
1 
 

   Control Requirements and Benchmarks for Quantum 

Error Correction  

Yaniv Kurman1, Lior Ella1, Ramon Szmuk1, Oded Wertheim1, Benedikt Dorschner2, Sam 

Stanwyck2, and Yonatan Cohen1 

1Quantum Machines Inc., Tel Aviv, Israel  

2NVIDIA Corp, Santa Clara, CA, USA 

 

Reaching useful fault-tolerant quantum computation relies on successfully implementing 

quantum error correction (QEC). In QEC, quantum gates and measurements are 

performed to stabilize the computational qubits, and classical processing is used to 

convert the measurements into estimated logical Pauli frame updates or logical 

measurement results. While QEC research has concentrated on developing and 

evaluating QEC codes and decoding algorithms, specification and clarification of the 

requirements for the classical control system running QEC codes are lacking. Here, we 

elucidate the roles of the QEC control system, the necessity to implement low latency feed-

forward quantum operations, and suggest near-term benchmarks that confront the 

classical bottlenecks for QEC quantum computation. These benchmarks are based on the 

latency between a measurement and the operation that depends on it and incorporate the 

different control aspects such as quantum-classical parallelization capabilities and 

decoding throughput. Using a dynamical system analysis, we show how the QEC control 

system latency performance determines the operation regime of a QEC circuit: latency 

divergence, where quantum calculations are unfeasible, classical-controller limited 

runtime, or quantum-operation limited runtime where the classical operations do not 

delay the quantum circuit. This analysis and the proposed benchmarks aim to allow the 

evaluation and development of QEC control systems toward their realization as a main 

component in fault-tolerant quantum computation. 

   



2 
 

Introduction 

Quantum error correction (QEC)  [1,2] stands as the clearest path for reaching the 

exponential advantage of quantum computing and solving problems of great significance such 

as simulating complex quantum systems  [3], factorization  [4], and more. In expected QEC 

implementations, the quantum information is encoded over several physically separated qubits, 

and local parity measurements (stabilizers) which enable error detection and correction of local 

physical errors  [5]. Although adding physical qubits adds errors, increasing the number of 

qubits will reduce exponentially the logical quantum errors if the physical errors are below a 

certain QEC code-dependent threshold  [6,7], opening the path toward useful quantum 

computation.  

Apart from the requirements on the quantum hardware, the successful execution of 

QEC codes depends on the classical control system. The classical control system is responsible 

for all classical aspects of quantum computing and includes executing the quantum control and 

measurement signals, acquiring the readout signals, and performing classical processing 

operations  [8], all in a synchronized manner. In QEC, the control system is also responsible 

for mapping the local physical measurements into logical measurement results or logical Pauli 

frame updates  [5,9–11] through an algorithmic procedure called decoding  [12]. To reach 

useful quantum computation with QEC, i.e., perform fault-tolerant non-Clifford gates, the 

control unit is required to perform quantum gates that depend on the decoding output. 

Moreover, to prevent a diverging classical calculation latency, it is crucial for the control 

system to close a tight loop, with ultra-low latency, from the physical quantum measurement 

through the classical decoding procedure to a conditional feed-forward quantum 

operation  [13]. Thus, the success of fault-tolerant quantum computation depends on 

minimizing the QEC feed-forward latency.  

Here, we analyse the requirements of a control system executing QEC codes, clarify 

the need for low latency feed-forward capabilities, and propose control system benchmarks for 

its ability to run fault-tolerant quantum computation. The proposed benchmarks are based on 

two feed-forward operations representing the necessity to run stabilizer rounds in parallel to 

the decoding and feed-forward operation. As a result, additional data is generated during the 

decoding, creating a heavier computational load on the consequent decoding and feed-forward 

operations. Instead of the common approach of evaluating solely the decoder performance, we 

define the benchmarks as the time between two analogue signals to include all classical 

components, from RF quantum control to controller-decoder communication, the decoding, 

https://www.zotero.org/google-docs/?FRUJZA
https://www.zotero.org/google-docs/?FG86gi
https://www.zotero.org/google-docs/?AnEV4H
https://www.zotero.org/google-docs/?xuqaDr
https://www.zotero.org/google-docs/?x4gRa7
https://www.zotero.org/google-docs/?AQ7IBy
https://www.zotero.org/google-docs/?Ls5g80
https://www.zotero.org/google-docs/?r3O9Ep


3 
 

and parallelization of the above. As quantum computers mature, the ability to evaluate 

holistically the control hardware with simple benchmarks is instrumental for the development 

of QECCPs (Quantum error correction control processor) toward the realization of quantum 

advantage.  

Recent years have witnessed significant scientific and engineering advancements in the 

realm of Quantum Control Processor (QCP) designs and quantum-classical processing 

capabilities  [8,14,15], enabling the realization QECCPs. State-of-the-art QCPs support real-

time control operations such as conditional pulses  [16–19], real-time control flow   [20], 

parameter updates using reinforcement learning   [21,22] or model-based optimizations   [23], 

as well as comprehensive embedded calibration and workflows  [24–27]. These capabilities 

have been instrumental in optimizing quantum fidelities, which, among other groundbreaking 

quantum research, enabled variational quantum computation  [28], extending the qubit 

lifetimes  [16,21], flagged-syndrome-based fault-tolerant quantum circuits  [20], and reaching 

the error-threshold point for QEC surface codes  [11]. We explain below that for scalable QEC 

computation for practical applications, the QECCP must encompass all the mentioned QCP 

capabilities, in addition to enhanced classical calculations, including the execution of error 

decoding algorithms within s timeframes.  

Our manuscript is structured as follows. In Section II we give an example of the 

required tasks of the QECCP based on the well-known surface code. Section III is devoted to 

explaining in detail why the QEC feed-forward latency will determine the logical clock cycle 

and whether executing QEC quantum calculations is possible. In section IV, we suggest two 

benchmarks, which are defined by pseudocode and exemplified by simple logical operations. 

Finally, in section V we add a discussion about additional possible benchmarks and the long-

term requirements of a QECCP once quantum hardware is scaled. 

 

II. The QECCP required operations, exemplified with a surface code  

Among the different possible QEC codes that can be used to benchmark and evaluate 

the QECCP, the surface code [9,29–31] stands out because of its high error threshold of ~1%, 

orders of magnitude higher than other codes, and clear physical implementation (requires 

nearest-neighbour connectivity). Due to these qualities, many significant aspects of the surface 

code have been developed in detail, including fault-tolerant computation techniques [32–35], 

high-fidelity magic state preparation [36–38], decoding algorithms [39–46], simulation 

https://www.zotero.org/google-docs/?pWtOQ5
https://www.zotero.org/google-docs/?TReVVA
https://www.zotero.org/google-docs/?CFILOO
https://www.zotero.org/google-docs/?1Rm0zX
https://www.zotero.org/google-docs/?D6kU5X
https://www.zotero.org/google-docs/?UsMfSr


4 
 

tools  [47], distillation schemes  [30,48–50], and scaling suggestions  [30,35]. The clear path 

to implement fault-tolerant quantum computing with surface codes motivates us to define the 

QECCP requirements with the surface codes as a representative example, though the QECCP 

quantum and classical operations, as well as the benchmarks below, are relevant to any 

stabilizer code.  

In brief, the surface code implements each logical qubit with a set of parity checks that 

can be tiled onto a square lattice. In the qubit-efficient rotated surface implementation, the 

quantum information of a single qubit (logical qubit) is encoded in a single surface with 𝑑2 

physical qubits called data qubits (black circles in Fig. 1a), where 𝑑 is the distance of the QEC 

code. In addition to the data qubits, the logical qubit requires 𝑑2 − 1 ancillary physical qubits 

(green and red circles in Fig. 1a), which perform local parity checks (called a stabilizer) of their 

nearest-neighbour data qubits. The stabilizers are the heart of any stabilizer-based QEC code: 

the set of stabilizer operators defines the Hilbert subspace of the logical qubit, called the code 

space [5]. The stabilizer measurements collapse the quantum state into the code space up to a 

local Pauli error which is detected according to the measurement outcome (called a syndrome). 

The desired quantum information is encoded by initialization of the data qubits followed by a 

measurement of all stabilizers (stabilizer round, Fig. 1b), while the quantum information is 

stored when repeating the stabilizer measurements and keeping track of the syndrome 

measurement results, in a process called decoding.  

 

Figure 1: Example of a distance-3 surface code performing a non-Clifford gate. (a) A 

logical qubit in the surface code, implemented with 𝑑2 data qubits (black) and 𝑑2 − 1 ancilla 

qubits (red and green) which are used for the stabilizer measurements. (b) The physical 

quantum circuit in an 8-step stabilizer measurement round for the X (top) and Z (bottom) 

https://www.zotero.org/google-docs/?7MWJaq
https://www.zotero.org/google-docs/?QC6DFC


5 
 

stabilizers. The controller is required to perform parallel multi-qubit operations in each step 

(some operations are shown in (a)), for example, measure all ancillary qubits of the surface in 

parallel in the final step. (c) The physical implementation of a non-Clifford gate with surface 

codes. Initialization of the data qubits of an ancillary surface to implement a magic state (top), 

a lattice surgery between the ancillary surface and a computational qubit (middle) where the 

two surfaces are converted to one elongated surface (which ends by measuring the surgery data 

qubits), and a measurement of the data qubits of the ancillary surface (bottom). We note that 

these operations are separated by stabilizer rounds. (d) The logical circuit that describes the 

operations in (c), performing a non-Clifford gate. The executed gate is determined by the 

logical measurement results. Feed-forward in the form of a lattice surgery with a Pauli state is 

required for executing the planned logical gate. (e) The quantum logic that the QECCP is 

required to execute.  

The fault-tolerant non-Clifford gates with surface codes are done in a measurement-

based quantum computation fashion. Such quantum computation can be done by preparing an 

ancillary qubit in a magic state, entangle it with the computational qubits, measure the ancillary 

qubit, and apply feed-forward according to the measurement result [51]. The feed-forward is 

required to apply a specific non-Clifford gate of choice.  To execute this procedure with surface 

codes, the quantum logic that the classical controller should perform includes (Fig. 1e and 

examples in Fig. 1c-d): 

1. Logical qubit initialization: encoding within the data qubits a specific logical state (for 

example in the magic state |𝑇⟩𝐿 = |0⟩𝐿 + 𝑒𝑖𝜋/4|1⟩𝐿   [36–38,52]). 

2. Lattice surgery: combining two or more surfaces into one elongated surface. The 

measurement of ancillary qubits that are located between two (or more) 

surfaces  [32,53] performs a logical multi-qubit Pauli measurement (for example, 𝑀𝑋𝑋 

or 𝑀𝑍𝑍) which reduces the Hilbert space by a degree of freedom. 

3. Single logical qubit measurement: measurement of the surface’s data qubits in the 𝑋 or 

𝑍 basis.  

4. Feed-forward logical operations: based on the QEC decoding, a real-time logical circuit 

modification (which include the logic operations in 1-3) is needed to implement the 

desired non-Clifford logical operation.  

In the example shown in Fig. 1d, to perform a  𝑇 = 𝑑𝑖𝑎𝑔(1, 𝑒𝑖𝜋/4) gate at the logical 

level, the feed-forward logical gate get the form of a logical 𝑆 = 𝑑𝑖𝑎𝑔(1, 𝑖) gate  which is 

performed by a lattice surgery with a surface in a Pauli state that is conditioned to the first 

lattice surgery result. Since this correction cannot propagate through a non-Clifford gate (as we 

explain in SM section S1), a useful quantum circuit which is formed by a set of non-Clifford 

gates (each is executed through a procedure similar to Fig. 1d) will be delayed until the feed-

forward is applied. 

https://www.zotero.org/google-docs/?7vFwhu
https://www.zotero.org/google-docs/?Mpfry0


6 
 

The feed-forward gate will depend on the QEC decoding outcome. The decoding unit 

(decoder) processes all measurements that were acquired up to a certain point and converts this 

data into a logical Pauli frame flip (𝐼,𝑋,𝑌,or 𝑍) of each logical qubit and determines logical 

measurement results (single-qubit measurements and lattice surgeries). The logical Pauli frame 

corrections will not necessarily lead to any additional physical gates (that can introduce 

additional errors and delay the circuit) since the Pauli corrections can propagate in software to 

the consequent logical measurement [29]. However, since a feed-forward operation is inherent 

to the non-Clifford gate implementation, a full QECCP is required to support a hardware-

efficient and accurate decoder with low-latency for the logical feed-forward.   

The final part of the QECCP will be the orchestration between all operations above. 

We present in Fig. 2 a possible architecture and data flow of the QECCP. Once a quantum 

logical gate-level program is defined, and before its execution (offline), the QECCP translates 

the logical level circuit to surface operations [54] and then to a pulse-level program that 

includes an optimized pulse sequence, classical decision-making, and conditional gates. This 

program is then loaded into the quantum processing unit (QPU) controller. Additionally, the 

decoder receives the expected data transfer, communication protocol with the QPU controller, 

the decoding algorithm, and the decoding parameters, e.g., the matching graph dimensions that 

can be static or dynamic. Then, the circuit execution starts (runtime). The physical quantum 

measurement results (ancillary and data-qubit measurements) are passed to a decoder that 

returns logical frames and logical measurement results to the controller and the user. The 

benchmarks below attempt to verify the capability of a QECCP to execute all of the above 

while evaluating the feed-forward latency. 

 

Figure 2. QECCP architecture and dataflow. Offline, the logical gate-level circuit is 

defined, from which the physical pulse sequence and decoding operations are derived (e.g., a 

matching graph). During runtime, the physical circuit is executed with syndrome flow from the 

https://www.zotero.org/google-docs/?iTfWL6


7 
 

controller to the decoder while the decoding results in the form of logical measurement results 

and logical frames are returned to the QPU controller and sent to the user. 

III. Feed-forward latency requirements  

One of the greatest challenges in performing QEC is reaching low feed-forward 

latencies, that is, a short time from the physical execution of a logical measurement until the 

controller plays a conditional pulse which depends on the logical measurement outcome. The 

necessity for feed-forward arises from the requirement to perform non-Clifford gates to reach 

quantum advantage (Gottesman-Knill theorem) [55]. Since some Pauli errors cannot propagate 

through non-Clifford gates without being converted into non-Clifford errors (see SI section 

S1), it is mandatory to correct the logical frame flips of the QEC code or modify the logical 

circuit before the error propagates. Therefore, the conditional feed-forward of each non-

Clifford gate must depend on the decoding result (explained in section II), where a correction 

must be applied before the consequent non-Clifford gate is fully executed. In this chapter, we 

provide a general analysis of the feed-forward latency under different classical parameters. We 

note that the analysis in this chapter can be implemented for any QEC stabilizer code that 

requires feed-forward to execute fault-tolerant quantum computation.    

To exemplify the effect of a delayed feed-forward, we consider a fault-tolerant QEC 

circuit of two consecutive non-commuting non-Clifford gates (Fig. 3a) with limited quantum 

resources of a single ancillary surface. In the logical circuit level (Fig. 3b), the execution of the 

circuit uses the ancillary logical qubit (surface) to implement the non-Clifford gates and their 

conditional corrections in a fault-tolerant manner. The physical implementation of the circuit 

is illustrated in a two-dimensional (space-time) view in Fig. 3c. Since the correction of each 

non-Clifford gate depends on a different decoding result, the physical measurements in space 

and time should be divided to different decoding tasks (each decoding tasks is represented by 

a different colour in Fig. 3c). Although most available decoders do not support the ability to 

divide the syndromes into different decoding tasks (with joint boundaries), without it, it is not 

possible to implement sequential non-Clifford gates. Specifically, the output of the decoding 

tasks that include lattice surgery between the computational surface and a magic state will 

cause a conditional modification to the quantum circuit. In this example, the outcome of the 

first decoding task (yellow in Fig. 3c) will determine the initialization state of the ancillary 

surface, either |𝑖⟩ = |0⟩ + 𝑖|1⟩ to perform the S gate correction or |𝑋
1

4⟩ = |+⟩ + 𝑒𝑖𝜋/4|−⟩ to 

start the next non-Clifford gate.  

https://www.zotero.org/google-docs/?tnF4iQ


8 
 

 

Figure 3. Example of non-Clifford computation with surface codes. (a) An example of a 

logical circuit containing two non-Clifford gates. (b) The fault-tolerant logical circuit that 

implements the circuit in (a) with surface codes with only a single ancillary surface. The dashed 

square denotes the feed-forward conditional logical gates that verify that the planned circuit is 

executed. (c) The space-time view of the circuit in (b) with surface codes. Each colour denotes 

a separate decoding task, chosen to end each task with a logical measurement. The decoding 

outcome of the lattice surgery between a magic state surface and the computation surface 

determines a feed-forward circuit, which delays the circuit by if the feed-forward latency (𝐿) 

is larger than a threshold latency 𝐿𝑡ℎ. We note that the boundary conditions between decoding 

tasks are necessary to match (red lines) syndromes (red Xs) between tasks. An implementation 

of a similar logical circuit with additional ancillary surfaces using the autocorrected 𝜋/8 

technique  [30], which can reduce the logical clock time while increasing 𝐿𝑡ℎ, is shown in Figs. 

S1 and S2. 

  

Fig. 3c also presents examples where extended feed-forward latencies (𝐿(0) and 𝐿(1)) 

delay the logical clock (𝛿(0) and 𝛿(1)respectively). However, not all values of feed-forward 

latencies will necessarily delay the logical gate execution since several stabilizer rounds prior 

to a logical measurement are needed to overcome the measurement errors. That is, the feed-

forward to the system cannot be applied immediately for correcting the quantum state (as 

in  [16,20,21,56]). The number of stabilizer rounds before the logical measurement (𝑟𝑚) defines 

a threshold latency 𝐿𝑡ℎ  = 𝑇𝑠𝑟𝑚 (with 𝑇𝑠 being the stabilizer cycle time). If the controller is 

ready to apply the feed-forward before 𝐿𝑡ℎ, then the classical controller will wait for the 

ancillary surface to be measured before it can be initialized again. This regime is quantum-

operation limited where the classical hardware does not delay the circuit and the logical clock 

cycle is completely determined by quantum operations. Once the feed-forward latency (in some 

decoding task 𝑛) is larger than the threshold latency 𝐿(𝑛) > 𝐿𝑡ℎ, the classical control delays the 

circuit, causing one of the following options: (i) the steady-state feed-forward latency (𝐿𝑠𝑠) will 



9 
 

return to 𝐿𝑡ℎ leading to a quantum-operation limited regime, (ii) the system will reach a steady-

state feed-forward latency larger than the threshold latency 𝐿𝑠𝑠 > 𝐿𝑡ℎ  (classical-operation 

limited regime), or (iii) the feed-forward latency will continuously increase to a latency 

divergence regime lim
𝑛→∞

𝐿(𝑛) → ∞ which is infeasible for useful quantum computation. 

In order to elucidate the origins of the various behavioural patterns, we conduct a 

dynamical system analysis and introduce communication theory terminology. 𝐿(𝑛) is connected 

to the number of syndromes that the decoder is required to analyze in task n, 𝑁(𝑛), and the 

decoding latency, 𝐿𝑑𝑒𝑐(𝑁), through 𝐿(𝑛) = max(𝐿𝑡ℎ, 𝐿𝑑𝑒𝑐(𝑁(𝑛))). The system becomes 

dynamical since 𝑁(𝑛+1) depends on 𝐿(𝑛) through  𝑁(𝑛+1)(𝐿(𝑛)) = 𝑁0 + 𝜆(𝐿(𝑛) − 𝐿𝑡ℎ), where 

𝑁0 denotes the average number of syndromes when 𝐿(𝑛) = 𝐿𝑡ℎ and 𝜆 is the syndrome arrival 

rate to the decoder (in units of syndromes per second). As a result, the system has a non-linear 

connection between 𝐿(𝑛+1) and 𝐿(𝑛).  Interestingly, increasing 𝐿𝑡ℎ without increasing the 

logical clock can be done with sufficient quantum resources, for example with the auto-

corrected  𝜋/8 scheme [30] (see SI section 2 and Figs. S1,S2); however, increasing 𝐿𝑡ℎ 

artificially by additional stabilizer rounds will cause extended logical clock cycles, causing a 

larger 𝑁0 and a smaller logical-coherence times.     

In Fig. 4a, we show examples of system dynamics for a linear decoder and a varying 

complexity decoder, when plotting on the same plot 𝑁(𝐿) and 𝐿𝑑𝑒𝑐(𝑁). The system’s initial 

state, 𝐿𝑑𝑒𝑐(𝑁0), evolves (arrows) until reaching a steady-state point where the two curves 

intersect. In systems where the two plots do not intersect, the system will not reach a steady-

state and the latency will diverge so that no useful computation could be performed. This effect 

can be understood through a linear decoder model 𝐿𝑑𝑒𝑐(𝑁) = 𝜏0 + 𝑁/𝑇 where 𝑇 is the 

throughput of the decoder (in units of decoded syndromes per second) and 𝜏0 is a latency offset 

term that includes the decoder-controller communication and decoder bring-up latencies. If 

𝐿𝑑𝑒𝑐(𝑁0) > 𝐿𝑡ℎ, an intersection between the linear decoding latency 𝐿𝑑𝑒𝑐(𝑁) and 𝑁(𝐿) can be 

reached only if the ratio 𝑈 = 𝜆/𝑇 is smaller than 1. This ratio, of the arrival rate over the 

throughput has a significant meaning in communication theory, describing the utilization of the 

decoder. For a general decoding latency, the system will converge into a steady-state if 𝑈(𝑁) =

𝜆/𝑇(𝑁) < 1 for all 𝑁 where the throughput will be dependent on 𝑁 through 𝑇(𝑁) =
𝜕𝑁

𝜕𝐿𝑑𝑒𝑐
=

(
𝜕𝐿𝑑𝑒𝑐(𝑁)

𝜕𝑁
)

−1

.  Additionally, we note that the intersections between the curves can be a stable 

steady-state point or an unstable point, depending if 𝑈 < 1 or 𝑈 > 1 at the intersection point, 



10 
 

respectfully. By utilizing these plots, one can assess the system dynamics in the presence of 

significant fluctuations in latency or syndromes, employing a probabilistic methodology to 

examine the likelihood of latency divergence. In essence, these graphical representations allow 

the determination of the operational boundaries for QECCP with any quantum hardware and 

any QEC codes. 

 

Figure 4.  Simulations of the feed-forward latency, and computation regimes. (a) A 

dynamical system analysis for a general decoder, presenting the dynamics of the system using 

the curves of 𝐿𝑑𝑒𝑐(𝑁) (blue and red) to 𝑁(𝐿) (purple) from the initial state of 𝐿𝑑𝑒𝑐(𝑁0) until 

reaching a steady-state when the curves intersect. The latency can also diverge when the 

intersection does not exist or beyond an unstable steady-state point. (b-c) The steady-state feed-

forward latency for different decoding parameters (b), for a linear decoding model (𝛼 = 1, c). 

(d) The feed-forward latency ratio (FLR, d). The parameter choice can cause different 

operation regimes: Quantum operation limited (if 𝐿𝑠𝑠 = 𝐿𝑡ℎ), classical operation limited (if 

𝐿𝑡ℎ < 𝐿𝑠𝑠 < ∞), or latency divergence where the classical operation will prevent any useful 

quantum computations (𝐹𝐿𝑅(𝑛 → ∞) > 1). All simulation parameters are presented in Table 

S1, and latency plots for various values of 𝐿𝑡ℎ are presented in Fig. S3.  

 

In realistic decoders, numerical analysis shows that the decoding latency behaves as 

𝐿𝑑𝑒𝑐(𝑁) = 𝜏0 + 𝜏1𝑁𝛼 (for example, [44,45]), where 𝛼 is the complexity factor of the decoder, 

and 𝜏1 is a pre-factor so that 𝜆𝜏1 describes the linear decoder utilization (𝑈𝑙𝑖𝑛). Fig. 4b presents 

the steady-state feed-forward latency, which we calculate recursively as 𝐿(𝑛>0) = max(𝜏0 +



11 
 

𝜏1 (𝑁0 +
𝑈𝑙𝑖𝑛

𝜏1
(𝐿(𝑛−1) − 𝐿𝑡ℎ))

𝛼

, 𝐿𝑡ℎ), showing numerically how the decoder’s complexity and 

linear utilization determine the different regimes of operation.  

The different regimes of the QEC quantum calculation can be derived analytically 

under a linear decoder assumption (plotted in Fig. 4c). When the utilization is 𝑈 > 1 (red-

zone), the latency diverges so that the classical behaviour prevents any quantum calculation. 

When 𝑈 < 1, the steady-state feed-forward latency is calculated (in SI section S3) through eq. 

(S2) as 

𝐿𝑠𝑠 = 𝐿𝑡ℎ + (𝐿(𝑁0) − 𝐿𝑡ℎ )
1

1 − 𝑈
Θ(𝐿(𝑁0) − 𝐿𝑡ℎ )      (1) 

with Θ( ) being the step function. In this case, the steady-state circuit delay per logical gate due 

to the classical hardware will be (𝐿(𝑁0) − 𝐿𝑡ℎ )
1

1−𝑈
Θ(𝐿(𝑁0) − 𝐿𝑡ℎ ). If 𝐿(𝑁0) > 𝐿𝑡ℎ, the 

steady-state latency will grow with the utilization and diverge as the utilization approaches 1. 

Although this case is within the classical-control limited regime, which can potentially support 

quantum computation, the logical lifetimes of the logical qubits will limit the capability to 

execute the logical quantum circuit.  

For an unknown QECCP performance, a simple but general method to determine 

experimentally if the system will reach a divergence regime is by examining the feed-forward 

latency ratio (FLR). This factor is defined as 𝐹𝐿𝑅(𝑛)=𝐿(𝑛)/𝐿(𝑛−1), denoting the ratio between 

the latencies of successive logical gates, shown in Fig. 4d. If the FLR converges to a value 

larger than one then the latency diverges, but if the FLR converges to 1 the QECCP can 

potentially support quantum calculations in either the quantum or classical control limited 

regime, even if with a large logical clock cycle.  

 

IV. QECCP benchmarks: feed-forward latency and latency ratio 

After recognizing the pivotal influence of classical control and computational 

performance on fault-tolerant QEC computations, we propose two benchmarks aimed at 

evaluating the QECCP capability to support such computations in the near and medium term. 

These benchmarks focus on Latency benchmarking. Specifically, the duration it takes from a 

set of measurements that implement a logical measurement until a conditional set of feed-

forward operations is performed to implement a logical feed-forward on a logical qubit, based 



12 
 

on the error decoding of a logical observable. Each latency benchmark below relates to two 

decoding tasks that encompass in a single parameter three key aspects: (i) the feed-forward 

latency from the last input of measurement signals to the controller until the first conditional 

output signal from the controller; (ii) the capacity to simultaneously execute quantum 

operations alongside the decoding process; and (iii) the decoding time of syndromes which 

were created during previous decoding tasks (i.e., the decoding throughput). The experiments 

that define the benchmarks below can be extended beyond two decoding tasks to check the 

operation regime of the classical hardware. 

To create well-defined and rigorous benchmarks, we focus on a specific representative 

configuration: a QEC rotated surface code of distance-5 and distance-11 with a stabilizer round 

cycle time of 1μs, a union-find decoding algorithm  [40], physical error rates of 0.5% (two-

qubit depolarization and single-qubit measurement), and a logical circuit that is uniquely 

defined in each of the two benchmarks below. We require that each physical measurement will 

be initiated by randomly generated RF pulses according to the error model so that the 

benchmark will include the signal processing involved in typical superconducting transmon 

state estimation (demodulation, integration, and threshold-based discrimination). The 

benchmarks can then be evaluated using the control system only, without a connection to 

quantum hardware. This representative use case pushes the classical hardware to the limit since 

superconducting qubits have the fastest clock cycle today, orders of magnitude faster than the 

readout time of other implementations (such as atoms, ions, and semiconductor defect spins). 

We believe that these benchmarks are relevant even for the slower implementations, as we 

expect gate times to drop as the field progresses. Finally, we define a specific decoding 

algorithm, which we chose as a representative of the widely-used minimum-weight-perfect-

matching variants. It is important to predefine a decoding algorithm for the benchmarks so that 

different controllers would perform a similar classical calculation, i.e., will generate the same 

output given a similar input.  

Near-term benchmark: Two Intershot Feed-forward Latency (TIFL) 

 The first benchmark is based on a toy use case in which the quantum resources are 

limited to a single logical qubit to check the QECCP capabilities for running real-time single-

surface experiments that require real-time decoding. The logical circuit implemented in the 

benchmark is shown in Fig. 5a. The controller initializes the surface (data qubits) in the |0⟩ 

state, performs 10 stabilizer rounds, and then measures the data qubits. The benchmark clock 



13 
 

starts once the last sample of the last data qubit measurement signal is sampled by the controller 

(as the measurement timestamp in [8]). The controller then performs the surface initialization 

again for the next shot followed by execution of stabilizer rounds in a repeat-until-success 

fashion until the decoding of the first shot is done. Then, the controller applies the appropriate 

conditional feedback based on the decoded frame and measures the surface again. We measure 

latency of the first decoding task, denoted by 𝐿0, as the time from the start of the benchmark 

clock until the first sample of the conditional pulse is played from the controller (as the 

conditional pulse timestamp in [8]).  

 

Figure 5. The Two Intershot Feed-forward Latency (TIFL) benchmark. (a) Logical circuit 

for measuring the TIFL benchmark. The double line represents a conditional gate, and the red 

double arrow represents the experimental feed-forward latency of two shots, and the TIFL 

benchmark. The stabilizer rounds are not shown as they represent a logical identity. (b) Surface 

view of the TIFL benchmark, where the data for the first decoding task (yellow) is 

predetermined in the benchmark as 10 stabilizer rounds, while the number of stabilizer rounds 

in the second decoding task (orange) is determined by the first decoding latency (𝐿0). 

To further verify the scalability of the classical hardware, we do not stop the benchmark 

once the first feed-forward latency is measured (related to the decoding of 10 stabilizer rounds). 

We set the end of the benchmark to be the moment the second feed-forward analogue pulse is 

applied. This second feed-forward has a latency of 𝐿1, related to the decoding task which 

contains an unknown number of stabilizer rounds that were measured during the first feed-

forward. Since the benchmark relates to the time between two decoding tasks within a single 

surface 49 (distance-5) or surface 241 (distance-11), we call these benchmarks Two Intershot 

Feed-forward Latency 49 or 241, or in short, the TIFL-49 or TIFL-241 benchmarks.   



14 
 

The concrete definition of the TIFL benchmark is shown in Listing 1 as a pseudocode. 

We write the variables and building block commands required to run a single-surface memory 

experiment and measure the benchmark. The pulse-level statements and macros “initialize 

surface”, “play”, “stabilizer round”, and “measure surface” include a set of predefined 

physical RF pulses and measurements that are detailed in Listing S1 and are compatible with 

the representative use case discussed above. To create the separation between the classical 

hardware that we want to benchmark and the quantum hardware (that is, to be able to 

benchmark the classical hardware without quantum hardware), we add as an input to these 

operations the predefined parameters error_probability and round_time for the stabilizer 

round that we can control classically in the analogue input to the controller. Interestingly, 

although we aim for a surface code, the pseudocode in Listing 1 can be used to benchmark any 

QEC stabilizer code. 

rounds = 10 

error_probability = 0.01  
round_time = 1E-6  
decoding_algorithm = Union_find 
send_to_decoder(algorithm=decoding_algorithm) 

 
initialize_surface(q0, state=1) 
for i in range(rounds): 

    ancilla_bits = stabilizer_round(q0, error_probability, round_time) 

    send_to_decoder(ancilla_bits, task=0) 
 
data_bits = measure_surface(q0, error_probability, timestamp->tic) 
for i in [0,1]: 
    send_to_decoder(data_bits, task=i) 
    initialize_surface(q0, state=i) 
    [logical_result, decoding_recieved] = get_decoding_result(task=i) 
    while not decoding_recieved: 
        ancilla_bits = stabilizer_round(error_probability, round_time) 

        send_to_decoder(ancilla_bits, task=i+1) 
        [logical_result, decoding_received] = get_decoding_result(task=i) 

    if logical_result: 
        play_x(q0) 
    if i == 0: 
       data_bits = measure_surface(q0, error_probability) 
    else: 
      toc = timestamp 
     
TIFL= toc - tic 
 

Listing 1: Pseudocode for measuring the intershot feed-forward latency. Green: elements 

of the configuration file. Blue: real-time classical variables. Red: pulse-level commands. 

Orange: pre-defined constants. Bright Purple: control flow statement. Cyan: controller-

decoder communication statement. Mustard: decoding algorithm. We note that the macros 

“stabilizer_round”, “initialize_surface”, and “measure_surface” are defined in Listing S1.  



15 
 

Apart from the analogue signals, we write the controller-decoder communication 

commands (dark purple) and decoding algorithm (mustard) explicitly. During the decoding, 

the controller is required to execute stabilizer rounds for an unknown number of rounds, 

described by the while loop. That is, classical data is acquired during the decoding process. 

The uncertainty in the number of rounds gives rise to additional controlling parameters. For 

example, the decoder may return an error estimation or a Boolean output that indicates that the 

decoder’s result is reliable, or alternatively, if the decoder performance variance is small, the 

user may predefine the number of stabilizer rounds after the measurement. In the pseudocode, 

we define the decoder to return two Boolean variables, one indicates the logical measurement 

result and the other indicates that the decoding was received. Stabilizer rounds are performed 

until the “decoding_recieved” variable turns to 1, and only thereafter the feed-forward is 

performed. Therefore, the benchmark definition for two decoding tasks checks aspects of the 

classical throughput, rather than only the latency. The experiment can run for further shots 

(expanding i to larger values) so that FLR(𝑛 > 1) can be calculated and checked for 

convergence to 1 or not. If not, it is clear that the QECCP is insufficient for supporting fault-

tolerant QEC with any calculation experiencing a divergent runtime.  

The TIFL benchmark simplifies the requirements compared to those needed for non-

Clifford gates, thanks to the distinct separation between decoding tasks. Such separation makes 

the TIFL benchmark executable with different decoding algorithms, which usually require 

well-defined boundaries (initialization and logical measurement). One decoding property that 

can be checked is the ability to start the decoding before the shot ends (i.e., before the data 

qubits are measured). For example, a lookup table decoder with a sliding window, as suggested 

in [42], can process syndromes and map them to physical bit-flips while the shot is still running. 

More scalable solutions that can enable low latencies include the recently suggested fusion-

blossom decoder [44] or neural-network decoders [43]. In addition, to reduce the feed-forward 

latency, the decoder can potentially include another pre-decoding process in the form of parity 

checks between rounds (a.k.a detectors  [47]) or advanced algorithms that can still run locally 

and reduce the syndromes that the decoder should analyse [57,58]. The benchmark is defined 

such that all these decoding algorithms can be checked as variants of the originally defined 

benchmark (defined with Union Find decoder) with near-term available quantum hardware to 

reach novel QEC experiments with real-time decoding.  

 

https://www.zotero.org/google-docs/?qnJWiE
https://www.zotero.org/google-docs/?8gjO7v


16 
 

Medium-term benchmark: Two Surgery Feed-forward Latency (TSFL) 

As a second benchmark, we modify the TIFL benchmark so that the logical 

measurement will be a lattice surgery rather than a single surface measurement, as shown in 

Fig. 6 and defined in Listing 2. Such surgery feed-forward latency can be implemented in the 

near future and is one of the main building blocks for performing non-Clifford gates (also in 

color codes [59]). Moreover, as we showed above, the only type of feed-forward required for 

the entire quantum circuit comes as a result of a lattice surgery operation. Again, to realize the 

decoding throughput and the classical-quantum parallelization, we define the benchmark as a 

Two Surgery Feed-forward Latency (TSFL), from the moment one lattice surgery ends (where 

we define each surgery to be 𝑑 stabilizer rounds) until the moment the second feed-forward is 

applied. To be explicit, we define the benchmark for a distance-3 or distance-5 configuration 

with a single surgery column (as in Fig. 1c), containing 41 or 111 physical qubits. 

 

Figure 6.  The Two Surgery Feed-forward Latency (TSFL) benchmark. (a) Logical circuit 

for measuring the TSFL benchmark, from the end of the first lattice surgery until the second 

feed-forward. The (circled) double line represents a (not-)conditional gate, and the red double 

arrows represent the feed-forward latencies and the TSFL benchmark. The stabilizer rounds 

are not shown since they represent a logical identity. (b) Surface view of the TSFL benchmark, 

showing that the boundary conditions of decoding task 1 will depend on decoding task 0 (as 

opposed to the TIFL benchmark). 

rounds = 10 
surgery_rounds = d 
error_probability = 0.01  
round_time = 1E-6  
decoding_algorithm = Union_find 
send_to_decoder(algorithm=decoding_algorithm) 

 
initialize_surface(q0, state=0) 
initialize_surface(q1, state=1) 
for i in range(rounds): 

    ancilla_bits = stabilizer_round(error_probability, round_time) 

    send_to_decoder(ancilla_bits, task=0) 
for i in [0,1]: 



17 
 

    initialize_surgery(q0, q1) 
    for i in range(surgery_rounds): 

        ancilla_bits = stabilizer_round(error_probability, round_time) 

        send_to_decoder(ancilla_bits, task=i) 
    surgery_data_bits = terminate_surgery((q0, q1), error_probability) 
    if i == 0: 
        tic = timestamp 
    send_to_decoder(surgery_data_bits, task=i) 
    [logical_result, decoding_recieved] = get_decoding_result(task=i) 
    while not decoding_recieved: 
        ancilla_bits = stabilizer_round(error_probability, round_time) 

        send_to_decoder(ancilla_bits, task=i+1) 
        [logical_result, decoding_received] = get_decoding_result(task=i) 
    if xor(logical_result, i): 
        play_x(q1) 
    if i == 1: 
       toc = timestamp 
 
TSFT= toc - tic 
Listing 2: Pseudocode for measuring the Two Surgery Feed-forward Latency (TSFL). 

Color coding is the same as in Listing 1, the macros initialize_surgery and terminate_surgery 

are defined in Listing S1.  

Similar to the TILF benchmark, the TSFL benchmark also includes stabilizer rounds 

until the feed-forward is applied (see Fig. 3c and Listing 2), so that the latency of the first 

decoding task will determine the amount of processing data of the second decoding 

task.  However, a significant difference between the two benchmarks comes from the fact that 

the decoding tasks are not well-separated. The second decoding task will have to remember 

part of the syndromes from the first decoding task to overcome a set of errors with syndromes 

in both tasks. This requirement significantly increases the challenge of decoding this 

benchmark, and to our knowledge, it is currently impossible with the available decoding tools. 

Hence, executing the TSFL benchmark will necessitate algorithmic development alongside 

control hardware improvements.  

V. Discussion 

Above, we have explained the central roles of the QECCP, the necessity for a low feed-

forward latency, and suggested two benchmarks for evaluating the QECCP performance. 

Although these benchmarks do not perform any useful quantum calculations, they are defined 

using representative configurations according to current state-of-the-art parameters. Moreover, 

they verify the ability of the QECCP to support future state-of-the-art QEC experiments, setting 

the stage for scaling quantum hardware. These benchmarks, the commands within the 

pseudocodes, and the operation regime analysis, are general for most other QEC stabilizer 

codes which may have a different detailed physical pulse sequence and decoding algorithms.  



18 
 

The suggested benchmarks provide a first reduction of all QECCP components into a 

few benchmarking numbers. So far, each component has been evaluated separately. For 

example, quantum error correction codes were evaluated by their error threshold under optimal 

maximum-likelihood decoder [41](e.g., the XZZX surface code [60]), while decoding 

algorithms were benchmarked through their computational time, scalability, and error 

threshold. However, there is a lack of decoding latency benchmarks (only recently suggested 

in [44]) and a lack of integration benchmark that includes the quantum controller operation, 

the controller-decoder communication, and the connection to the actual quantum hardware with 

analogue signals. The proposed benchmarks provide the first steps for evaluating QECCP 

performance holistically. 

In the long term, we expect a dominant role in parallelizing classical calculations in the 

QECCP. The controlling system will need to parallelize many decoding tasks to keep track of 

the frame of each logical qubit, and then merge decoding tasks during multi-surface lattice 

surgeries. Thus, it would be beneficial to consider indirect benchmarks for evaluating a QEC 

operation runtime, including the time it takes to run multiple shots, to compile logical circuits 

into T-gate operations [61], and to load the circuit parameters (e.g., to synthesize circuit 

waveform sequences). In this context, an interesting benchmark will be the time it takes to 

perform embedded calibrations for the circuit parameters optimization (e.g., [21–23]). The 

quality of the optimization will eventually determine the physical error probability of the circuit 

which in turn gives rise to another possible set of benchmarks related to the decoder adaptation 

time. The decoder will be required to adapt its weights and estimates of the circuit noise (for 

example by using optimal noise estimation [62]) and to adapt to catastrophic events [27,63].    

We foresee that minimizing the benchmarks that we defined here while keeping high 

decoding accuracy will be at the core of quantum computation utility. Once the surgery latency 

is minimized, the effort will move towards minimizing the multi-surface surgery latency, and 

eventually the magic state distillation time. The distillation time is expected to determine de 

facto the whole quantum computation time for surface-code-based computation [48–50], 

which is currently the main expected route for reducing logical error rates. Finally, even if other 

promising QEC codes such as QLDPC codes will become dominant  [64–67], all properties 

and blueprints for QECCP that we describe here will still stand. Thus, having clear benchmarks 

that combine the complete requirements of a QECCP is a vital and fundamental component in 

the development of quantum computing.  

https://www.zotero.org/google-docs/?o19Prk


19 
 

References 

[1] P. W. Shor, Fault-Tolerant Quantum Computation, in Proceedings of 37th Conference on 

Foundations of Computer Science (IEEE Computer Society, Burlington, VT, USA, 1996), pp. 56–

65. 

[2] E. Knill, R. Laflamme, and W. H. Zurek, Resilient Quantum Computation: Error Models and 

Thresholds, Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 454, 365 (1998). 

[3] R. P. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467 (1982). 

[4] P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a 

Quantum Computer, SIAM J. Comput. 26, 1484 (1997). 

[5] D. Gottesman, Stabilizer Codes and Quantum Error Correction, Caltech, 1997. 

[6] J. Preskill, Reliable Quantum Computers, Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 454, 385 

(1998). 

[7] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards Fault-Tolerant Universal Quantum 

Computation, Nature 549, 172 (2017). 

[8] L. Ella, L. Leandro, O. Wertheim, Y. Romach, R. Szmuk, Y. Knol, N. Ofek, I. Sivan, and Y. 

Cohen, Quantum-Classical Processing and Benchmarking at the Pulse-Level, arXiv:2303.03816. 

[9] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological Quantum Memory, J. Math. Phys. 

43, 4452 (2002). 

[10] L. Riesebos, X. Fu, S. Varsamopoulos, C. G. Almudever, and K. Bertels, Pauli Frames for 

Quantum Computer Architectures, in Proceedings of the 54th Annual Design Automation 

Conference 2017 (ACM, Austin TX USA, 2017), pp. 1–6. 

[11] Google Quantum AI et al., Suppressing Quantum Errors by Scaling a Surface Code Logical 

Qubit, Nature 614, 676 (2023). 

[12] A. deMarti iOlius, P. Fuentes, R. Orús, P. M. Crespo, and J. E. Martinez, Decoding Algorithms for 

Surface Codes, arXiv:2307.14989. 

[13] B. M. Terhal, Quantum Error Correction for Quantum Memories, Rev. Mod. Phys. 87, 307 

(2015). 

[14] A. D. Corcoles, M. Takita, K. Inoue, S. Lekuch, Z. K. Minev, J. M. Chow, and J. M. Gambetta, 

Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits, 

Phys. Rev. Lett. 127, 100501 (2021). 

[15] T. Lubinski, C. Granade, A. Anderson, A. Geller, M. Roetteler, A. Petrenko, and B. Heim, 

Advancing Hybrid Quantum–Classical Computation with Real-Time Execution, Front. Phys. 10, 

940293 (2022). 

[16] N. Ofek et al., Extending the Lifetime of a Quantum Bit with Error Correction in Superconducting 

Circuits, Nature 536, 441 (2016). 

[17] D. Devulapalli, E. Schoute, A. Bapat, A. M. Childs, and A. V. Gorshkov, Quantum Routing with 

Teleportation, arXiv:2204.04185. 

[18] E. Bäumer, V. Tripathi, D. S. Wang, P. Rall, E. H. Chen, S. Majumder, A. Seif, and Z. K. Minev, 

Efficient Long-Range Entanglement Using Dynamic Circuits, arXiv:2308.13065. 

[19] M. Foss-Feig et al., Experimental Demonstration of the Advantage of Adaptive Quantum Circuits, 

arXiv:2302.03029. 

[20] C. Ryan-Anderson et al., Realization of Real-Time Fault-Tolerant Quantum Error Correction, 

Phys. Rev. X 11, 041058 (2021). 

[21] V. V. Sivak et al., Real-Time Quantum Error Correction beyond Break-Even, Nature 616, 50 

(2023). 

[22] C. N. Barrett et al., Learning-Based Calibration of Flux Crosstalk in Transmon Qubit Arrays, 

Phys Rev Appl. 20, 024070 (2023). 

[23] P. V. Klimov et al., Optimizing Quantum Gates towards the Scale of Logical Qubits, 

arXiv:2308.02321. 

[24] J. Kelly et al., Scalable In-Situ Qubit Calibration during Repetitive Error Detection, Phys. Rev. A 

94, 032321 (2016). 

[25] Y. Xu, G. Huang, J. Balewski, A. Morvan, K. Nowrouzi, D. I. Santiago, R. K. Naik, B. Mitchell, 

and I. Siddiqi, Automatic Qubit Characterization and Gate Optimization with QubiC, ACM 

Trans. Quantum Comput. 4, 1 (2023). 



20 
 

[26] A. Vepsäläinen et al., Improving Qubit Coherence Using Closed-Loop Feedback, Nat. Commun. 

13, 1932 (2022). 

[27] M. McEwen et al., Resolving Catastrophic Error Bursts from Cosmic Rays in Large Arrays of 

Superconducting Qubits, Nat. Phys. 18, 107 (2022). 

[28] M. Cerezo et al., Variational Quantum Algorithms, Nat. Rev. Phys. 3, 625 (2021). 

[29] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface Codes: Towards 

Practical Large-Scale Quantum Computation, Phys. Rev. A 86, 032324 (2012). 

[30] D. Litinski, A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery, 

Quantum 3, 128 (2019). 

[31] S. Krinner et al., Realizing Repeated Quantum Error Correction in a Distance-Three Surface 

Code, Nature 605, 669 (2022). 

[32] D. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, Surface Code Quantum Computing by 

Lattice Surgery, New J. Phys. 14, 123011 (2012). 

[33] D. Litinski and F. von Oppen, Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface 

Codes, Quantum 2, 62 (2018). 

[34] A. G. Fowler and C. Gidney, Low Overhead Quantum Computation Using Lattice Surgery, 

arXiv:1808.06709. 

[35] C. Chamberland and E. T. Campbell, Universal Quantum Computing with Twist-Free and 

Temporally Encoded Lattice Surgery, PRX Quantum 3, 010331 (2022). 

[36] Y. Li, A Magic State’s Fidelity Can Be Superior to the Operations That Created It, New J. Phys. 

17, 023037 (2015). 

[37] R. S. Gupta et al., Encoding a Magic State with beyond Break-Even Fidelity, arXiv:2305.13581. 

[38] C. Gidney, Cleaner Magic States with Hook Injection, arXiv:2302.12292. 

[39] V. Kolmogorov, Blossom V: A New Implementation of a Minimum Cost Perfect Matching 

Algorithm, Math. Program. Comput. 1, 43 (2009). 

[40] N. Delfosse and N. H. Nickerson, Almost-Linear Time Decoding Algorithm for Topological 

Codes, Quantum 5, 595 (2021). 

[41] C. T. Chubb, General Tensor Network Decoding of 2D Pauli Codes, arXiv:2101.04125. 

[42] P. Das, A. Locharla, and C. Jones, LILLIPUT: A Lightweight Low-Latency Lookup-Table Based 

Decoder for Near-Term Quantum Error Correction, arXiv:2108.06569. 

[43] K. Meinerz, C.-Y. Park, and S. Trebst, Scalable Neural Decoder for Topological Surface Codes, 

Phys. Rev. Lett. 128, 080505 (2022). 

[44] Y. Wu and L. Zhong, Fusion Blossom: Fast MWPM Decoders for QEC, arXiv:2305.08307. 

[45] O. Higgott and C. Gidney, Sparse Blossom: Correcting a Million Errors per Core Second with 

Minimum-Weight Matching, arXiv:2303.15933. 

[46] F. Battistel, C. Chamberland, K. Johar, R. W. J. Overwater, F. Sebastiano, L. Skoric, Y. Ueno, and 

M. Usman, Real-Time Decoding for Fault-Tolerant Quantum Computing: Progress, Challenges 

and Outlook, arXiv:2303.00054. 

[47] C. Gidney, Stim: A Fast Stabilizer Circuit Simulator, Quantum 5, 497 (2021). 

[48] J. Haah and M. B. Hastings, Codes and Protocols for Distilling $T$, Controlled-$S$, and Toffoli 

Gates, Quantum 2, 71 (2018). 

[49] D. Litinski, Magic State Distillation: Not as Costly as You Think, Quantum 3, 205 (2019). 

[50] M. E. Beverland, A. Kubica, and K. M. Svore, The Cost of Universality: A Comparative Study of 

the Overhead of State Distillation and Code Switching with Color Codes, PRX Quantum 2, 

020341 (2021). 

[51] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. V. den Nest, Measurement-Based 

Quantum Computation, Nat. Phys. 5, 19 (2009). 

[52] S. Bravyi and A. Kitaev, Universal Quantum Computation with Ideal Clifford Gates and Noisy 

Ancillas, Phys. Rev. A 71, 022316 (2005). 

[53] A. Erhard et al., Entangling Logical Qubits with Lattice Surgery, Nature 589, 220 (2021). 

[54] D. Herr, F. Nori, and S. J. Devitt, Optimization of Lattice Surgery Is NP-Hard, Npj Quantum Inf. 

3, 35 (2017). 

[55] D. Gottesman, The Heisenberg Representation of Quantum Computers, arXiv:quant-ph/9807006. 

[56] W. P. Livingston, M. S. Blok, E. Flurin, J. Dressel, A. N. Jordan, and I. Siddiqi, Experimental 

Demonstration of Continuous Quantum Error Correction, Nat. Commun. 13, 2307 (2022). 



21 
 

[57] S. C. Smith, B. J. Brown, and S. D. Bartlett, A Local Pre-Decoder to Reduce the Bandwidth and 

Latency of Quantum Error Correction, Phys. Rev. Appl. 19, 034050 (2023). 

[58] L. Caune, J. Camps, B. Reid, and E. Campbell, Belief Propagation as a Partial Decoder, 

arXiv:2306.17142. 

[59] A. J. Landahl and C. Ryan-Anderson, Quantum Computing by Color-Code Lattice Surgery, 

arXiv:1407.5103. 

[60] J. P. B. Ataides, D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J. Brown, The XZZX Surface 

Code, Nat. Commun. 12, 2172 (2021). 

[61] L. Heyfron and E. T. Campbell, An Efficient Quantum Compiler That Reduces T Count, Quantum 

Sci. Technol. 4, 015004 (2018). 

[62] T. Wagner, H. Kampermann, D. Bruß, and M. Kliesch, Optimal Noise Estimation from Syndrome 

Statistics of Quantum Codes, Phys. Rev. Res. 3, 013292 (2021). 

[63] A. Siegel, A. Strikis, T. Flatters, and S. Benjamin, Adaptive Surface Code for Quantum Error 

Correction in the Presence of Temporary or Permanent Defects, Quantum 7, 1065 (2023). 

[64] N. Delfosse, M. E. Beverland, and M. A. Tremblay, Bounds on Stabilizer Measurement Circuits 

and Obstructions to Local Implementations of Quantum LDPC Codes, arXiv:2109.14599. 

[65] C. A. Pattison, A. Krishna, and J. Preskill, Hierarchical Memories: Simulating Quantum LDPC 

Codes with Local Gates, arXiv:2303.04798. 

[66] Q. Xu, J. P. B. Ataides, C. A. Pattison, N. Raveendran, D. Bluvstein, J. Wurtz, B. Vasic, M. D. 

Lukin, L. Jiang, and H. Zhou, Constant-Overhead Fault-Tolerant Quantum Computation with 

Reconfigurable Atom Arrays, arXiv:2308.08648. 

[67] S. Gu, E. Tang, L. Caha, S. H. Choe, Z. He, and A. Kubica, Single-Shot Decoding of Good 

Quantum LDPC Codes, arXiv:2306.12470. 

 

Acknowledgement 

This publication has received funding under Horizon Europe programme HORIZON-CL4-2021-

DIGITAL-EMERGING-01-30 via the project 101070144 (EuRyQa). 

  



22 
 

Control Requirements and Benchmarks for Quantum 

Error Correction  

Yaniv Kurman1, Lior Ella1, Ramon Szmuk1, Oded Wertheim1, Benedikt Dorschner2, Sam 

Stanwyck2, and Yonatan Cohen1 

1Quantum Machines Inc., Tel Aviv, Israel  

2NVIDIA Corp, Santa Clara, CA, USA 

 

S1 - The necessity of a feed-forward correction of a Pauli frame flip 

 We present here a short example that shows a case where a Pauli frame flip propagates 

to a non-Clifford flip after two non-Cifford gates. Without the loss of generality, let us consider 

the following example, where we want to execute two non-commuting non-Clifford gates:  𝑇 =

𝑑𝑖𝑎𝑔(1, 𝑒𝑖𝜋/4) followed by 𝑋1/4  (as in Fig. 3a), where the qubit experiences a Pauli 𝑋 error 

before the 𝑇 gate. After the 𝑇 gate, the 𝑋 frame is converted to a Clifford correction in the form 

of 𝑇𝑋𝑇† = (𝑋 + 𝑌)/√2. Then, after the 𝑋1/4 gate, the correction is converted to a non-Clifford 

gate (a 𝜋 rotation around the vector (
1

√2
,

1

2
,

1

2
))  which cannot propagate efficiently in software 

throughout the quantum circuit. Therefore, from this example, we can deduce that a detection 

of a Pauli frame changes must be corrected through a circuit modification (or an active pulse) 

before the Pauli correction becomes a non-Clifford correction. Specifically, if the error is 

detected during the decoding of the 𝑇 gate, it should be corrected before the execution of the 

𝑋1/4 gate.  

  



23 
 

S2 - How additional ancilla surfaces can ease the latency requirements 

As we explain in section III of the main text, and in section S1, fault-tolerant useful 

quantum calculations require feedback where the feed-forward type can change according to 

the specific non-Clifford gate (as in Fig. 1b). However, there is a scheme, namely the auto-

corrected 𝜋/8 scheme [S1], where the feed-forward logical gate remains independent of the 

executed non-Clifford gate. Moreover, this scheme can scale and ease the latency requirements 

with enough ancillary surfaces. The scheme can execute any Pauli (and multi-qubit Pauli) 𝜋/8 

gate, as shown in Fig. S1 for a single 𝑇 gate followed by a 𝑋1/4 
gate with two ancillary logical 

qubits for each non-Clifford gate. 

 Conceptually, the QECCP role does not change compared to the example in Fig 1 of 

the main text when executing a non-Clifford gate fault-tolerantly. That is, the execution of a 

planned gate includes an ancillary surface initialization stage, a lattice surgery stage, a logical 

measurement stage, and a feed-forward. The lattice surgery is performed between the surface 

that is initialized in the  |𝑇⟩ = |0⟩ + 𝑒𝑖𝜋/4|1⟩ state, the computational logical qubit (or qubits), 

and the |0⟩ ancillary surface, producing two measurement results 𝑚0 and 𝑚1. As in the example 

in the main text, it is only the outcome from the surgery with the magic state (𝑚1) that 

determines the feed-forward conditional operation that will be in the form of the measurement 

basis of the second ancillary surface, i.e., whether to apply a Hadamard gate to the data qubits 

of this surface just before they are measured. To successfully execute the planned non-Clifford 

gate, along with the subsequent non-Clifford gates, all four measurements, including those of 

the two ancilla surfaces, are required to determine the Pauli frame update for the computational 

surfaces. 

https://www.zotero.org/google-docs/?fbB6FF


24 
 

 

Figure S1.  Performing non-Clifford gates with the auto-corrected 𝜋/𝟖 scheme. (a) An 

example of the auto-corrected 𝜋/8 for performing a single 𝑇 gate followed by a 𝑋1/4 gate with  

2 ancilla surfaces. The scheme includes three stages (ancilla initialization, cyan; lattice surgery, 

blue; and measurement, purple), where the classical outcome of one of the surgeries (𝑚1) will 

determine the feed-forward in the form of a logical Hadamard gate to the second ancillary 

surface just before it is measured. Therefore, the second ancillary surface exhibits stabilizer 

rounds until the surgery decoding ends. This feed-forward (and also state initialization) is 

similar to every 𝜋/8 gate. (b) The surface view of the circuit in (a), with different decoding 

tasks in different colors. The threshold latency 𝐿𝑡ℎ is determined by the number of rounds 

needed for a fault-tolerant logical measurement. (c) An implementation of a similar logical 

circuit with four ancillary surfaces. The additional surfaces eliminate any gap between the two 

non-Clifford gates, since the feed-forward is directed to an ancillary surface rather than the 

computational one. (d) The surface view of the circuit in (c), showing how four ancilla surfaces 

reduce the computation time. Through this view, it becomes evident that another contribution 

to the reduction in computation time is achieved by decreasing the data analysed by the decoder 

(yellow decoding task), thereby reducing the circuit delay (𝛿1).  

 



25 
 

The auto-corrected 𝜋/8 scheme has additional advantages when allowing more than two 

ancillary surfaces. For example, when having four ancillary surfaces (as shown in Fig. S1c), 

the additional surfaces enable performing two non-Clifford gates without any gaps in time 

between the gates. This is enabled because the feed-forward is applied to an ancillary surface 

rather than the computational surface. This capability yields another advantage: as the 

computational surfaces don't require waiting, the decoder processes a reduced number of 

syndromes (depicted in yellow area in Fig. S1d compared to yellow area in S1b), resulting in 

an overall reduced feed-forward latency. Therefore, not only the second non-Clifford gate can 

start before the feed-forward of the first non-Clifford gate is applied, the additional ancillary 

surfaces enable a smaller latency, and thus a reduced logical clock. A similar effect will happen 

when six ancillary surfaces are available (Fig. S2a), where the difference compared to four 

surfaces is that three consecutive nonstop non-Clifford gates can be applied (and further 

nonstop gates if 𝐿 < 𝐿𝑡ℎ). Only when the number of ancillary surfaces increases to eight (Fig. 

S2b), 𝐿𝑡ℎ starts to increase without increasing the decoding task area. Fig. S3 presents the effect 

of increasing the threshold latency on the decoding latencies for various classical 

configurations. As 𝐿𝑡ℎ  increases, the requirements on the classical computation are relieved.

  

 

Figure S2. The 𝜋/𝟖 architecture for 6 (a) and 8 (b) ancilla surfaces. In both panels, the 

computational surfaces (|𝜓⟩) are continuously involved in a lattice surgery, i.e., without any 

stabilizer rounds where the computational surfaces are not involved in lattice surgery. Each 

main decoding task is encircled in a different color. Since there are three basic operations 

(surface initialization, lattice surgery, and logical measurement) at least eight ancillary surfaces 

are needed to increase 𝐿𝑡ℎ. 



26 
 

 

Figure S3: The effect of the threshold latency on the decoding latency. The decoding 

latency for different threshold latencies and classical parameters (denoted in panel (c)). If 𝐿𝑡ℎ 

is increased beyond 𝐿0, fault-tolerant quantum computation can be executed even when using 

a seemingly impractical classical decoder (large linear utilization 𝑈𝑙𝑖𝑛 and complexity 𝛼). 

 

  



27 
 

S3 - Analysis of the linear decoder behavior 

In this analysis we address the case where the feed-forward latency grows linearly with 

the number of data it receives, 𝐿(𝑁) = 𝜏0 + 𝑁/𝑇, with 𝜏0 being a latency offset and 𝑇 is the 

decoder’s throughput. As we explained in section III in the main text, if there is a round where 

𝐿(𝑛) > 𝐿𝑡ℎ (for simplicity let’s denote the latency of this round as 𝐿0), then the additional data 

in the following decoding task becomes 𝑁(1)(𝐿0) = 𝑁0 + 𝜆(𝐿0 − 𝐿𝑡ℎ). We note that the for 

surface code architecture, the syndrome arrival rate to the decoder can be expressed as 𝜆 =

𝑝𝑀𝑐𝑑2

𝑇𝑠
 where 𝑀𝑐 is the number of computational surfaces, 𝑑 is the code distance, 𝑇𝑠 is the time 

of a stabilizer rounds, and 𝑝 is the probability that a measurement is a syndrome defect. Thus, 

the additional data of 𝑁(1) compared to N0 arises from stabilizer rounds of the computational 

surfaces that wait for the next lattice surgery. Due to this additional data, the consequent feed-

forward latency becomes 

𝐿(1) = 𝜏0 +
N(1)

𝑇
= 𝜏0 +

𝑁0 + 𝜆(𝐿0 − 𝐿𝑡ℎ)

𝑇
= 𝐿0 +

𝜆

𝑇
(𝐿0 − 𝐿𝑡ℎ) = 𝐿0 + 𝑈(𝐿0 − 𝐿𝑡ℎ)  (𝑆1) 

where 𝑈 is the utilization of the decoder. Similarly, the latency of the next non-Clifford gate 

will be 

𝐿(2) = 𝐿0 + 𝑈(𝐿(1) − 𝐿𝑡ℎ) = 𝐿(1) + 𝑈2(𝐿0 − 𝐿𝑡ℎ) = 𝐿0 + 𝑈(𝑈 + 1)(𝐿0 − 𝐿𝑡ℎ), 

which we can continue recursively to the latency of the 𝑛’th non-Clifford gate, 

𝐿(𝑛) = 𝐿(𝑛−1) + 𝑈𝑛(𝐿0 − 𝐿𝑡ℎ) = 𝐿0 + (𝐿0 − 𝐿𝑡ℎ) ∑ 𝑈𝑘

𝑛

𝑘=1

= 𝐿0 + (𝐿0 − 𝐿𝑡ℎ)
𝑈(𝑈𝑛 − 1)

𝑈 − 1
.      (𝑆2) 

From Eq. (S2) we can see that the latency diverges with 𝑛 if the decoder’s utilization satisfies 

𝑈 > 1. This condition will occur if syndrome arrival rate to the decoder is larger than the the 

decoder’s throughput.  

  



28 
 

func initialize_surface(logical_qubit, state): 
 active_logical_qubits.append(logical_qubit) 
 for data_qubit in logical_qubit.data_qubits: 
  reset(data_qubit) 
  if state: 
   play(pi,data_qubit) 
 
func play_x(logical_qubit): 
 for data_qubit in logical_qubit.data_qubits: 
  play(pi,data_qubit) 
 
func measure_surface(logical_qubit,error_probability): 
 active_logical_qubits - = logical_qubit 
 return measure_qubits(logical_qubit.data_qubit_resonators, error_probability) 
 
func stabilizer_round(error_probability, round_time): 
 for logical_qubit in active_logical_qubits: 
  ancilla_bits=measure_qubits(logical_qubit.ancilla_qubit_resonators, 
error_probability) 
 wait_until(round_time) 
 return ancilla_bits 
 
func measure_qubits(qubit_resonators, error_probability): 
 discr_threshold=threshold(error_probability) 
 for i, resonator in enumerate(qubit_resonators): 
  measure(readout_pulse, resonator, demod(x)) 
  state[i] = x > discr_threshold 
 return state 
 
func initialize_surgery(logical_qubit1,logical_qubit2): 
 active_logical_qubits - = logical_qubit1 
 active_logical_qubits - = logical_qubit2 
 active_logical_qubits.append(logical_qubit1+logical_qubit2+sugregy_qubits) 
 for data_qubits in sugregy_qubits.data_qubits: 
  reset(data_qubit) 
 
func terminate_surgery((logical_qubit1,logical_qubit2),error_probability) 
 measure_qubits(sugregy_qubits.data_qubits, error_probability)) 
 active_logical_qubits - =(logical_qubit1+logical_qubit2+sugregy_qubits) 
 active_logical_qubits.append(logical_qubit1) 
 active_logical_qubits.append(logical_qubit2) 
 

Listing S1: Pseudocode for the macros in the benchmark definitions. Color coding is the 

same as in Listing 1 in the main text. The parameter discr_threshold is the discrimination 

threshold, chosen such that white noise in the analog channels will have a probability according 

to the error_probability that can probabilistically create an error for a specific qubit resonator, 

given the measurement history (denoted by meas_history which includes all measurement 

results so far) to be above it. We define the benchmarks for a 7-to-1 readout multiplexing so 

that a Surface-49 will have 7 pairs of analog channels for all measurements. We note also that 

the command reset can be defined as a macro with iterations in quantum-real-time to reach a 

high fidelity. 

 

  



29 
 

Table S1: Simulation parameters 

Figure 4a (purple) 4b 4c 4d S3 

code distance d 5 

syndrome probability 𝒑 0.01 

# computational 

surfaces 𝑴𝒄 

2 

number of initial 

syndromes 𝑵𝟎 

3𝑝𝑀𝑐𝑑3 

latency offset 

coefficient 𝜏𝟎 

 3 

latency linear 

unitization 𝑼𝒍𝒊𝒏 

 variable [0.6, 0.9, 1.1, 1.5] 

latency prefactor 𝜏𝟏  𝑈𝑙𝑖𝑛/𝑝𝑀𝑐𝑑2 

latency complexity 

factor 𝛼 

 variable 1 [0.9, 1, 1.1] 

Initial latency  𝑳𝟎  𝜏0 + 𝜏1(𝑁0 )𝛼 

threshold latency 𝑳𝒕𝒉 11 [11, 15, 25] 

 

 

Supplementary references 

[S1] D. Litinski, A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery, 

Quantum 3, 128 (2019). 


