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Abstract—Fully Homomorphic Encryption (FHE) enables
privacy-preserving computation and has many applications.
However, its practical implementation faces massive compu-
tation and memory overheads. To address this bottleneck,
several Application-Specific Integrated Circuit (ASIC) FHE
accelerators have been proposed. All these prior works put
every component needed for FHE onto one chip (monolithic),
hence offering high performance. However, they suffer from
practical problems associated with large-scale chip design, such
as inflexibility, low yield, and high manufacturing cost.

In this paper, we present the first-of-its-kind multi-chiplet-
based FHE accelerator ‘REED’ for overcoming the limitations
of prior monolithic designs. To utilize the advantages of multi-
chiplet structures while matching the performance of larger
monolithic systems, we propose and implement several novel
strategies in the context of FHE. These include a scalable
chiplet design approach, an effective framework for workload
distribution, a custom inter-chiplet communication strategy,
and advanced pipelined Number Theoretic Transform and
automorphism design to enhance performance.

Experimental results demonstrate that REED 2.5D micro-
processor consumes 96.7 mm2 chip area, 49.4 W average power
in 7nm technology. It could achieve a remarkable speedup of up
to 2,991× compared to a CPU (24-core 2×Intel X5690) and
offer 1.9× better performance, along with a 50% reduction
in development costs when compared to state-of-the-art ASIC
FHE accelerators. Furthermore, our work presents the first
instance of benchmarking an encrypted deep neural network
(DNN) training. Overall, the REED architecture design offers
a highly effective solution for accelerating FHE, thereby sig-
nificantly advancing the practicality and deployability of FHE
in real-world applications.

Index Terms—Fully Homomorphic Encryption, Hardware Ac-
celerator, Chiplets, CKKS, privacy-preserving DNN training

1. Introduction

Data breaches can put millions of private accounts at
risk because data is often stored or processed without en-
cryption, making it vulnerable to attacks [28], [42], [50].
Fully Homomorphic Encryption (FHE) is a solution that
allows secure, private computations, communications, and

storage. It enables servers to compute on homomorphically
encrypted data and return encrypted outputs. FHE has a wide
range of applications, including cloud computing [37], [45],
data processing [7], and machine learning [55]. The concept
of FHE was introduced in 1978 by Rivest, Adleman, and
Dertouzos [62], and the first FHE scheme was constructed in
2009 by Gentry [24]. Since then, many FHE schemes have
emerged- BGV [9], FV [19], CGGI [16], and CKKS [14],
[15], [38]. These schemes allow computations to be out-
sourced without the need to trust the service provider,
providing a functional and dependable privacy layer.

Despite significant progress in the mathematical aspects
of FHE, state-of-the-art FHE schemes typically introduce
10,000× to 100,000× slowdown [32] compared to plaintext
calculations. This overhead can be attributed to plaintext
expanding into large polynomials when encrypted using an
FHE scheme. Subsequently, simple operations, like plaintext
multiplication, translate into complex polynomial opera-
tions. FHE’s massive computation and data overhead hin-
ders its deployment in real-life applications. To bridge this
performance gap, researchers have proposed acceleration
techniques on various platforms, including GPU, FPGA, and
ASIC [5], [6], [20], [21], [23], [31], [34]–[36], [47], [53],
[59], [61], [64]–[66], [71], [73], [77]–[79]. Software imple-
mentations offer flexibility but poor performance. Attempts
have been made to provide GPU [5], [31] and FPGA-based
solutions [47], [61], [71]. However, the performance gap is
still 2-3 orders compared to plain computation.

Currently, the fastest hardware acceleration results for
FHE have been reported using ASIC modeling [21], [23],
[34]–[36], [66]. The works propose utilizing large chip
architecture designs with all FHE building blocks onto a
single chip to maximize performance, hence monolithic.
While simulations of these architectures show that they can
achieve high performance for FHE workloads, the limi-
tations of the current manufacturing capabilities, such as
inflexibility, low yield, and higher manufacturing costs [25],
hinder their real-world deployment. For instance, the large
architectures [34]–[36] with area-consumption of approxi-
mately 400mm2, result in a manufacturing yield of only
67% [44], chip fabrication cost of over 25M$ [52], and long
time-to-market (>3 years).

Additionally, several of these proposals overlook the
crucial need for communication-computation parallelism as
the off-chip to on-chip communication is slower than the
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chip’s computation speed. Our analysis shows that this
feature is important in an FHE accelerator for achieving
good performance when running complex tasks like neural
network training.

In summary, the key problem we identify is the large
and complex monolithic FHE architectures proposed in prior
works, as they are difficult to realize in practice due to
expensive manufacturing costs, low yields, and long time-
to-market. As a result, achieving the desired acceleration
is challenging, necessitating the exploration of alternative
approaches. One such approach is chiplet-based architec-
ture design, where a large chip is realized by utilizing
multiple smaller chiplets instead of one large monolithic
chip. Chiplets are modular building blocks that are com-
bined to create more complex integrated circuits, such
as CPUs, GPUs, Systems-on-Chip (SoCs), or System-in-
Package (SiPs).

The transition to chiplet integrated systems represents
both the present and future of architectural designs [25],
[26], [44], [46], [81], [82]. In the DATE2024 keynote
talk [63], the speaker remarks how chiplet-based designs
help ‘push the performance boundaries, with maximum
efficiency, while managing costs associated with manufac-
turing and yield’. Although chiplet-based architectures enjoy
the aforementioned advantages, they also face a trade-off
between performance and yield. Multiple smaller chiplets
offer high yields and reduced manufacturing costs but, at
the same time, suffer performance overhead due to slow
chiplet-to-chiplet communication.

In this work, we present- REED a multi-chiplet architec-
ture designed for FHE acceleration. Thus, we first propose
a scalable design methodology for one chiplet. This ensures
full utilization of chiplets for varying amounts of available
off-chip data bandwidths. After finalizing an efficient design
of one chiplet, we move to a data and task distribution study
for multiple chiplets in the context of CKKS [15] routines.
Towards this, we contribute novel strategies that offer long-
term computation and communication parallelism. Finally,
we synthesize the proposed design methodology for ASIC
and report application benchmarks.

Contributions

To the extent of our knowledge, this is the first chiplet-
based architecture for accelerating FHE. Throughout this
work, we have followed Occam’s razor, seeking the sim-
plest solutions for the best results. We unfold our major
contributions as follows:

• Chiplet-based FHE accelerator: We present a
novel and cost-effective chiplet-based FHE im-
plementation approach, which is inherently scal-
able. The chiplets are homogeneous (i.e., identical),
which reduces testing and integration costs. REED
with 2.5D packaging surpasses state-of-the-art work
SHARP64 [34] with 1.9× better performance and
2× less development cost.

• Workload division strategy: The first step to re-
alizing a multi-chiplet architecture is to develop an

efficient disintegration strategy that helps us divide
the workloads among multiple chiplets and reduces
memory consumption. Hence, we propose an inter-
leaved data and workload distribution technique for
all FHE routines.

• Efficient C2C communication: Chiplet-based ar-
chitectures suffer from slow C2C (chiplet-to-chiplet)
communication bottleneck. We address this by
proposing the first non-blocking ring-based inter-
chiplet communication strategy tailored to FHE.
This mitigates data exchange overhead during the
KeySwitch macro-routine, accelerating Bootstrap-
ping (the most expensive FHE routine).

• Scalable design: To attain scalability by design,
we propose a configuration-based design method-
ology such that the memory read/write and com-
putational throughput are the same. By changing
the configuration parameters, the architecture can be
adapted to the desired area and throughput require-
ments. This also offers inherent communication-
computation parallelism in the design of every
chiplet.

• Novel compute acceleration: Furthermore, we
present new design techniques for the micro-
procedures of FHE- the number-theoretic transform
(NTT) and automorphism (AUT). Our approach in-
troduces Hybrid NTT, eliminating the need for ex-
pensive transpose operation and scratchpad memory.
It is easily scalable for higher or lower polynomial
degrees. Hence, other applications, such as zero-
knowledge proofs, can also benefit from this, where
transposition is expensive due to high polynomial
degrees. Additionally, we have prototyped these
building blocks on FPGA- AlveoU250.

• Application benchmark: Finally, we choose param-
eters offering high precision and good performance.
REED is the first work to benchmark an encrypted
deep neural network training, showcasing practical
and real-world impact. While CPU (24-core, 2×Intel
Xeon CPU X5690 @ 3.47GHz) requires 29 days to
finish it, REED 2.5D would take only 15.4 minutes,
a realistic time for an NN training. We also use DNN
training to run accuracy/precision experiments and
validate our parameter choice.

2. Background

Let ZQ represent the ring of integers in the [0, Q − 1]
range. RQ,N = ZQ[x]/(x

N + 1) refers to polynomial ring
containing polynomials of degree at most N − 1 and coef-
ficients in ZQ. In the Residue Number System (RNS) [22]
representation, Q is a composite modulus comprising co-
prime moduli, Q =

∏L−1
i=0 qi. The RNS representation is

used to divide a big computation modulo Q into much
smaller computations modulo qi such that the small compu-
tations can be carried out in parallel. With the application of
RNS, a polynomial a ∈ RQ,N becomes a vector, say a, of
residue polynomials. Let the i-th residue polynomial within
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TABLE 1. CKKS PARAMETERS

Parameter Definition
N,n (≤ N

2
) Polynomial size, maximum slots packed

Q, qi Coefficient modulus, RNS bases Q =
∏L

i=0 qi
L, l Multiplicative depth (#RNS bases - 1) l < L
dnum Number of digits in the switching key
P , pi Special modulus and its RNS base
K (= ⌈ L+1

dnum
⌉) Number of RNS bases for P =

∏K−1
i=0 pi

w Word size (log pi, log qi)
Lboot, Leff Multiplicative depth of/after bootstrapping

a be denoted as ai ∈ Rqi,N . We use the ‘mathtt’ font (c/sk)
to represent ciphertexts/keys. Operators · and ⟨, ⟩ denote the
multiplication and dot-product between two ring elements.
Noise (e) is refreshed for every computation.

2.1. FHE schemes and CKKS routines

Different FHE schemes exist in literature, such as,
BFV [19], BGV [9], CGGI [16], CKKS [14], [15]. These
schemes use polynomial arithmetic but differ primarily in
the data types they can encrypt. For instance, BGV and BFV
encrypt integers, while CKKS encrypts fixed-point numbers.
Due to the support for fixed-point arithmetic, CKKS is
widely adopted for benchmarking machine learning appli-
cations [27], [33]. Therefore, this work targets the RNS
(Residue Number System) CKKS [14].

In the following, we briefly describe the main procedures
within the RNS CKKS [14] for ciphertexts at level l (mul-
tiplicative depth is l − 1) where l < L, Ql =

∏l−1
i=0 qi, and

L is the maximum level. The residue polynomial associated
with each modulus qi in the RNS representation is com-
monly called the RNS limb. A CKKS ciphertext consists of
components, e.g., c = (c0, c1), where c0 and c1 are vectors
of limbs. Table 1 describes the CKKS parameters.

1) CKKS.Add(c, c′): It takes two input ciphertexts
c and c′ and computes cadd = (d0,d1) = (c0 +
c′0, c1 + c′1).

2) CKKS.Mult(c, c′): It multiplies the two input ci-
phertexts c and c′, and computes the non-linear
ciphertext d = (d0,d1,d2) = (c0 · c′0, c0 · c′1 +
c1 · c′0, c1 · c′1). Subsequently, CKKS.KeySwitch
transforms d into a linear ciphertext.

3) CKKS.KeySwitch(d, ksk): It uses a KeySwitch or
‘evaluation key ksk to homomorphically transform
a ciphertext decryptable under one key into a new
ciphertext decryptable under another key. It com-
putes c′′ where c′′0 =

∑l−1
i=0 d

i
2·ksk

i
0 ∈ RPQl,N and

c′′1 =
∑l−1

i=0 d
i
2 · ksk

i
1 ∈ RPQl,N . This is followed

by c =
(
(d0, d1)+ (CKKS.ModDown(c′′)

)
∈ R2

Ql,N
.

CKKS.ModDown() scales down the modulus (PQl to
Ql).

4) CKKS.Rotate(c, rot, kskrot): It rotates the plaintext
slots within c by rot. First, a permutation ρ is
applied to the ciphertext polynomial coefficients.
This permutation is called automorphism and is de-
termined by the Galoi element gle = 5rot mod 2N .

Finally, the permuted ciphertext is processed by
CKKS.Keyswitch using the rotation key kskrot.

5) CKKS.Bootstrap: It refreshes a noisy cipher-
text [8], [11], [13] by producing a new ciphertext
with a higher depth or lower noise. As bootstrap-
ping itself consumes a certain number of depths,
the depth of a bootstrapped ciphertext, say Leff,
is smaller than the initial depth L after fresh en-
cryption. Bootstrapping is required in complex ap-
plications, e.g., DNN, to refreshing the processed
ciphertexts.

2.2. FHE Hardware design goals

A tiered structure exists in the CKKS scheme routines.
The high-level or macro rotuines are CKKS.Add, CKKS.Mult,
CKKS.Rotate, and CKKS.KeySwitch. These macro proce-
dures apply micro procedures, such as forward and inverse
Number Theoretic Transforms (NTT/INTT), dyadic Multi-
plication/Addition/Subtraction (MAS), and Automorphism
(AUT). The NTT is used for multiplying two N coefficients
long polynomials in O(N logN) time complexity, which is
the asymptotically fastest one.

The special CKKS.Bootstrap procedure uses these
macro procedures in a specific sequence to refresh noisy
ciphertexts. Note that contrary to schemes like FHEW,
TFHE [16] where bootstrapping is a standalone procedure,
CKKS-Bootstrapping is a high-level routine which utilizes
KeySwitches, Automorphisms, and MACs. Therefore, while
TFHE/FHEW accelerators (e.g., [6]) focus on optimizing the
programmable bootstrapping, acceleration for CKKS relies
on optimized KeySwitching, Automorphisms, and MACs.
Among these operations, MAC is a straightforward linear
operation. Automorphism involves permutation, followed by
KeySwitch. This permutation, if naively implemented, can
become complex and expensive as the input polynomial has
N=216 coefficients and offers N/2 different permutations. In
this work, we show how we design the permutation unit
that is not only cheap in terms of area but also has linear
time complexity for all permutations. The final operation-
KeySwitch, is the most expensive due to the expensive base-
conversion step (Figure 1). Since KeySwitch is the most
expensive operation, the task and data distribution approach
aims to optimize this particular operation. For simplicity,
KeySwitch for dnum = L+1 (K = 1) is utilized throughout
the paper.

2.3. Monolithic vs Chiplet packaging

In the context of large Integrated Circuits, authors in
[25], [44], [81] discuss the advantages of chiplet-based
designs over monolithic designs. The problem with mono-
lithic designs stems from the fact that to keep up with the
increasing demand for high performance and functionality,
chips need to be scaled up, and advanced technology nodes
must be utilized. Manufacturing such big chips reduces the
wafer yield as more surface area is exposed to defects per
chip and increases the development cost. Such huge designs
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take a long time-to-market, and it is not straightforward to
test and verify them. More factors, such as size limitation
and sub-optimal die performance due to overload, contribute
to a shift to SiP [25].

In SiP, multiple heterogeneous smaller chiplets can be
manufactured separately and later integrated together using
various packaging techniques. This promotes chiplet-reuse,
lowering the development costs. The chiplet-packaging tech-
niques can be broadly classified into three main categories:
2D, 2.5D, and 3D [25], [44]. In 2D packaging, different dies
are mounted on a substrate, known as a multi-chip module.
Due to substrate limitations, this results in slow die-to-die
communication and high power consumption.

To address these limitations, silicon interposers are used,
and this technique is known as 2.5D integration [1], [57]. In
this approach, an interposer is placed between the die and
the substrate, enabling die-to-die connections on the inter-
poser itself. The use of an interposer significantly enhances
interconnectivity, leading to improved performance. Taking
the integration capabilities a step further, 3D packaging in-
volves stacking different dies on top of each other, akin to a
skyscraper. In 3D packaging, the dies are interconnected us-
ing through-silicon vias (TSVs). 3DIC is gaining significant
popularity and serves as the foundation for advancements
like High Bandwidth Memory (HBM/HBM2/HBM3) [10],
[56], [74], [76]. This approach significantly reduces the
critical path and area, resulting in higher performance, lower
power consumption, and increased bandwidth. The slow-
down of Moore’s law finds hope in 2.5D and 3D IC.

3. FHE-tailored multi-chiplet design

A widely adopted approach for realising a chiplet-
based architecture is to distribute the components of one
large monolithic design across multiple chiplets connected
in a mesh [12], [39], [60]. While such a disintegration
approach has found utilities in applications like Machine
Learning [69], they fall short in leveraging the inherent
algorithmic intricacies of FHE, thereby hindering efficient
workload distribution among chiplets. In the following, we
investigate the trade-offs of various chiplet design possibili-
ties for FHE and consolidate on an optimal solution. For this,
let us consider the most performance-heavy macro routine-
KeySwitch. Its data flow is illustrated in Figure 1 for l = 3.
1 The naive approach for chiplet decomposition would

be to closely follow the data flow of Figure 1 and al-
locate one chiplet per square-box in the figure (I=INTT,
F=NTT, K=Key Multiplication). This approach will lead to
(i) uneven allocation of chiplet resources; for example, the
chiplets for NTT or INTT will be much larger than those
for MAS, (ii) a massive increase in C2C communication
overhead due to the continuous data exchange between the
components, and (iii) increase in required on-chip memory
for data duplication. Thus, this approach significantly in-
hibits the performance of the design. A deeper disintegration
strategy would imply breaking the individual square-boxes
into several chiplets, for example computing one NTT using
several chiplets. Although this approach can lead to smaller

Figure 1. KeySwitch operation for l = 3, where I, F, and K represent INTT,
NTT, and key multiplication operations using MAS, respectively.

Figure 2. Side and top view of proposed four chiplet-based REED 2.5D.

chiplets, it will lead to additional C2C communication over-
head.
2 The second approach involves assigning each RNS limb

computation, as depicted in Figure 1, to a single chiplet
encompassing NTT, AUT, and MAS components. Com-
putations within boxes of the same colour are performed
within the same chiplet. This approach also faces slow C2C
communication overhead due to data dependencies between
the processing of RNS limbs in the KeySwitch routine.
Furthermore, as the depth of the FHE application decreases
over time, reducing the number of RNS limbs (l), their
respective chiplets become idle.
3 A refined third approach involves enabling each chiplet to

support multiple RNS limbs to reduce C2C communication
overhead. For instance, the first chiplet can initiate NTTq1
after executing INTTq0 without sending it to the second
chiplet, as depicted in Figure 1. This strategy minimizes
communication overhead and intermediate storage require-
ments by storing copies of input RNS limbs d02, d12, d22 in
Figure 1 on each chiplet. Hence, INTTq0 , INTTq1 , NTTq0 ,
etc., in Figure 1 are computed within the same chiplet.
Although it reduces C2C communication, more memory is
required due to duplicate RNS limbs.

Thus, all the available approaches offer certain trade-
offs, and our aim is to determine the best and most practical
solution. With this aim, we develop a chiplet-based design
approach for REED.

3.1. REED 2.5D Architecture

In a chiplet-oriented design process, there are two critical
choices: the size of chiplets and the number of chiplets.
The manufacturing cost is reduced, and yield increases when
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the chiplets are small in area. However, having many small
chiplets reduces performance as the complexity of slow C2C
communication increases. In this work, we will develop a
chiplet design strategy and integration topology, considering
the data flow of FHE. This approach provides a balance
between yield, manufacturing cost, and C2C communication
overhead.

As an example, Figure 2 shows a four chiplet-based
REED 2.5D architecture, where the chiplets are connected
in a ring formation and have exclusive read/write access to
HBM in its proximity. Later, we will show that this archi-
tecture scales well with an increasing number of chiplets
(Section A). To overcome C2C communication overhead
and memory storage issues, we propose an RNS polynomial
(limb)-oriented task and data distribution strategy, which
is built on top of approach 3 . Specifically, chiplets are
assigned certain RNS limbs and all tasks related to these
limbs without requiring data duplication (detailed in Sec-
tion 5). The proposed ring formation (Section 5.3) allows us
to increase the number of chiplets at the cost of only a linear
increase in the number of interconnects. Hence, we can scale
it to eight or sixteen chiplets as well. This ring formation
for connecting the FHE chiplets is specifically tailored to
the data-flow of performance-critical FHE workloads. With
this formation, not all dies need to communicate with every
other die simultaneously, which is crucial for minimizing
C2C communication requirements.

Furthermore, our communication protocol ensures (Sec-
tion 5.3) that no HBM-to-HBM communication is required.
Hence, HBMs are positioned on the outer side. We also
avoid sharing one HBM among multiple chiplets, ensuring
that each HBM is located only in proximity to the one
chiplet it serves. Notably, our placement strategy aligns well
with [57], [82], where authors design chiplet-based general-
purpose processors with an actual tapeout, demonstrating
practical viability. Finally, we also ensure a homogeneous
design where all chiplets are identical, simplifying post-
silicon realization.
Disintegration Granularity: Chiplet systems face a trade-
off between development cost and performance degradation,
depending on the disintegration granularity. Existing works
on chiplet-based architectures, such as [26], [44], [74], [76],
[81], [82], show that disintegration improves yield, but it
introduces challenges such as floorplanning and post-silicon
testing overhead. Hence, the question:

How much disintegration is too much disintegration?

Considering a maximum die area of 800mm2, dividing it
into four chiplets offers an ≈ 80% yield, while eight chiplets
provide a yield of ≈ 90%. The yield numbers are obtained
from [44].

While the eight-chiplet option shows promise for achiev-
ing high yield, it faces the challenge of underutilization over
time as the number of RNS limbs decreases after rescaling.
Specifically, when l becomes smaller than 8, certain REED
chiplets remain idle (Detailed in Section 5.2 and Section A).
On the contrary, the instantiation of four chiplets strikes an
optimal balance between manufacturing cost and utilization.

We want to remark that the number of REED chiplets
is flexible and can be changed as per user requirements,
depending on the technology and computation constraints.

4. Architecture Design of One Chiplet

The need for scalability and high throughput drives
our design methodology. We introduce the REED design
configuration- (N1, N2) for polynomial degree N , where
N1 ·N2 = N . For the clock frequency f , this configuration
provides a throughput of f

N1
operations per second and

can process N2 coefficients in parallel. A configuration-
flexible design approach will help obtain computation-
communication parallelism within every chiplet by ensuring
that the memory read/write throughput is the same as the
computational throughput. Now, let us explore how we
design the ingredients of REED Processing Unit (PU) to
ensure flexibility.

4.1. The Hybrid NTT (Frankenstein’s Approach)

The NTT/INTT unit plays a vital role in converting
polynomials from slot to coefficient representation and
vice versa. It is the most computationally expensive micro
building-block and occupies over 50% architectural area.
Therefore, designing an efficient NTT/INTT unit is crucial
as it directly impacts the overall throughput and area con-
sumption of REED.
Prior works: There are various approaches in the litera-
ture to implement NTT in hardware for large-degree poly-
nomials, such as iterative [47], [67], pipelined [80], [83]
and hierarchical [21]. The implementation complexity of
the plain iterative approach increases significantly with the
number of processing elements. The pipelined approach
(also known as single-path delay feedback (SDF)) provides a
bandwidth-efficient solution but a diminished performance.
The hierarchical approach (also referred to as four-step
NTT), utilized in [21], treats a polynomial of size N as
an N = N1 × N2 matrix and divides a large NTT into
smaller parts. It involves performing N1-point NTTs on the
N2 columns of the matrix, then multiplying each coefficient
by ωi·j (where i and j are matrix row and column indices),
transposing the matrix, and finally performing N2-point
NTTs on the N1 columns.

Transposing a matrix of size N1 × N2 requires N1

separate memories and large data re-ordering units. Hence,
in [21], the transpose unit consumes 14% of the area per
compute cluster. Moreover, it also requires additional N2

cycles for writing data to the transpose memory and N1

cycles for reading it. Therefore, although the hierarchical
approach simplifies the NTT implementation, we observe
that it has the following limitations: (i) the costly transpose
operation, (ii) fixed N1 and N2 such that N1 = N2 [21],
[23], and (iii) the reliance on scratchpad in some works
leads to large memory fan-in and fan-out, causing routing
inefficiencies.
Our Technique: We aim to design an NTT that is routing-
friendly, throughput-oriented, and does not necessitate costly
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Figure 3. Novel routing-friendly Hybrid NTT/INTT design flow for N =
N1 ×N2.

Algorithm 1 Hybrid NTT with NWC
In: a (a matrix of size N1 ×N2 in row-major order)
In: ω (N -th root of unity), ψ (2N -th root of unity)
Out: a = NTT(a) (a matrix of size N1 ×N2 in
column-major order)

1: for (i = 0; i < N1; i = i+ 1) do
2: for (j = 0; j < N2; j = j + 1) do
3: a[i][j]← a[i][j] · ψi·N2+j (mod q) ▷

PP:Pre-processing
4: end for
5: end for

Apply N1-pt NTT to the columns of a ▷ using
SDF-NTT

6: for (i = 0; i < N1; i = i+ 1) do
7: for (j = 0; j < N2; j = j + 1) do
8: a[i][j]← a[i][j] · ωi·j (mod q) ▷ HP:Hadamard

prod.
9: end for

10: end for
Apply N2-pt NTT to the rows of a ▷
Unrolled(U)-NTT

11: return a

transposition. To achieve this, we utilize parts of hierarchi-
cal, iterative, pipelined, and plain unrolled NTTs (Franken-
stein’s approach) and introduce a novel Hybrid NTT. It is
fully pipelined, and its flow is shown in Algorithm 1 and
Figure 3.

During the NTT operation, we first perform pre-
processing (Step 3 of Algorithm 1) using N2 modular
multipliers (PP). The resulting coefficients are sent to N2

pipelined NTT units (N1-pt SDF-NTT). The output coeffi-
cients of SDF-NTT units are processed via the Hadamard
Product unit (HP) that multiplies the coefficients with pow-
ers of roots of unity (ω) using N2 modular multipliers.
Finally, we employ a N2-pt unrolled NTT (U-NTT) unit.
The properties and advantages of the proposed unit are as
follows.
1 Transpose elimination: The Hybrid NTT eliminates

transpose by using two orthogonal NTT approaches,
pipelined (SDF) approach for N1-sized NTTs and unrolled

Algorithm 2 Automorphism
In: a[N1][N2], gle
Out: â = ρ(a)

1: index← gle
2: for (l0 = 0; l0 < N1; l0 = l0 + 1) do
3: l1 ← index (mod log(N1))
4: start← index≫ log(N1)
5: addr[j] ← (start + j · gle) (mod log(N2)) ∀ j ∈

[0, N2)
6: â[l1]← shuffle_tree_N2 ×N2(addr, a[l0])
7: index← index+ gle
8: end for
9: return â[N1][N2]

(U-NTT) approach for N2-sized NTTs. As shown in Fig-
ure 4 (a), the output coefficients of SDF-NTT are processed
directly by U-NTT, providing a seamless, natural transpose
operation.
2 Bi-directional workflow: The above method of transpose

elimination also helps make our NTT unit bi-directional (for
INTT), as illustrated in Figure 4 (b). The additional routing
complexity is balanced with efficient pipelining.
3 Low-level optimizations: For modular multiplication

and reduction unit, we adopted the word-level Mont-
gomery [48], [49] modular reduction algorithm. and opti-
mized it for our special prime form, 2w−1+qH ·2m+1, where
m = 18 is Montgomery reduction size, and ⌈log2 qH⌉ = 10
is small. A total of (N2+1) log2(N1)+N2

2 (log2 (
N2

2 )+5)−7
modular multipliers are utilized.
4 On-the-fly twiddle generation: To reduce the on-

chip twiddle factor memory, we employ on-the-fly gener-
ation [47] using a small constant memory that stores a few
initial roots of unity. This helps reduce the on-chip constant
storage by up to 98.3%.

4.2. Multiply-Add-Subtract (MAS) and Automor-
phism/Conjugation (AUT)

MAS is elementarily designed as a triadic unit for com-
puting point-wise multiplication, addition, subtraction, or
multiply-and-accumulate operations. It utilizes the modular
multiplier proposed for the Hybrid NTT unit. On the other
hand, designing an efficient AUT unit is challenging [21],
[66]. It permutes ciphertexts using the Galois element (gle)
to achieve rotation or conjugation. A polynomial is stored
as a matrix N1 ×N2 in N2 memories.

For AUT, we make a key observation that when we load
N2 coefficients from memory address l0 across all N2 mem-
ories, they are shuffled based on the desired rotation offset
(ρrot), and then written to address l1 across all N2 memories.
Hence, even though the coefficient order is shuffled, they all
go to the same address of N2 distinct memories. We utilize
this property to permute all N2 coefficients in parallel.
This out-of-place automorphism is presented in Algorithm 2.
The in-place permutation techniques proposed in previous
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Figure 4. The proposed novel Hybrid NTT/INTT design flow with Memory access for (a) NTT and (b) INTT with N1 = 4, N2 = 4, and N = 16. The
butterflies represent the Gentleman-Sande butterfly [67] operation employed in our design.

Figure 5. An example of a shuffle_tree_N2 × N2 workflow. Every
stage has sufficient registers to hold N2 coefficients.

works [21], [66] increase routing complexity due to memory
transposition requirements.

At the end of this, we are still left with a quadratically
complex and expensive shuffle O(N2

2 ) among the coeffi-
cients. However, we analyzed that all the shuffles could
be performed pairwise on the coefficient batches, as shown
in Figure 5. After each stage, two batches of coefficients
are merged to form a new batch. With this, we replace
the naive and expensive operation with a pipelined binary-
tree-like shuffle. Its number of pipeline stages adjusts with
N2, making the pipelining scalable and efficient for higher
configurations. Moreover, the unit can handle any arbitrary
rotation. This concludes the design of micro procedures.

4.3. Programmable Instruction-Set Architecture

In this section, we discuss how to program the micro
procedures (NTT, AUT, MAS) for high-level FHE routines.
This is crucial for determining their placement in the archi-
tecture, which will be discussed in the subsequent section.

Prior works define a strict operation flow. This prevents
adaptations to future changes in the FHE algorithms or
routine flow. Noting this, we utilize an instruction-based
architecture design technique [71], wherein a relatively
small instruction controller manages the multiplexers and
collects ‘done’ signals from these units. Two types of
instructions are: micro and macro. Micro-instructions are
low-level arithmetic procedures like NTT, INTT, point-wise
modular addition, subtraction, multiplication, multiplication-
and-accumulation, and automorphism. They are used to
compose microcodes for realizing macro-instructions for

Figure 6. The REED-PU design. Every data communication (memory to
building blocks and off-chip to on-chip) here has a bandwidth of N2w
bits/clock-cycle.

homomorphic addition/multiplication, KeySwitch, rotation,
and moddown. A bootstrapping is performed using these
macro instructions.

4.4. REED Processing Unit (PU)

We initiate the PU design, as shown in Figure 6. A
PRNG is deployed to generate half the key components
on the fly [47]. We uncover two important design deci-
sions. The first is regarding the placement of NTT/INTT
and MAS/AUT units. The second deals with the problems
associated with large on-chip memories utilised in prior
works [34], [35] for storing keys.
I The polynomial processed by NTT unit is multiplied

with two polynomials of KeySwitch keys and accumulated.
Hence, we instantiate a pair of MAS/AUT units capable of
simultaneously processing both key components. Thus, the
design has the ability to run NTT and MAS units concur-
rently (shown in Figure 7), which improves the KeySwitch
performance by 66.7%, as explained in Figure A. Moreover,
since the AUT and MAS units are relatively cheaper, this
design decision also does not add significant area overhead,
as presented later in Table 2.
II In hardware accelerators, on-chip memory causes sig-

nificant area overhead. Chiplets with large on-chip memory
are not power, area, and manufacturing cost efficient [70].
In the context of FHE, each KeySwitch key demands
≈ 820MB or 91MB storage for dnum = L + 1 or 3

respectively. Given the limited on-chip memory capacity of
small chiplets, accommodating even a single KeySwitch key
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Figure 7. Timeline of parallel and pipelined operation flow.

becomes rather challenging. Consequently, reliance on off-
chip memory access becomes essential when a KeySwitch
operation necessitates a different key. In our architecture,
we store the keys in large off-chip HBM. To reduce the
overhead of off-chip memory access, we develop an efficient
prefetch unit that streamlines data movements in parallel to
computation, as described next.

4.5. Streamlined Prefetch for On-Chip Storage

As mentioned in Section 4.1, REED’s design methodol-
ogy mitigates the need for scratchpad-like on-chip memory,
allowing us to use memory units solely as prefetch units.

Each memory unit in Figure 6 exhibits balanced fan-in
and fan-out, and among the five memory units depicted,
four are fed by off-chip memory. The small memory is
responsible for storing and communicating the INTT result
to the other PUs (or Chiplets) (elaborated in Section 5.3).
Only two of the four memories communicating with off-
chip memory need to write back the results, as illustrated
by bi-directional arrows in Figure 6.

Summarily, three memories perform off-chip read/write
communication. These memories are physically divided into
two parts. When one is utilized for on-chip computation,
the other performs off-chip prefetch (similar to ping-pong
caching).

5. Techniques for exploiting Comm-Comp Par-
allelism

In the previous section, we discussed how a
configuration-based design methodology enables off-
chip and on-chip communication-computation parallelism.
However, when distributing FHE workloads among multiple
chiplets, we also have to consider the C2C communication
overhead. This is important as state-of-the-art HBM3 [58]
features a bandwidth of 1.2TB/s, while the state-of-the-art
C2C interconnect UCIe [1], [2] only offers a bandwidth of
0.63 TB/s. Consequently, a chiplet system optimized for
HBM bandwidth would face bottleneck due to slow C2C
communication.

The routine that necessitates most data exchange is
KeySwitch. It switches the modulus (base-conversion) of
each L residue polynomial (INTT(d2qi)qi ∀i ∈ [0, L)) to
(L + 1) residues polynomials (NTT(d2qi)qj ∀j ∈ [0, L]),
followed by key multiplication.

5.1. Communication cost-analysis

In a multi-PU work [47], the authors briefly discuss
limb-based decomposition and propose distributing compu-
tation across the RNS polynomials (limbs) by employing
one PU per limb. While this approach enables highly parallel
computations, as the multiplicative depth decreases, many
PUs become idle, causing underutilization.

In [34]–[36], the authors utilize both the limb-based
and coefficient-based task distribution during KeySwitch.
They [34], [35] propose using limb-wise distribution for
INTT and NTT steps and coefficient-wise distribution for
base-conversion. [35] utilizes four PUs, and since base
conversion is needed between the INTT and NTT steps, all-
to-all broadcasts are done across PUs to switch from one
distribution to another. In Figure A, we analyze how both
techniques attain the same communication overhead.

Additionally, all-to-all C2C broadcast between the
chiplets is slow and increases by O(r2) with the number of
chiplets r. In the context of FHE, switching between limb-
and coefficient-wise task distribution becomes expensive as
it demands all-to-all C2C data movements. For example,
[35] proposes utilizing four PUs in a single monolithic chip.
However, when extended to a chiplet setting, where each PU
occupies a separate chiplet, the lack of an all-to-all broadcast
capability makes it difficult to send data across all chiplets
instantly. Using bi-directional C2C communication ability,
the polynomial would reach all four chiplets via at least two
serial C2C communication interfaces. The on-chip band-
width used in the prior works is (20TB/s [35], 36TB/s [34])
is much less than the state-of-the-art C2C communication
bandwidth (0.63TB/s [1], [2]). As a result, chiplets would
have to wait longer for data to arrive before computing,
and this C2C communication overhead will significantly
inhibit the performance. Hence, there is a need to devise
a schedule that can couple most of the communication with
computation.

5.2. Data Distribution across Multiple Chiplets

The above analysis establishes that limb-based decom-
position is indeed the best technique for task and data
distribution across multiple chiplets. Within one chiplet,
the computation is coefficient-wise distributed as N2 co-
efficients are processed in parallel (discussed in Section 4).
However, as discussed in Section 3 3 , the limb-based data
and task technique also has limitations. Therefore, we adapt
it to offer long-term high-performance benefits.

This adaptation stems from the two key observations
from the data flow of the KeySwitch operation in Figure 1.
Firstly, the INTT results that need to be shared and dupli-
cated are ephemeral, and thus, they do not require any long-
term storage – subsequent operations immediately consume
them. To improve the efficiency, instead of duplicating the
INTT data or sharing memory across chiplets, we leverage
a ring-based C2C communication as shown in Figure 8.
The chiplets are connected in a ring formation where each
chiplet processes one INTT result and then sends it to the
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next chiplet. The ring-based data movement minimizes the
number of C2C interconnects and ensures that each chiplet
operates on independent memory, simplifying placement and
routing constraints.

The second observation is related to the underutilization
of chiplets with a reduction in the number of levels or
depths in the ciphertext after homomorphic rescaling. If we
distribute the limbs across the chiplets in an interleaved
manner, then as the multiplication depth decreases, the
number of limbs per ciphertext in each chiplet also uni-
formly decreases. To explain the benefits of the interleaved
distribution, we will use the analogy of a card game.
The FHE card game: In this game, each player represents
a chiplet, while the residue polynomials or limbs act as the
cards. The cards dealt out are collected in a LIFO (last-in-
first-out) manner 1, imitating the loss of multiplicative depth
during computation. All players engage in the game (FHE
routine computation) until they exhaust their cards. The start
of a new FHE computation game mirrors Bootstrapping,
which starts when only one player retains a single card.
Until this point, players without cards must wait until the
next game to participate. With these rules, the dealer (user
or compiler [75]) has two choices: deal out all the cards
to one player before moving to the next or do alternate
distributions such that every other card goes to different
players. Let us say there are L = 32 cards and r = 4
players. In the former case, the first player gets the cards
drawn at instances {0, 1, 2, · · · , 7}, and in the latter case, at
instances {0, 4, 8, · · · , 28}, and so on for the other players.

In both scenarios, each player receives 8 cards. In the
first option, the last player exhausts their cards first, followed
by the preceding player, and so on. Consequently, until the
first player runs out of cards, others remain inactive. Con-
versely, with alternating distribution, each player loses one
card in turn. Thus, at any point in the game, players either
possess the same number of cards or one less, ensuring
active involvement throughout.

The goal of FHE architecture design is to ensure the
full utilization of chiplets in the long term and, thus, deliver
high performance for the available computation resources.
It translates to maximizing the player interaction in the
FHE card game. Thus, the latter technique of interleaved
alternate distribution offers maximum chiplet participation
in the ”card game” of computations. Now, if there are
too many players, then the number of players becoming
idle will increase no matter which technique is used. The
latter technique will only minimize the idle time. This is
the problem with using more chiplets. Thus, next, we will
discuss our final key technique for reducing communication
overhead and then derive a good upper-bound on the number
of chiplets.

5.3. Efficient Non-Blocking C2C Communication

The proposed ring-based communication still faces over-
head as the chiplets have to initially wait for every chiplet

1It can also be FIFO (first-in-first-out) without any loss of generality.

Figure 8. Non-blocking ring-based communication for four REED chiplets
when L = 7. The blocks between executions represent the long commu-
nication window to make up for slow inter-chiplet (C2C) communication.

Algorithm 3 KeySwitch
In: d2 (the ciphertext component to be linearized)
Out: BUF = KeySwitch(d2)

1: Following tasks are executed by REEDi ∀ i ∈ [0, r)
▷ All REEDi operate in parallel as shown in Figure 8

2: for (j = 0; j < l
r ; j = j + 1) do

3: Ircvi ← INTT(dj·r+i
2 )

▷ Initiate communication with REED(i+1)%4,
REED(i−1)%4

4: for (m = 0;m < r;m = m+ 1) do
5: I

proc
i ← Ircvi

▷▷ Long Communication window opens now ◁◁
▷ Start receiving Ircv(i+1)%4 from REED(i+1)%4

▷ Start sending Ircvi to REED(i−1)%4

6: for (t = 0; t < l+1
r ; t = t+ 1) do

7: BUFt∗r+i + = (NTT(I
proc
i ) ·

KSKj·r+(i+m)%4)qt∗r+i

8: end for
▷▷ Ensure Ij·r+(i+m+1)%4 has been received
▷▷ Communication window closes ◁◁

9: Ircvi ← Ircv(i+1)%4

10: end for
11: end for
12: return BUF

before it in the ring to send the INTT result. Hence, we
propose a communication strategy, illustrated in Figure 8,
to overcome this remaining problem.

The key idea is that the chiplets concurrently operate
on different limbs instead of waiting for one limb and
then processing it, as shown in Algorithm 3. Each chiplet
starts with the assigned limb, computes INTT, and then
performs multiple NTTs on it. While performing NTT, it
starts sending/receiving the INTT result. For example, the
REED0 sends its INTT result to REED3 and receives the
INTT result from REED1. This is a uni-directional ring-
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REED-PUREED-PU

REED-PUREED-PU

Figure 9. The complete architecture diagram of 4-chiplet REED 2.5D
for 1024×64 configuration. The multiple small black blocks denote I/O
interconnects along the edges.

based communication. Since only one INTT result needs
to be sent for l+1

r
parallel NTT computation, we have a

larger C2C communication window compared to computa-
tion. Consequently, non-blocking communication is achieved
as data computation can proceed concurrently with relatively
slower communication.

This technique necessitates just one read/write port per
chiplet, in contrast to the requirement for (r− 1) ports in a
star-like (i.e., all-to-all) C2C communication network.
The Adapted Distribution Technique: C2C communica-
tion bandwidth plays a major role in the performance versus
the number of chiplets trade-off. Let us assume the C2C
communication bandwidth is k× slower than the HBM to
Chiplet communication bandwidth. Each chiplet operates on
L+1
r

polynomials. The total computation time to process all
L + 1 polynomials for the KeySwitch should be close to
k. Otherwise, we will not be able to decouple the commu-
nication from computation as discussed above. This offers
us a loose upper bound r < L+1

k . To ensure u× higher
utilization, this bound must be made tighter. u can take any
value ≤ L+1

k (u = L+1
k for monolithic chip). We take u as

4. The adapted limb-based task/data distribution technique
has following properties:

• The number of chiplets is constrained by r ≤ L+1
4k .

• An interleaved data/task distribution approach is uti-
lized such that Chipleti gets data and task corre-
sponding to limbs rj + i ∀ 0 ≤ j < L+1

r
, instead of

sequential allotment (Chipleti ← ri+ j).
• The technique outlined in Algorithm 3 is to be

followed by all Chiplets to minimize data exchange
overhead and costly C2C interconnects.

6. Implementation Results

Based on the precision-loss study done for dnum = L
(shown in Section 7.1), we choose the overall parameters for
synthesizing and benchmarking our design as N = 216, L =
30,K = 1, Lboot = 15, w = 54. Upon implementation
(silicon realisation), only the parameters N,w are fixed, and
the other parameters (e.g., dnum) can be changed as per
application requirements

TABLE 2. TOTAL AREA CONSUMPTION OF 4-CHIPLET REED 2.5D FOR
DIFFERENT CONFIGURATIONS ON 28NM AND 7NM.

Components 28nm (mm2) 7nm (mm2)
1024×64 512×128 1024×64 512×128

REED 74.9 115 24 43.9
REED-PU 58.0 81.0 7.01 9.9
⌊ NTT/INTT 38.2 56.8 5.61 7.9
⌊ 2×MAS 3.1 6.6 0.42 0.76
⌊ PRNG 0.15 0.28 0.02 0.04
⌊ 2×AUT 0.14 0.32 0.02 0.04
⌊ Memory 16.1 16.1 1.2 1.2

HBM PHY/NoC 16.9 33.8 16.9 33.8
4×REED 299.6 392.4 96 175.6
C2C 12.32 14.64 0.8 1.6
Total Area 311.9 461.4 96.7 177

We synthesize REED 2.5D for configurations 1024×64
and 512×128 using TSMC 28nm and ASAP7 [17] 7nm
ASIC libraries with Cadence Genus 2019.11, and SRAMs
are used for on-chip memories. We simulated our design
using Vivado 2022.2. Moreover, we take a step further by
prototyping the building blocks on Xilinx Alveo U250 to
verify functional correctness, which has not been done by
prior ASIC FHE accelerators. Our primary objective is to
achieve high performance while optimizing area and power
consumption. To this end, we set our clock frequency target
to 1.5 GHz, use High-vt cells (hvt) configuration for low
leakage power, enable clock-gating, and set the optimization
efforts to high. We set the input/output delays to 20% of
the target clock period and leverage incremental synthesis
optimization features.

As off-chip storage, we leverage the state-of-the-art
HBM3 [30], [41], [56], [58] memory, offering improved
performance and reduced power. It is already deployed in
commercial GPUs and CPUs [18]. HBM3 with 8/12 stacks
of 32Gb DRAMs has 32/48 GB storage capacity [30], [51].
The ciphertexts provided by the client can be transferred to
REED using 32 lanes PCIe5 offering a bandwidth of 128
GB/s [72]. In our work, we present results for HBM3 PHY
and HBM3 NoC, based on [10], [56], [58] with reported
bandwidth of 1.2TB/s [58]. For C2C communication, UCIe
advanced interconnect can offer a bandwidth of 0.63 TB/s
[1], [2] for 2.5D integration.

Table 2 presents the area results for the REED 2.5D
architecture, featuring a 4-chiplet configuration as illustrated
in Figure 9. This design conforms to the fabricated chiplets
systems [4], [29]. The inner REED-PU, NoC, and HBM
(shown in Figure 9) constitute one chiplet (similar to [57],
[82]). In Table 3, we present the performance of FHE rou-
tines for both configurations (512×128 and 1024×64) with
the achieved target clock frequency of 1.5 GHz. Figure A
explains how the throughput of KeySwitch is obtained.

6.1. Power and Performance Modelling

We obtain the performance and power consumption esti-
mates for REED by using a cycle-accurate model. REED’s
communication and computation are decoupled by design
and do not need application-specific schedules to reduce
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TABLE 3. PERFORMANCE MICRO-BENCHMARKS FOR 28NM AND 7NM.

Micro-Benchmarks ↓ Level Time (ms)
Configuration → l 1024×64 512×128
AUT/MAS (pt-ct) 30 0.005 0.003
MAS (ct-ct) 30 0.01 0.005
KeySwitch 30→31 0.19 0.08
MULT & Relin. 30→29 0.22 0.11
Bootstrapping 1→30→15 14.2 7.1
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Figure 10. Increase in area with REED configurations, put in the order of
increasing throughput [26].

data load/store stalls. REED also has a modular architecture
design; all chiplets are identical, and none of the elementary
building blocks is distributed across chiplets.

In Section 4.3, we elaborated on how our instruction-set
architecture handles the micro (NTT, AUT, MAS) and macro
(e.g. rotation, KeySwitch) instructions. Thus, a user does
not need to handle micro-instructions due to the provided
macro-instruction level abstraction. Predefined microcode
for static macro-instructions ensures optimized data flow
and memory management. Data exchange across chiplets
occurs solely during KeySwitch, which is incorporated into
the microcode, along with task distribution.

The simulator takes into account the bandwidth of C2C
and HBM-chiplet communication along with data communi-
cation and distribution strategies (Section 5.2, Section 5.3).
The run-time of macro-instructions is obtained using the
known static schedule of micro-instructions. Finally, the
macro-instructions are scheduled using OpenFHE [3], and
runtime is obtained for higher-level operations (bootstrap-
ping, DNN). Similarly, power consumption for elementary
building blocks is determined using the Cadence toolchain.
The model utilizes it to estimate overall power consumption
based on utilization.

6.2. What to expect from higher-throughput con-
figurations?

Until now, we have examined two configurations
(1024×64 and 512×128) that only partially demonstrate the
advantages of our proposed scalable design methodology.

As we double the throughput (by doubling the value of
N2), the area of PU only increases by approximately 1.5×.
This trade-off arises because the chip area comprises two
components— (i) the computation logic area, which scales
linearly with throughput, and (ii) on-chip storage that re-
mains fixed to a number of polynomials. When we opt for a
higher configuration, the polynomial-size remains the same
while the number of coefficients to be processed in parallel
increases.

However, an important question remains: what config-
uration strikes the best balance between throughput and
manufacturing cost? To address this, we turn to [26]. The
authors report that the best manufacturing size for high yield
ranges from 40 to 80 mm2 for 7nm technology, while for
40nm, it ranges from 50 to 150 mm2. In Figure 10, we
present two sets of area consumption results for 28nm and
7nm technologies. The first set corresponds to four REED
cores produced as a single monolithic chip, while the second
set represents one REED chiplet. The best area ranges are
highlighted in blue and pink. As we can see, for both 7nm
and 28nm, the configuration 512×128 falls within the best
development area range and offers high throughput. The
configuration 1024×64 is within the optimum range for
28nm and is close to it for 7nm. Monolithic designs, within
the best range, offer 4× to 8× less throughput.

6.3. Comparison with Related Works

The realization of privacy-preserving computation
through FHE holds great potential for the entire community,
resulting in various acceleration works. Among these, the
ASIC designs [21], [34]–[36], [66] have achieved the most
promising acceleration results. However, a direct compari-
son with these works would be unfair as the benchmarks
are provided for different parameters (dnum,L,w, Lboot).
Hence, to ensure fairness, we provide results for bootstrap-
ping for dnum = 3 in Table 4 utilized in [34]. Next, since
we cannot change the word size (w = 54) chosen for high
precision, we select L = 23,K = 8, and Lboot = 17
accordingly.

We use the amortized bootstrapping time TA.S. [35], [36]
metric that calculates the bootstrapping time divided by Leff
and packing n. This metric overlooks factors such as area,
power, and precision. Higher precision necessitates a larger
word size, w (or expensive composite scaling). Thus, we
use the EDAP (Energy-Delay-Area product) metric [43] and
modify it (EDAPw) to incorporate a linear increase due to
word size (discussed in Section 7.1).

Table 4 compares our design’s area consumption, perfor-
mance, and power consumption for the packed bootstrapping
operation with existing monolithic works, F1 [21], BTS [36],
ARK [35], CraterLake (CLake) [66], and SHARP (SH) [34].
REED achieves 1.9× better performance than the state-of-
the-art (SH36) while consuming 1.8× less area. Our area
consumption is less as the prior works utilize at least half of
chip area for on-chip memory. In our case, on-chip memory
is not significant, as we utilize HBMs for major storage. We
obtain better performance results due to the high throughput
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TABLE 4. COMPARISON OF REED 2.5D WITH STATE-OF-THE-ART

Work Area TA.S. PAvg EDAPw Parameters
(mm2) (ns) (W) (/M) (N/L/dnum)

F132 71.02† 470 28.5† 754.5 216/23/24
BTS64 373.6 45.4 163.2 106.0 217/39/2
ARK64 418.3 14.3 135 9.74 216/23/4
CLake28 222.7† 17.6 124† 16.5 216/60/1−3
SH36 178.8 12.8 94.7 4.1 216/35/3
SH64 325.4 11.7 187 7.0 216/23/3

REED‡(1)
54

96.7 6.6 48.2 0.20 216/23/3
28.8 49.4 3.96 216/30/31

REED‡(2)
54 177 14.4 83.5 3.10 216/30/31

† Area/power are normalized [34], [54] (14nm/12nm to 7nm).
‡ Result for configuration (1) 1024× 64 with one HBM per chiplet, and
(2) 512× 128 with two HBM per chiplet.
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Figure 11. Relative a) yield of existing monolithic designs versus the pro-
posed 7nm chiplet-based architecture [44], b) development cost (including
Interposer cost) [26], [47], [52], and c) cost of SiP development (cost/yield).
RD refers to our work REED 2.5D.

and 4.8× higher off-chip communication bandwidth offered
by four HBM3 blocks – where each chiplet is exclusively
connected to one HBM3. Therefore, if the bandwidth and
area of the four chiplet-based system is scaled down to that
of a monolithic design, it only suffers 1.4× performance
loss. This is a trade-off that we face for utilizing a chiplet-
based design over a monolithic design, and overall our
design offers better performance for low chiplet-area.

We also assess the yield and manufacturing cost in
Figure 11, by utilizing the results reported in [26], [44],
[52]. For a fair comparison, we use the original area and
not the word-size scaled area for prior works. As illustrated,
we achieve the highest yield and lowest manufacturing cost
on 7nm, resulting in the least overall cost (manufacturing
cost/yield), 50% less than state-of-the-art monolithic design
SHARP64. On 28nm technology, we achieve 85% cheaper
design compared to SHARP64.

7. Application benchmarks

We benchmark three machine learning applications: lin-
ear regression, logistic regression, and a Deep Neural Net-
work (DNN). Each application is evaluated for encrypted
training and inference. In this setting, the server provides

TABLE 5. APPLICATION BENCHMARK AND THE SPEEDUP ACHIEVED
BY REED 2.5D. THE CPU SPEED IS REPORTED ON A 24-CORE,

2×INTEL XEON CPU X5690 @ 3.47GHZ WITH 192GB DDR3 RAM.

Appl. Accuracy Op Time SpeedupCPU HW

Lin.Reg. 78.12% Inf. 0.86 s 0.31 ms 2,873×
Trn. 13.82 s 4.6 ms 2,991×

Log.Reg. 61.8% Inf. 1.27 s 0.46 ms 2,785×
Trn. 11.18 s 3.8 ms 2,865×

DNN 95.2% Inf. 128.7 s 48.6 ms 2,646×
Trn. 29 days 920 s 2,725×
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Figure 12. Relative metrics comparison for the HELR [27] application with
batch sizes 256 and 1024. Under these metrics, the lower the value, the
better.

computational support without knowledge of the data or
model parameters, ensuring complete blind computation.
Most applications benchmarked in the previous works [21]
are partially blind; the server does not see the data but
knows the model parameters to evaluate it. To the best of
our knowledge, none of the previous works benchmark an
encrypted neural network training. The speedup results are
presented in Table 5 using the most area conservative design
(1024×64). Higher configuration (512×128) will improve
the performance by 2×.
1) Linear Regression: We employ the Kaggle Insurance
dataset [68] to benchmark linear regression. The model
uses a batch size of 1204 and 1338 input feature vectors
(each containing six features) for training and inference and
achieves an accuracy of 78.1% (same as plain model [68]).
2) Logistic Regression: It is a supervised machine learning
model that utilizes the log function, evaluated using func-
tion approximations in homomorphic context. Its accuracy
depends on the degree of approximation function expansion
and precision. Existing works, such as [34], [66], utilize the
HELR [27] to benchmark encrypted training on MNIST [40]
data, with batch sizes (256, 1024). In Figure 12, we illustrate
the performance advantage of REED 2.5D. We further-
more evaluate logistic regression on the iDASH2017 cancer
dataset (similar to [33]) to predict cancer probability. Here
we achieve a training accuracy of 62% in single iteration.
This dataset comprises 18 features per input, with batch
sizes of 1422 and 1579 used for training and inference.
3) Deep Neural Network : The DNN serves as a pow-
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Figure 13. A DNN for MNIST [40] with two hidden and one output layers.
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Figure 14. Accuracy plot of different word sizes for the DNN. The lines are
smoothened and the red dotted zig-zag line resembles the original form.

erful tool for Deep Learning. In our study, we employ a
DNN for the MNIST dataset [40], with two hidden and
one output layer (shown in Figure 13). We pack four pre-
processed images per batch to prevent overflow during ma-
trix multiplication. DNN training requires 12,500 batches.
Thus, all the existing works [34]–[36], [66] not providing
computation-communication parallelism will suffer as their
on-chip memory is insufficient. The DNN is trained for
≈7000 (≈5.8 Bootstrappings per iteration) iterations and
achieves 95.2% accuracy in 29 days using OpenFHE [3].
REED 2.5D could finish this in only 15.4 minutes. This is
where our computation-communication parallelism shines,
as a huge amount of ciphertexts are required for such an
application. None of the works in literature offers this and
is bound to suffer for memory-intensive applications.

7.1. Precision-loss Experimental Study

Another facet of privacy-preserving computation is pre-
cision loss. Since the server cannot see the intermediate or
final results, the best it can do is to ensure that the parame-
ters it operates on support higher precision. To validate our
parameter sets, we ran experiments for the DNN training.
In Figure 14, we can see how quickly the training accuracy
drops as the word size is reduced. Thus, precision plays a
vital role in providing privacy-preserving computation on
the cloud. Our choice of 54-bit word size strikes the perfect
balance between precision and performance. Works offering
a smaller word-size [21], [34], [66] require in-depth study
to mitigate the accuracy loss due to low precision.

Figure 15. The side and top view of futuristic RE3D has four REED 3DIC
chiplets.

8. Future Scope: Journey from 2.5D to 3

The extension of REED 2.5D to a complete 3D IC holds
immense potential for future computing. To achieve this
transition, we have two options: connecting the PU with
the HBM controller via TSV (as shown in Figure 15) or
merging the PU unit with the lower HBM controller die.
Since HBM is sold as an IP, the latter approach relies on the
IP vendors to integrate the PU. By adopting either of these
approaches, we can significantly reduce the reliance on the
Network-on-Chip (NoC), leading to a compact chip design
with lower power consumption. Each chiplet will be a full
3D IC package (PU and Memory) and will need a C2C link
via interposer for connecting to other chiplets. A reduction
in the area is expected due to fewer HBM stacks on the
lateral area and the integration of the REED-PU unit with
the HBM controller. Additionally, decreased critical paths
would further enhance the design’s performance. Thus, the
REED’s 3D IC integration promises a huge reduction in
overall chip area and power consumption.

9. Conclusion

FHE has garnered considerable interest due to its ca-
pability to preserve computation privacy. Consequently, nu-
merous efforts have been dedicated to accelerating FHE;
however, many of these attempts tend to focus excessively
on acceleration at the expense of practicality. Our proposed
accelerator design, REED, effectively addresses this limi-
tation. We propose a scalable design methodology that can
be easily extended to larger configurations while adapting to
constrained environments. It is implemented using a chiplet-
based technique, which enables easy practical realization.

Chiplet-based designs face several inherent disadvan-
tages, such as increased latency costs due to slow C2C
communication. REED not only mitigates these but also
shows advantages over the monolithic designs in terms of
performance, area, as well as energy consumption. REED
achieves this feat by utilizing non-trivial yet uncomplicated
design decisions and a modular design approach. Since all
the chiplets are small and identical, we could also prototype
the building blocks using FPGA and validate the function-
ality, which is not done by prior works. This paves the way
for interesting future prospects such as formal verification.
Overall, the advancements presented in this work hold the
promise of advancing privacy-preserving computations and
wider adoption of fully homomorphic encryption.
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Appendix

In Section 3, we examined multiple chiplet configu-
rations and selected four (r = 4) based on long-term
utilization, lower power dissipation, and low integration
costs. Our design methodology and data/task distribution
approach remain adaptable to any desired chiplet config-
uration and the number of chiplets. In fully connected

REED-PU REED-PU

REED-PUREED-PU

REED-PUREED-PU

Figure 16. The complete architecture diagram of 6-chiplet REED 2.5D for
1024×64 configuration.

chiplet nodes interconnect length between chiplets can sig-
nificantly impact energy consumption and latency. There-
fore, our proposed non-blocking ring-based communication
technique for KeySwitching shows a better advantage for
higher chiplet integration density.

Figure 16 illustrates a chiplet-based architecture for six
chiplets, which can be expanded to accommodate more
chiplets. Additionally, energy-efficient lower-bandwidth
memories, such as DDR, can be integrated, with the appro-
priate (N1, N2) configuration based on memory throughput.
While increasing the number of chiplets enhances perfor-
mance, it comes at the cost of area and underutilization
when the current multiplicative depth (l) falls below the
number of chiplets (l < r). However, in the long term,
more chiplets can lead to better performance, albeit with the
additional area, power, and integration overhead. Also, note
that a higher number of Chiplet interconnects implies more
additional points of failure, making testability and reliability
more involved.

Among all the routines, the KeySwitch is the most
expensive operation. For dnum = L, we transform all
L residue polynomials from slot to coefficient represen-
tation (INTT), and then each of these is transformed to
L + 1 NTTs, multiplied with two key components, and
accumulated. This requires L INTTs, L(L + 1) NTTs,
and 2L(L + 1) MAS, making the naive throughput of
this operation: f

L(1+3(L+1))·N1
. By utilizing REED’s par-

allel processing capability to perform all MAS operations
concurrent to the NTT operations (shown in Figure 7), we
save 2L(L+1) clock cycles and increase the throughput to

f
L(L+3)·N1

, resulting in a 66.7% improvement.
[35] utilizes four PUs and states that for the base-

conversion step, the number of polynomials that need to
be transferred during limb-based only decomposition is
2 · dnum · (L + K + 1), while for coefficient-wise it is
(dnum+ 2) · (L+K + 1).

This assumes the limb-wise distribution is done after
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multiplication with KeySwitch keys, and all the results are
sent to every PU via an all-to-all broadcast. However, we
remark that one PU does not need to send all the polyno-
mials and instead only needs to send 2·(dnum−1)·(L+K+1)

dnum
polynomials so that every PU holds the results for the sup-
ported bases. Therefore, the total cost becomes 2 · (dnum−
1) · (L+K + 1), which is less than the cost of coefficient-
wise distribution for dnum = 3. Furthermore, we would
like to note that polynomial distribution after KeySwitch
is expensive as the data doubles in size after multiplica-
tion with the two key components. Hence, this distribution
should be done immediately after NTT computation, which
further reduces the cost to only (dnum− 1) · (L+K + 1).
This is much less compared to coefficient-wise distribution
(dnum+2)·(L+K+1). Hence, we reassert that limb-based
distribution will attain less communication overhead than
coefficient-wise without any extra computation overhead.
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