the stored θn, n = 1, 2, . . . , N .
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Fig. 2. CDF plots for SNR Boost [15] with Uniform Polar Quan-

tization (UPQ), Algorithm 1, and Approximation (APX) Algorithm

[13], K = 2.
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Fig. 3. CDF plots for SNR Boost [15] with Uniform Polar Quan-

tization (UPQ), Algorithm 1, and Approximation (APX) Algorithm

[13], K = 4.

instead of (15)2. We now specify Algorithm 1 as an alternative to [15, Algorithm 1]3.

We present the cumulative distribution function (CDF) results for SNR Boost [15] in Fig. 2 for K = 2,

and in Fig. 3 for K = 4. Similarly, the ergodic rate results are presented in Fig. 4 and 5, respectively. The

CDF results are presented for N = 16, 64, and 256, using the average of 10,000 realizations of the channel

model defined in Section III with κ = 0, where we employed UPQ, Algorithm 1, and the Approximation

(APX) algorithm from [13], where all algorithms ran over the same realization in each step. For the

ergodic rate results, instead of APX algorithm, we employed the block coordinate descend (BCD) [33]

as a typical benchmark where the phase shifts are optimized for each RIS element at a time. Although

2In this paper, we define the mod function (the modulus function or the modulo operation) x mod y as the remainder after the dividend

x > 0 is divided by the divisor y > 0. We write it as x mod y, x (mod y), or mod (x, y). For x < 0 and y > 0, we use the convention

that the remainder should always be the smallest such nonnegative number.
3In Algorithm 1 we define (θ±ω)modΦK as follows. First note that the two sets {0, ω, 2ω, . . . , (K−1)ω} and {ω, 2ω, 3ω, . . . ,Kω}

have the same members since ω = 2π/K. Then, (θ + ω)modΦK can be defined as (θ ± ω)modΦK , ((k ± 1)modK)ω.
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Fig. 4. CDF plots for Ergodic Rate (3) with Uniform Polar

Quantization (UPQ), Algorithm 1, and block coordinate descend

(BCD) [33], K = 2.
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Fig. 5. CDF plots for Ergodic Rate (3) with Uniform Polar

Quantization (UPQ), Algorithm 1, and block coordinate descend

(BCD) [33], K = 4.
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Fig. 6. 1st percentile SNR Boost results vs. N , for K ∈ {2, 3, 4}.
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Fig. 7. Normalized Performance results vs. N , for κ = 10 and

K ∈ {2, 3, 4, 6, 8}.

the gains are not large, especially with K = 4 in Fig. 3, these two figures serve as a verification of the

optimality of Algorithm 1, which we already know from the analysis presented in this paper. Besides,

in Fig. 6, we focus on the low SNR Boost regime and compare the 1st percentile results. For K = 2,

while there is only about 1 dB loss of using UPQ, it cannot be recovered by increasing the number of

RIS elements. On the other hand, for K ≥ 4, both APX and UPQ can provide close-to-optimal results,

with UPQ being quite efficient in terms of complexity, which we discuss in Section XIII.

Finally, the normalized received power results are calculated by |β0e
jα0+

∑N

n=1 βne
j(αn+θn)|2/(∑N

n=0 βn)
2

and plotted in Fig. 7 for κ = 10. The figure verifies that the expected value approximation for large N ,

i.e., E∞(K) results in Table I, fall in line with the numerical results.

In the Appendix, we discuss an alternative way to initialize Algorithm 1, which significantly reduces

the computational complexity. We will use this technique in initializing Algorithm 2 and Algorithm 3 in

the sequel.
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VI. ALGORITHM CONVERGENCE: TOWARDS TWO NEW ALGORITHMS

We will now show the periodicity in the update rule in Algorithm 1, i.e., inN (λl). With this observation,

we will prove that Algorithm 1 takes N or fewer steps to converge, as opposed to the statement that [15,

Algorithm 1] takes KN or 2N steps on average [15]. This will result in two new versions of the algorithm,

i.e., Algorithm 2 and Algorithm 3, with a simple elementwise update rule, in the sequel. Towards this

end, we first make the following statement.

Claim 1: As in (19), set snk = ej(αn+(k− 1

2
) 2π
K

), n = 1, 2, . . . , N, k = 1, 2, . . . , K, αn ∈ [0, 2π). Let

λl = snk such that 0 ≤ λ1 < λ2 < · · · < λL < 2π. Let N (λl) = {n|λl = snk}. Assuming for now that

|N (λl)| = 1, l = 1, 2 . . . , L = NK, which we will relax in the sequel, we claim that N (λl′) = N (λl′+N)
for l′ = 1, 2, . . . , N(K − 1).

To prove Claim 1, we will first introduce Claim 2 and prove it.

Claim 2: Without loss of generality, we can assume that αn < 2π
K
, n = 1, 2, . . . , N .

Proof of Claim 2: Suppose that for some n, we have 2π
K
·m ≤ αn < 2π

K
· (m+1), m = 1, 2, . . . , K − 1.

Let βn , αn −m · 2π
K
, so that βn < 2π

K
. We will write below each phase value in (19), αn +

(2k−1)π
K

, for

k = 1, 2, . . . , K (note that the (mod 2π) notation below applies to both sides of the equation).

• k = 1:
αn +

π
K

= βn +
(2m+1)π

K
(mod 2π)

where
(

(2m+1)π
K

)K−1

m=1
=
{

3π
K
, 5π
K
, . . . , (2K−1)π

K

}

,

• k = 2:
αn +

3π
K

= βn +
(2m+3)π

K
(mod 2π)

=

{

βn +
(2m+3)π

K
(mod 2π), m ≤ K − 2

βn +
π
K

(mod 2π), m = K − 1

where
(

(2m+3)π
K

)K−2

m=1
=
{

5π
K
, 7π
K
, . . . , (2K−1)π

K

}

,

...

• k = K :
αn +

(2K−1)π
K

= βn +
(2m+2K−1)π

K
(mod 2π)

= βn +
(2m−1)π

K
(mod 2π)

where
(

(2m−1)π
K

)K−1

m=1
=
{

π
K
, 3π
K
, . . . , (2K−3)π

K

}

.

Thus, if there is an αn ≥ 2π
K

to generate K phase values, there is always a βn, βn < 2π
K

with which one

can generate the same K phase values in a similar fashion. Therefore, in order to prove Claim 1, one can

work with the assumption that αn < 2π
K
, for n = 1, 2, . . . , N . �

Proof of Claim 1: Assuming 0 ≤ α1 < α2 < · · · < αN < 2π
K
, without loss of generality, we will now

show that N (λl′) = N (λl′+N) for l′ = 1, 2, . . . , N(K − 1). For this, there are N + 1 cases to consider.

Case 0: In this case, we assume αn < π
K
, n = 1, 2, . . . , N . We write all possible values of snk as

follows.

n = 1:
s1k ∈

{

α1 +
π
K
, α1 +

3π
K
, . . . , α1 +

(2K−1)π
K

}

, (36)

n = 2:
s2k ∈

{

α2 +
π
K
, α2 +

3π
K
, . . . , α2 +

(2K−1)π
K

}

, (37)

...

n = N :
sNk ∈

{

αN + π
K
, αN + 3π

K
, . . . , αN + (2K−1)π

K

}

. (38)
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Sorting (36)–(38), we have

α1 +
π
K

< α2 +
π
K

< · · · < αN + π
K

< α1 +
3π
K

< α2 +
3π
K

< · · · < αN + 3π
K

...

< α1 +
(2K−1)π

K
< α2 +

(2K−1)π
K

< · · · < αN + (2K−1)π
K

.

Thus,

(
N (λl)

)L=NK

l=1
=
{

1, 2, . . . , N
︸ ︷︷ ︸

1

, 1, 2, . . . , N
︸ ︷︷ ︸

2

,

. . . , 1, 2, . . . , N
︸ ︷︷ ︸

K

}

.

Therefore, for Case 0 and for l′ = 1, 2, . . . , N(K − 1), we have N (λl′) = N (λl′+N).
There are N remaining cases. We will discuss these cases as Case i where i = 1, 2, . . . , N .

Case i, (i = 1, 2, . . . , N): In Case i, we have i occurrences of αn > π
K

as follows.

0 ≤ α1 < α2 < · · · < αN−i <
π

K

≤ αN−i+1 < · · · < αN <
2π

K
.

(39)

We write all possible values of snk as follows.

n = 1:
s1k ∈

{

α1+
π

K
, α1 +

3π

K
, . . . ,

α1 +
(2K − 3)π

K
, α1 +

(2K − 1)π

K

}

,

(40)

...

n = N − i:
s(N−i)k ∈

{

αN−i +
π

K
, αN−i +

3π

K
, . . . ,

αN−i +
(2K − 3)π

K
, αN−i +

(2K − 1)π

K

}

,

(41)

n = N − i+ 1:
s(N−i+1)k ∈

{

αN−i+1 +
π

K
, αN−i+1 +

3π

K
, . . . ,

αN−i+1 +
(2K − 3)π

K
, αN−i+1 −

π

K

}

,

(42)

n = N − i+ 2:
s(N−i+2)k ∈

{

αN−i+2 +
π

K
, αN−i+2 +

3π

K
, . . . ,

αN−i+2 +
(2K − 3)π

K
, αN−i+2 −

π

K

}

,

(43)

...

n = N :
sNk ∈

{

αN +
π

K
,αN +

3π

K
, . . . ,

αN +
(2K − 3)π

K
, αN −

π

K

}

.

(44)
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Sorting (40)–(44), we have

αN−i+1 −
π

K
< · · · < αN −

π

K

< α1 +
π

K
< · · · < αN−i +

π

K

< αN−i+1 +
π

K
< · · · < αN +

π

K

< α1 +
3π

K
< · · · < αN−i +

3π

K

< αN−i+1 +
3π

K
< · · · < αN +

3π

K

< α1 +
5π

K
< · · · < αN−i +

5π

K

...

< αN−i+1 +
(2K − 3)π

K
< · · · < αN +

(2K − 3)π

K

< α1 +
(2K − 1)π

K
< · · · < αN−i +

(2K − 1)π

K
.

Thus,
(
N (λl)

)
L=NK
l=1 =
{

N − i+ 1, . . . , N, 1, 2, . . . , N − i
︸ ︷︷ ︸

1

,

N − i+ 1, . . . , N, 1, 2, . . . , N − i
︸ ︷︷ ︸

2

, (45)

...

N − i+ 1, . . . , N, 1, 2, . . . , N − i
︸ ︷︷ ︸

K

}

for i = 1, 2, . . . , N . Therefore, for Case i, i = 1, 2, . . . , N , and for l′ = 1, 2, . . . , N(K − 1), we have

N (λl′) = N (λl′+N). With this, Claim 1 is proved. �

VII. N STEPS SUFFICE WHEN |N (λl)| = 1 FOR ALL l

Given |N (λl)| = 1 and

N (λl′) = N (λl′+N), l′ = 1, 2, . . . , N(K − 1), (46)

we want to show that N steps will suffice for convergence. Now, consider the main problem of maximizing∣
∣
∣h0 +

∑N

n=1 hne
jθn

∣
∣
∣, where it is clear that our discrete phase shift selections can only tune the second

term in the absolute value. Let

gc ,

N∑

n=1

hne
jθn =

N∑

n=1

βne
j(αn+θn). (47)

In each step of the Algorithm 1, we define

gc,l , gl − h0, l = 1, 2, . . . , L. (48)
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Algorithm 2 Simplified Algorithm 1 with |N (λl)| = 1 for all l

1: Initialization: Set µ = α0 − π
K

2: Compute ϕn = (αn − α0) mod 2π
K

, n = 1, 2, . . . , N
3: Sort ϕn such that 0 ≤ ϕn1

< ϕn2
< · · · < ϕnN

< 2π
K

4: Set θn = argmaxθ′n∈ΦK
cos(θ′n + αn − µ), store θn, n = 1, 2, . . . , N

5: Set g0 = h0 +
∑N

n=1 hne
jθn , absgmax = |g0|

6: for l = 1, 2, . . . , N do

7: Let (θnl
+ ω ← θnl

) modΦK

8: Let

gl = gl−1 + hnl

(
ejθnl − ej(θnl

−ω)modΦK
)

9: if |gl| > absgmax then

10: Let absgmax = |gl|
11: Store updated θnl

12: end if

13: end for

14: Read out θ∗n as the stored θn, n = 1, 2, . . . , N .

Note that, in (48), h0, gl, and gc,l are complex numbers, with l being a generation index. From Proposition 1,

we know that whenever µ is anywhere in arc(snk : sn,k+1), θn does not change. The angle θn only changes

when µ changes from one arc to another, i.e.,

µ ∈ arc(ejλl : ejλl+1)→ µ ∈ arc(ejλl+1 : ejλl+2) (49)

in which case θn must be updated as

θn → θn + ω, n ∈ N (λl+1). (50)

With (49)–(50), the naive approach in Algorithm 1 gathers all possibilities for gl in NK steps by

considering all possible arcs that µ can be in. To show that N steps will suffice, we want to point

out the redundancy in those NK steps. Consider any consecutive N steps in Algorithm 1. In those steps,

the phase shifts will be updated as θn → θn + ω with n ∈ (N (λl))
l′+N−1
l=l′ , l′ = 1, 2, . . . , N(K − 1) + 1.

Since we have (46), the following must hold

(N (λl))
l′+N−1
l=l′ = {1, 2, . . . , N}, (51)

which says that after any N consecutive steps in Algorithm 1, θn → θn +ω, n = 1, 2, . . . , N . To proceed

further, we need an intermediate result, which we discuss below.

Remark: Let gc =
∑N

n=1 βne
j(θn+αn) be the cascaded channel term in (47). For any angle θ′, gc(θn+θ′) =

gc(θn)e
jθ′ , resulting in |gc(θ1, θ2, . . . , θn)| = |gc(θ1 + θ′, θ2 + θ′, . . . , θN + θ′)|. This remark illustrates that

the rotation by a phase shift of an arbitrary angle θ′ does not change the received power. Therefore, if

θn → θn + ω with n = 1, 2, . . . , N ,

|gc,l′| = |gc,l′+N |, l′ = 1, 2, . . . , N(K − 1) (52)

must be true. Therefore, among the NK possibilities in Algorithm 1, there are only N unique values of

|gc|. Consequently, as the algorithm is tuning gc to maximize |gc + h0|, it is sufficient to consider N arcs

that are closest to h0.

The algorithm to implement when |N (λl)| = 1 for l = 1, 2, . . . , N is given under Algorithm 2. The

initialization technique introduced in the Appendix for Algorithm 1 is employed in Algorithm 2.
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VIII. FEWER THAN N STEPS SUFFICE WHEN |N (λl)| > 1 FOR SOME l

With N (λl) given in Claim 1, for |N (λl)| > 1 to be true for some l, consider a repetition among snk,

i.e., assume there are n1, n2, k1, and k2 such that sn1,k1 = sn2,k2 , i.e.,
(

αn1
+

(2k1 − 1)π

K

)

mod 2π =

(

αn2
+

(2k2 − 1)π

K

)

mod 2π.

(53)

Equation (53) is possible only if βn1
= βn2

as βn are defined in Claim 1. Therefore, all K phase

values represented by βn1
and βn2

must be equal, meaning there is an N ′ such that M = (N − N ′)K.

Consequently, the problem of sorting snk according to their phase values with 0 ≤ α1 < α2 < · · · <
αN < 2π

K
reduces to 0 ≤ γ1 < γ2 < · · · < γM

K
=N−N ′ < 2π

K
for

smk = ej(γm+(k− 1

2
) 2π
K

), m = 1, 2, . . . ,
M

K
, k = 1, 2, . . . , K (54)

where γm = min{αnm,1, αnm,2, . . . , αnm,Gm
} such that βnm,1 = βnm,2 = · · · = βnm,Gm

. So, this time, there

are M
K

+ 1 = N −N ′ + 1 many cases.

For unique smk, let M(λl) = {m|λl = smk}. We know from (45) that the following must hold

(
M(λl)

)M=(N−N ′)K
l=1 =
{M

K
− i+ 1, . . . ,

M

K
, 1, 2, . . . ,

M

K
− i

︸ ︷︷ ︸

1

,

M

K
− i+ 1, . . . ,

M

K
, 1, 2, . . . ,

M

K
− i

︸ ︷︷ ︸

2

, (55)

...

M

K
− i+ 1, . . . ,

M

K
, 1, 2, . . . ,

M

K
− i

︸ ︷︷ ︸

K

}

for i = 1, 2, . . . , M
K

where in each one of the K groups there are M
K

= N − N ′ elements. To calculate

N (λl), we define the following sets

Rm = {nm,1, nm,2, . . . , nm,Gm
|

γm = min{αnm,1, αnm,2, . . . , αnm,Gm
}, (56)

βnm,1 = βnm,2 = · · · = βnm,Gm
}
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Algorithm 3 Simplified Algorithm 1 where |N (λl)| > 1 for some l

1: Initialization: Set µ = α0 − π
K

2: Find γm and Rm as in (54) and (56), m = 1, 2, . . . , M
K

3: Compute ϕm = γm − α0 (mod2π
K
), m = 1, 2, . . . , M

K

4: Sort ϕm such that 0 ≤ ϕm1
< ϕm2

< · · · < ϕmM
K

< 2π
K

5: Set θn = argmaxθ′n∈ΦK
cos(θ′n + αn − µ), store θn, n = 1, 2, . . . , N

6: Set g0 = h0 +
∑N

n=1 hne
jθn , absgmax = |g0|

7: for l = 1, 2, . . . , M
K

= N −N ′ do

8: For each n ∈ Rml
, let (θn + ω ← θn) modΦK

9: Let

gl = gl−1 +
∑

n∈Rml

hn

(
ejθn − ej(θn−ω)modΦK

)

10: if |gl| > absgmax then

11: Let absgmax = |gl|
12: Store updated θn for n ∈ Rml

13: end if

14: end for

15: Read out θ∗n as the stored θn, n = 1, 2, . . . , N .

where Gm = |Rm| and
⋃M

K

m=1Rm = {1, 2, . . . , N} must hold. As a consequence, one can calculate

N (λl) = RM(λl). Therefore, the “update loop” in Algorithm 1 can be written as

(
N (λl)

)M=(N−N ′)K
l=1 =
{

RM
K

−i+1, . . . ,RM
K
,R1,R2, . . . ,RM

K
−i

︸ ︷︷ ︸

1

,

RM
K

−i+1, . . . ,RM
K
,R1,R2, . . . ,RM

K
−i

︸ ︷︷ ︸

2

, (57)

...

RM
K

−i+1, . . . ,RM
K
,R1,R2, . . . ,RM

K
−i

︸ ︷︷ ︸

K

}

where the periodicity in the update rule still holds in (57), i.e., N (λl′) = N (λl′+M
K
), l′ = 1, 2, . . . , M

K
(K−

1). With the new update rule, after any M
K

consecutive steps in Algorithm 1, the phase shift selections

will be updated such that θn → θn + ω, n = 1, 2, . . . , N . This will result in

|gc,l′| =
∣
∣
∣gc,l′+M

K

∣
∣
∣ , l′ = 1, 2, . . . ,

M

K
(K − 1). (58)

Therefore, the sufficiency of M
K

= N−N ′ steps follows from (52) and the text that follows it in Section VII.

Algorithm 3 implements the technique described in this section. The initialization technique introduced

in the Appendix for Algorithm 1 is employed in Algorithm 3.

Note that if the BS-UE link is completely blocked, i.e., h0 = 0, the for loop in Step 7 can end at

l = M
K
− 1 = N −N ′− 1, which is one fewer step to run Algorithm 3. This is because, we can guarantee

in (58) that |gc,l′| =
∣
∣
∣gc,l′+M

K

∣
∣
∣ , whereas we cannot say right away that |gc,l′ + h0| =

∣
∣
∣gc,l′+M

K
+ h0

∣
∣
∣ will be

satisfied. In [15], the authors reduce the number of steps from KN to 2N exploiting h0. In this work,

with the periodicity proof, we reduce to N or fewer steps whether the direct link is blocked or not.
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Fig. 9. 1st Percentile Ergodic Rate (3) results vs. κ, for K ∈ {2, 4}

Step 7 in Algorithm 2 and Step 8 in Algorithm 3 are such that the phase shifts updates are restricted to

just one or just a few. These steps ensure that the running times of these algorithms are much less than

those published in the literature, e.g., [14], [20].

Figure 8 shows the behaviors of |gl|2 and |gc,l|2 against l for a number of channel realizations at N = 16
and K = 4. The periodicity of |gc,l|2 is clearly observable in this figure. It is this periodicity that we

take advantage of in reducing the number of steps for the algorithm to converge to N with a simple

elementwise update rule in this paper.

IX. EFFECT OF RICIAN FACTOR

Using the given definition of the Rician channel model in equation (10), we extend the 1st percentile

SNR Boost results in Fig. 6 by showing the 1st percentile ergodic rate performance results for N ∈
{36, 64, 144}, with different values of κ, in Fig. 9. The performance of UPQ against Algorithm 2 shows

how closely UPQ can approximate the global optimum with increasing LOS gain, i.e., κ. Even with

K = 2 and lower values of N , the UPQ performance gets significantly closer to Algorithm 2, unveiling

the potential of the simple quantization approach, i.e., UPQ. We remark that, as κ increases, variation

among each βn realization decreases. This results in more reliable performance provided by UPQ.

X. EXTENSION TO MULTIUSER SCENARIO

Similar to [13], we extend our Algorithm 2 to optimize a multicast network, assuming perfect CSI

with Rayleigh fading. Consider a max-min SNR problem with U ≥ 2 receivers with a transmit power of
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Fig. 10. CDF of the minimum SNR across U = 4 users for K = 2 and N ∈ {16, 64, 256}.

P = 30 dBm, i.e.,

max
θn∈ΦK

min
u

{

P |β0,ue
jα0,u +

∑N

n=1 βn,ue
j(αn,u+θn)|2

σ2
u

}

, (59)

where σ2
u = −90 dBm is the noise variance at each receive antenna, h0,u = β0,ue

jα0,u is the direct channel,

and hn,u = βn,ue
jαn,u is the reflected channel through the n-th RIS element for the u-th receiver.

The way we extend our algorithm is as follows. While performing Algorithm 2 for user u, we decide

the best possible solution in the for-loop of Algorithm 2 by maximizing the minimum channel gain among

all users. Therefore, the for-loop of Algorithm 2 for a multicast network takes
∑N

l=1O(U) = O(NU)
steps. Then, this process is repeated for each user, to select the best option among U possibilities, which

results in O(NU2) complexity in total. We remark that the complexity of the APX algorithm in this

multicast scenario is O(NU).
The CDF plots for the minimum SNR performance of the multicast extension are given in Fig. 10

for K = 2 and N ∈ {16, 64, 256}. It can be seen that Algorithm 2 can provide superior performance

compared to both APX and UPQ. The average gain against UPQ is 3.0 dB and against APX is 1.3 dB

for N = 16. When N = 64, the average gain against UPQ is 4.0 dB and against APX is 2.3 dB. Note

that these gains with Algorithm 2 get larger as N increases.

XI. PERFECT CSI ASSUMPTION

In this paper, we consider a wireless communications scenario assisted by an RIS to examine the

performance of our algorithms. The proposed algorithms are highly efficient compared to the current state

of the literature, as shown by numerical results. One of the main contributions is the improved performance

that our algorithms can achieve. With this, the proposed algorithms in this paper take αn, n = 1, . . . , N ,

i.e., the channel phases, together with βn, n = 1, . . . , N as input to give the optimal discrete beamforming

solution. We assume perfect CSI while deciding the RIS phase shifts, similar to [15]. One concern can be

that, since the RIS elements are passive and there is a lack of signal processing capabilities, perfect CSI

for the cascaded BS-RIS-UE link practically may not be available. However, the perfect CSI assumption

can relate to some scenarios with certain assumptions. For example, with a two-stage approach in RIS-

aided localization systems, the passive beamforming at the RIS is performed with the available channel

information from the last localization step [23], [24]. Also, in experimental setups with RISs, the locations

of the transmitter and receiver are known and passive beamforming is performed assuming that the location

information of the UE is available [5], [14], [20], [21].

As described in Section III, the channels undergo Rician fading. While the performance and numerical

results are provided with κ = 0 to compare with similar algorithms from the recent literature, for scenarios
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Fig. 11. CDF plots for SNR Boost [15], N = 200, σ2
est = −90dBm, κ = 0, and K ∈ {2, 4}.

with the dominant line-of-sight assumption in both BS-RIS and RIS-UE, i.e., large κ, the user’s direction-

of-arrival (DoA) information would be sufficient to find the channel phases, similar to the geometrical

optimal model proposed in [31]. Whereas, if the channels are strictly NLOS, i.e., κ = 0 corresponding to

Rayleigh fading, an example in the literature for estimating the channels in BS-RIS and RIS-UE links is to

estimate the channels [34], which is the technique used in [13] for performance analysis. Another example

is the joint channel estimation and passive beamforming framework in [12], where both are refined in each

step with the CSI assumption for channel-gain-maximization. Therefore, in many scenarios, our perfect

CSI assumption does not violate the applicability of our algorithms for future work in the literature.

A. Performance Results with the Estimated CSI

We investigate the performance of our proposed algorithm also considering the effect of imperfect CSI,

similar to [13], by using the ON-OFF strategy in [34]. In these results, the APX algorithm is from [13],

whereas UPQ and Algorithm 2 are as proposed in this paper. We adopt the same system parameters as in

[13] to give a fair comparison, where the background noise power in the channel estimation phase σ2
est is

set to -90 dBm as in the transmission phase. With this, the CDF of the performance results are given in

Fig. 11 for K = 2 and K = 4 where the channels follow Rayleigh fading, i.e., κ = 0. The performance

results show that Algorithm 2 outperforms both UPQ and APX. The average gain against UPQ is 1.5 dB

and against APX is 0.8 dB for K = 2. When K = 4, the average gain against UPQ is 0.5 dB and against

APX is 0.3 dB. However, it is important to note that in the worst-case scenario, i.e., the lower SNR Boost

regime, the gain of Algorithm 2 over UPQ and APX is much higher, especially when K = 2.

XII. CONVERGENCE TO OPTIMALITY

We will now discuss the convergence of Algorithm 2 and Algorithm 3 to the global optimum. This

will be given in the Theorem below. The proof of our Theorem is similar to but actually different than

the proof of Theorem 1 of [15].

Theorem: Algorithm 2 and Algorithm 3 yield the global optimum solution (θ∗1, θ
∗
2, . . . , θ

∗
N ) to (11) in

average time O(N).
Proof: First, we will discuss the global optimality of our Algorithm 2 and Algorithm 3. This follows

because each θn is optimally decided from (15) as in Proposition 1 and all the possible arcs have been

considered for µ that yields to all unique values of |gc|, for which the optimality follows from (52) and

the text that follows it in Section VII.

Next, we will discuss the complexity of Algorithm 2 and Algorithm 3. Similar to [15], assuming αn are

uniformly distributed in [0, 2π), ϕn and ϕm are uniformly distributed in the interval [0, 2π
K
). As in [15], it
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can be argued that sorting in both algorithms will take O(N) time on average. For Algorithm 2, the for

loop from Step 6 to Step 13 takes
∑N

l=1O(1) = O(N) steps. For Algorithm 3, the for loop from Step 7 to

Step 14 takes
∑N−N ′

l=1 O(|Rml
|) = O(N) steps. As our algorithms are working with elementwise updates,

the time complexity of the steps is also linear in N , as discussed in Section XIII. This means the overall

complexity is O(N) on the average for both Algorithm 2 and Algorithm 3. Note that in contrast to [15],

when h0 = 0, we do not need to try out all possible arcs, and the average complexity will remain as

O(N), instead of becoming O(KN). �

Although we intend Algorithm 1 as a conceptual stepping stone towards Algorithms 2 and 3, a proof

for its convergence to the optimal solution can be deduced in a fashion similar to that for Algorithm 2.

Finally, we remark that our algorithms do not require the uniformity assumption on αn to be able to

assure the global optimum. We assume αn to be uniform for calculating the complexity, as in [15]. In

fact, both Algorithm 2 and Algorithm 3 can be applied to a scenario and assure the global optimum where

αn are arbitrarily selected.

XIII. COMPUTATIONAL TIME RESULTS

TABLE II

EXECUTION TIME [S] COMPARISONS FOR 1000 CHANNEL REALIZATIONS IN NON LINE-OF-SIGHT CHANNEL (NLOS), K = 2.

Method N = 10 N = 50 N = 100 N = 200 N = 500 N = 1000 N = 2000

DaS 0.1319 0.6268 1.2641 3.0912 18.2086 60.3753 277.2977

Algorithm 1 0.0804 0.1722 0.3874 0.9425 5.2790 16.2042 55.7506

Algorithm 2 0.0192 0.0416 0.0650 0.1107 0.2836 0.5130 1.1875

APX 0.0233 0.0377 0.0596 0.1036 0.2373 0.3732 0.9257

UPQ 0.0007 0.0011 0.0016 0.0024 0.0061 0.0094 0.0211

TABLE III

EXECUTION TIME [S] COMPARISONS FOR 1000 CHANNEL REALIZATIONS IN NLOS, K = 4.

Method N = 10 N = 50 N = 100 N = 200 N = 500 N = 1000 N = 2000

DaS 0.1552 0.9806 1.9666 6.9802 30.7800 105.6092 491.2088

Algorithm 1 0.0796 0.3384 0.7967 2.2021 10.0270 33.7036 115.7444

Algorithm 2 0.0211 0.0521 0.0934 0.1609 0.3180 0.5718 1.2623

APX 0.0249 0.0506 0.0890 0.1475 0.2648 0.4460 1.0281

UPQ 0.0007 0.0012 0.0016 0.0028 0.0063 0.0090 0.0204

We now provide computational complexity figures for our algorithms Algorithm 1 and Algorithm 2 in

Fig. 12 and Fig. 13 for K = 2 and K = 4, respectively. We compare our algorithm with a number of

algorithms from the literature, which are Approximation algorithm (APX) [13], and Divide-and-Sort (DaS)

algorithm [14]. We also tabulate these results in terms of simulation time on the same computer (Dell XPS

15 9530 employing Intel Core i9-13900H CPU, 2.6 GHz, with 14 cores and 20 logical processors) with

implementations carried out in Matlab. We note that all the results provided are obtained with our own

implementation of the algorithms in the most efficient way we were able to achieve. In Table II, we have

the simulation time results in seconds plotted against the number of RIS elements N for K = 2. Then,

in Table III, we have the simulation results for K = 4. We note that among these algorithms, APX and

UPQ do not have optimal performance, whereas DaS is claimed to be optimal. Recall that Algorithm 1

and Algorithm 2 achieve the optimal result.

In Fig. 12 and Fig. 13, the computational complexities of the algorithms are plotted against the number

of RIS elements, N . Algorithm 2, APX, and UPQ provides execution times that increase linearly with

N . Moreover, it is seen that our Algorithm 2 can achieve comparable computational complexity with

APX, for K = 2 and K = 4, thanks to our practical initialization technique presented in the Appendix.

Therefore, Algorithm 2, or Algorithm 3 when applicable, can be considered as benchmark algorithms

instead of the APX algorithm, to get the optimum result with negligible additional computational costs.
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Fig. 12. Plot of execution time [s] comparisons for 1000 channel

realizations in NLOS, K = 2. Note vertical scale is logarithmic.
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Fig. 13. Plot of execution time [s] comparisons for 1000 channel

realizations in NLOS, K = 4. Note vertical scale is logarithmic.

DaS is claimed to be optimal, but requires extremely high execution time, which makes it difficult to

increase K. Our algorithms Algorithm 1 and Algorithm 2 are optimal in terms of performance. With the

substantial reduction in computational complexity from Algorithm 1, Algorithm 2 can achieve substantially

lower execution times, which is robust to increasing K, as shown in Tables II and III, still ensuring the

optimum result.

A. Remarks on the Complexity

Finally, we note that, to achieve a linear time-complexity as in [15], the main enabling factor is using

the incremental update of gl with N (λl) in the for-loop of Algorithm 1, 2, and 3, rather than calculating

θn, n = 1, 2, . . . , N for each candidate µ. In order to do the elementwise updates, the sorting of channels

in the initialization steps of Algorithm 1, Algorithm 2, and Algorithm 3 are required. It could be possible

to avoid sorting of the channels by quitting elementwise updates.

Assume we adopt an approach, similar to [14], [21], where we first gather possible phase shift selections

θ
l, l = 1, . . . , L, and then perform each of them separately to find the maximum solution, for which the

time complexity becomes O(N2) [15]. With this approach, [14], [21] require the sorting algorithm, in fact,

[21] reports the complexity of the sorting requirement as it is the dominant term. However, we claim that,

if we were to quit the elementwise approach, we could avoid the requirement of sorting in our algorithms.

The main function of sorting is to try out all “arcs” for µ, so, we need to know the sorting of snk. On

the other hand, if we were to try µ = sn′k′ for all unique sn′k′ and decide θn, n ∈ {1, . . . , N}\n′ with our

Lemma, then setting θn′ = (k′− 1)ω, we could generate the same set of solutions. Note that, in that case,

the information of which snk should come before or after would be unnecessary. Therefore, we could avoid

sorting. However, it still would not perform better than Algorithm 1, as the elementwise update plays

a significant role in terms of lower time complexity. Moreover, using our initialization technique with

the least number of steps can reduce the overall computational time substantially with the elementwise

updates.

XIV. ALGORITHM COMPARISONS

To highlight the novelty and contribution of our paper, we compare our work with the existing literature

for the problem defined in (11) in Table IV. There are two main comparisons: The first is the number of

search steps to ensure convergence to the global optimum, and the second is the required time complexity

to run the algorithms. Note that, although the number of search steps is linear in N , an incremental or

elementwise structure is required for trying all the candidate phase shift configurations. Among those

algorithms with ensured global optimality, our Algorithm 2 and Algorithm 3 are the only ones that can



24

TABLE IV

COMPARISON OF ALGORITHMS 2-3 AND UPQ WITH ALGORITHMS FROM THE LITERATURE. SEE THE TEXT FOR DEFINITION OF N (λl).

Search Steps Time Optimality

Complexity Guarantee

[13] 3 O(N) Local

APX

[13] Projection of Each — Local

CPP Phase Selection

[13] 2N + 2, for K = 2 O(N) Global

Optimal (K = 2 Only)

[14] N , K = 2 O(N2) Global

DaS KN , K > 2 (not elementwise)

[15] 2N , h0 6= 0 O(N) Global

KN , h0 = 0 O(KN)
[20] N , for h0 = 0 O(N2) Global

(not elementwise)

[21] 2N + 1, K = 2 O(N2) Global

2N(K − 1), K > 2 (not elementwise)

[23] KN O(N2) Global

FPB (not elementwise)

UPQ Deterministic — Local

Algorithm N , any h0 O(N) Global

2 N (λl) = 1, all l
Algorithm < N , any h0 O(N) Global

3 N (λl) > 1, some l

ensure global optimality in N or fewer search steps for any scenario. Regarding the algorithms that

converge to a local optimum, APX requires three search steps to approximate the global optimum. Other

algorithms that achieve a local minimum are CPP and our algorithm UPQ. The detailed comparison of

CPP and UPQ is discussed in Sec. IV.

XV. CONCLUSION

In this paper, we provided necessary and sufficient conditions for determination of optimum phase

values in order to maximize the received power at a UE which receives its transmission by means of

reflections from an RIS, when the phase values are from a discrete-valued set. Algorithms are provided

to achieve this in a number of steps equal to N , the number of RIS elements, or fewer. In the literatute,

the number of steps to achieve this maximum is given as KN or 2N on the average, e.g., [14], [15]. In

conclusion, for a discrete-phase RIS, the techniques in this paper achieve the optimum received power in

the smallest number of steps published in the literature with an elementwise update rule. In addition, in

each of those N steps, the techniques presented determine only one or a small number of phase shifts,

which result in a substantial reduction of computation time, as compared to the algorithms in the literature,

e.g., [14], [20], [21].

Finally, we want to make the following important point. In this paper, we addressed the ongoing problem

in the literature of finding an optimal solution to the problem (11) within the fewest number of steps, or

with minimum computational complexity. Our Algorithm 2 (or Algorithm 3 when applicable) achieves

this goal. Yet, a secondary result of this paper is that the intuitive UPQ solution, which is based on the

independent uniform quantization of θn on the unit circle with K points, results in suboptimal but very

close to the optimal solution with very small complexity for all practical cases, provided full CSI.
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APPENDIX: ELEMENT-BASED SIMPLE UPDATE RULE

We now further simplify Algorithm 1 by employing our periodicity proof, so that there is no need for

calculating snk or λl. What we need to have is, given an initial µ selection, say ej µ ∈ arc(ejλi−1 : ejλi),
we want to know the N-step update rule N (λl), l = i, i+1, . . . , i+N −1 in the for loop of Algorithm 1.

Claim: Let U be the set to define the N consecutive updates in the for loop of Algorithm 1. For an

initial µ0 selection, the update rule in the for-loop of Algorithm 1 will be U = {n1, n2, . . . , nN |0 ≤
ϕn1

< ϕn2
< · · · < ϕnN

< 2π
K
, ϕn = (αn − µ0 +

π
K
) mod 2π

K
, n = 1, 2, . . . , N}.

Proof: First, consider the case when µ = 0. We know that the initial arc is arc(ejλL : ejλ1). Therefore,

the update rule must be U = (N (λl))
N
l=1. We have already calculated this in (45) for any Case i given in

(39). Note, from (39) to (45), (N (λl))
NK
l=1 follows from the indexes of the sorted values of

ϕn =
(

αn +
π

K

)

mod
2π

K
. (60)

Now, consider the case when µ = µ0 where ej µ0 /∈ arc(ejλL : ejλ1). In this case, instead of moving µ
to a new arc, we can introduce an offset of − µ0 for all λl. Note that this corresponds to αn → αn− µ0,
for all n. Therefore (60) will be updated as

ϕn =
(

αn − µ0 +
π

K

)

mod
2π

K
. (61)

Thus, the proof is complete. �

Now, when h0 6= 0, to initialize with µ = α0− π
K

, we can simply insert µ0 = α0− π
K

in (61) and get

ϕn = (αn − α0) mod
2π

K
(62)

to be used in the initialization step. When the BS-UE link is completely blocked, or h0 = 0, initializations

can be updated as µ = 0 in Step 4 and ϕn =
(
αn − π

K

)
mod 2π

K
for n = 1, 2, . . . , M

K
in Step 2.

It is important to note that, the simplification in (61) relieves Algorithm 1 from the burden to calculate

NK instances of both snk and λl, and significantly reduces the computational complexity, as shown in

Section XIII.
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