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Abstract

This work introduces a novel framework for dynamic factor model-based group-level anal-

ysis of multiple subjects time series data, called GRoup Integrative DYnamic factor (GRIDY)

models. The framework identifies and characterizes inter-subject similarities and differences be-

tween two pre-determined groups by considering a combination of group spatial information and

individual temporal dynamics. Furthermore, it enables the identification of intra-subject simi-

larities and differences over time by employing different model configurations for each subject.

Methodologically, the framework combines a novel principal angle-based rank selection algo-

rithm and a non-iterative integrative analysis framework. Inspired by simultaneous component

analysis, this approach also reconstructs identifiable latent factor series with flexible covariance

structures. The performance of the GRIDY models is evaluated through simulations conducted

under various scenarios. An application is also presented to compare resting-state functional

MRI data collected from multiple subjects in autism spectrum disorder and control groups.

Keywords— Group-level analysis, high-dimensional time series, principal angles, dynamic factor model,

multi-way analysis, fMRI.
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1 Introduction

1.1 Statistical analysis of brain connectivity

The analysis of brain connectivity typically focuses on examining the synchronized activity of spa-

tially distinct brain regions. Modeling such interconnected regions includes structural connectivity

(a network of anatomical or structural connections linking distinct units), and functional connectiv-

ity (capturing statistical dependence between distinct units). The units can be individual neurons,

neuronal populations, and anatomical regions of interest (ROIs). In addition to the statistical de-

pendence, one may be interested in causal interactions between these units (effective connectivity)

(see Sporns; 2007, for further explanation).

To explore functional connectivity, one uses functional magnetic resonance imaging (fMRI) to

capture blood-oxygen-level dependent (BOLD) signals observed over time. Each BOLD signal

is mapped to a pre-specified ROI via a brain atlas. The strength of this signal is regarded as

a proxy for brain activity since the blood oxygenation of the area of interest increases when the

corresponding regions become active. Depending on the research goal, one may focus on establishing

a statistical model to localize brain areas activated by the task, or building a prediction model about

psychological or disease states. For these purposes, task-based fMRI (T-fMRI), a series of BOLD

signals acquired while the subject performs a set of tasks, is often used. In making inferences

about the structure of relationships among brain regions, across time points, and between subjects,

resting-state fMRI (R-fMRI) is another option (e.g., Smith; 2004). Our motivating application will

focus on R-fMRI.

Two types of questions can be addressed with R-fMRI for statistical brain network analysis.

The first question concerns the construction of a network representation that reveals spatial and

temporal dependences between ROIs. The most active research related to this question involves

identifying commonality and uniqueness in connectivity patterns between (group of) subjects. The

other question is about establishing a mathematical model that describes effective connectivity of

the brain network (e.g., Lindquist; 2008).

One promising statistical tool for addressing the first question is called data integration. In

this context, data integration can be used to study similarities and differences in structures across

subjects. Often, this heterogeneity is due to factors either directly observable (e.g., demographic,

disease status, experiments) or hidden (e.g., causal mediation), which can be revealed through

statistical modeling. The observations for such studies form multi-block (or multi-view) data, and
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these data structures naturally motivate the simultaneous exploration of the joint and (group)

individual variations across and within data blocks. However, this approach often discounts tem-

poral dependence and shows limitations in explaining directed connections. On the other hand,

the second question can be dealt with using network modeling. For example, structural equation

modeling (SEM) can be used to test causal relationships between ROIs. Alternatively, statistical

dependence can be formulated through graphical models. However, identifying joint and (group)

individual configurations in this context is less obvious, and the number of such studies is relatively

low (e.g., Lee et al.; 2013, and references therein).

1.2 Contributions

We propose GRoup Integrative DYnamic factor models, which we abbreviate as GRIDY, and their

estimation procedure for multivariate time series data (e.g., R-fMRI) collected on a set of common

variables (e.g., ROIs) across subjects from several predetermined groups. There are several impor-

tant points to note about GRIDY models. First, we can identify model configurations for spatial

and temporal information that is shared or unique among subjects in the groups. Distinguishing

model parameters contributes to explaining inter-subject differences in the measurement and dy-

namics of the time-dependent signals. Second, we allow the factor series to evolve over time. This

is crucial because the model can present dynamic temporal dependencies, thus explaining intra-

subject differences over time. Third, by allowing flexible covariance structures of factor series,

the model can capture the heterogeneity of the subjects through different scales and combinations

of factor series. Last, we illustrate the proposed model with an application to fMRI data from

multiple subjects belonging to autism spectrum disorder and control groups. This work serves to

suggest one possible choice of models to describe both inter-subject and intra-subject similarities

and differences in dynamics of multiple subjects from several groups.

1.3 Related approaches

From a methodological standpoint, two developments are related to our proposed approach. One

is integrative data analysis. It has been employed in various fields such as computational biology,

chemometrics, and some areas of neuroscience. It originated from partial least squares (PLS) or

canonical correlations analysis (CCA) to find the maximum covariance (correlation, respectively)

between sample projections on the canonical loadings and the canonical scores from different sub-

jects (e.g., Witten and Tibshirani; 2009; Löfstedt et al.; 2013). A variant of principal component
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analysis (PCA) for finding the direction presenting a maximal variation from the center has also

been leveraged for multi-block data (e.g., Abdi et al.; 2013).

The data integration approach has been developed to discover common and individual structures

shared across different subjects. The recent development tends to include various block segmen-

tations of multi-block data (e.g., O’Connell and Lock; 2019; Park and Lock; 2020). Several data

integration approaches have also been applied to neuroimaging studies. For example, Yu et al.

(2017) analyzed CIFTI format imaging data (cortical surface plus subcortical gray matter) and a

set of behavioral measurements from the Human Connectome Project (HCP) 500 subjects to un-

derstand the relationship between brain activity and human function. Murden et al. (2022) applied

their model to R-fMRI and diffusion MRI (dMRI) to find similarities between functional connec-

tivity and structural connectivity. The approaches above extract common structures from different

datasets, with the heterogeneity arising from the source of data rather than factors uniquely em-

bedded in subjects. These approaches have the limitation of disregarding temporal dependence.

Another related approach is Gaussian graphical models (GGMs). Several recent works on the

joint estimation of these models incorporate temporal dependencies. For example, Qiu et al. (2016)

used a kernel-based method to represent smooth changes in dependence over time. Similarly,

Qiao et al. (2019) introduced Gaussian random functions to model temporal dependence, and Zhu

and Li (2018) introduced matrix-valued variables to represent spatial and temporal dependence

simultaneously. In contrast, Fan et al. (2018) added external covariates to loadings matrices in

factor models to construct graphical models from the residuals. However, it is important to note

that graphical models cannot be used to understand directional (causal) relationships between

variables.

Our modeling approach is also closely related to various group-level analyses. In particular,

a popular model in this framework is the group independent component analysis (GICA). GICA

combines individual ICA models (e.g., Hyvärinen and Oja; 2000; Li et al.; 2007), by using either a

temporal or spatial concatenation of data across different subjects (e.g., Guo and Pagnoni; 2008),

or multi-way tensor models maximizing explained variations across temporal, spatial, and subject

dimensions (e.g., Beckmann and Smith; 2005). A comprehensive survey regarding GICA models

for group-level analysis can be found in Calhoun et al. (2009). Other group-level analyses also exist

(e.g., population value decomposition in Crainiceanu et al.; 2011). Closer to our proposed model,

Maneshi et al. (2016) proposed a GICA model with shared and group specific components, called

shared and specific independent component analysis (SSICA). However, the focus of these methods
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is not on factor dynamics over time, and very few approaches go beyond just identifying shared

structures. In particular, the SSICA of Maneshi et al. (2016) involves several whitening/PCA-

reduction steps at the group and aggregation levels on the temporal side whose effects are not easy

to parse out.

Time series models offer an alternative as they easily incorporate directed and lagged relation-

ships. Their usefulness in the analysis of fMRI has been demonstrated (e.g., Chen et al.; 2011;

Gates and Molenaar; 2012). Recently, Skripnikov and Michailidis (2019), Manomaisaowapak and

Songsiri (2022) employed combinations of different penalized estimations of vector autoregressive

(VAR) models to represent subject heterogeneity by specifying both joint and individual structures.

However, the joint structures in their works need not be identical, which has a limitation in explain-

ing common dependences. Fisher et al. (2022, 2023) addressed this issue by imposing additivity on

the transition matrices, ensuring that the model produces identical estimates across subjects while

allowing the rest of the components to be individually specified. However, VAR-based modeling

requires a relatively large computational cost compared to other dimension reduction methods.

We shall employ dynamic factor models (DFMs) within the group-level analysis framework.

DFMs provide low-dimensional dynamic representations that enhance explainability and typically

involve low computational costs in their estimation procedure. Our study extends the application

of DFMs to R-fMRI data from multiple subjects, enabling us to explore both inter- and intra-

subject similarities and differences. Through the reconstruction of latent factor structures, we also

investigate the heterogeneity among subjects. To the best of our knowledge, this work is the first

model, even in terms of methodology, to consider DFMs in the context of multiple subjects and

group-level analysis with shared and group specific structures.

1.4 Outline of study

The rest of the manuscript is organized as follows. In Section 2, we introduce our model consisting

of joint (shared) and group individual structures. In Section 3, we outline the estimation procedure

first, describe the segmentation of multi-block data and discuss the idenfiability of structures. Then,

we introduce the estimation method for the loadings and factors in our model and the method to

reconstruct the dynamics of factor series. In Section 4, we provide simulation results under various

settings that support the approach empirically. In Section 5, a joint analysis of R-fMRI data

collected from multiple individuals is conducted and leads to the functional connectivity networks

of brain regions. In Section 6, we summarize the results, discuss limitations, and suggest possible
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extensions.

2 Proposed model

Assume that we divide all individuals into G non-overlapping and different groups and assume

there are K1,K2, . . . ,KG number of subjects in each group. To simplify the notation and to be

consistent with our application, we consider only two groups, G = 2, and suppose that each group

contains an equal number of subjects, with the first K subjects in the first group and the remaining

K subjects in the second group. It is possible to extend the number of groups to be more than two

and handle an unequal number of subjects in each group.

The observations from the kth subject are as follows. Define the Tk×d dimensional observation

matrix Xk = (X
(k)
i,t )i=1,...,d, t=1,...,Tk

to represent kth subject and d variables with the observations

collected over Tk times. We assume that the temporal evolution of kth subject observations is ex-

plained by r latent factor series, in the presence of the additive noise Ek ∈ RTk×d. More specifically,

the model is defined as the sum of the signals driven by r latent factors and the additive noise, in

a matrix form,

Xk =

 FkB
′
1 +Ek, k = 1, . . . ,K,

FkB
′
2 +Ek, k = K + 1, . . . , 2K,

(1)

where Fk ∈ RTk×r are factor series of kth subject and the corresponding loadings matrices are

denoted as B1,B2 ∈ Rd×r so that the components FkB
′
1 and FkB

′
2 construct the block signals of

kth subject in each group, respectively.

We are interested in the separation of contributions for explaining the variability of the data

jointly and group individually. Among the block signal of kth subject in gth group FkB
′
g, we

assume that it can be decomposed into the joint components and group individual components,

FkB
′
g = F̄kB̄

′
+ F̃kB̃

′
g, (2)

where B̄ = (B̄i,j)i=1,...,d, j=1,...,rJ is the joint loadings matrix identical to all 2K subjects, B̃g =

(B̃
(g)
i,j )i=1,...,d, j=1,...,rG , g = 1, 2, are group loadings matrices only shared through the subjects within

each group, F̄k ∈ RTk×rJ are joint factor series and F̃k are group individual factor series. We set

r = rJ + rG. Note that the ranks of the group individual factor series need not be identical; one

can set the numbers of individual factors for groups 1 and 2 as rG1 ̸= rG2 . However, to simplify

the model description, we limit these quantities to be identical.
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To construct DFMs, for each k, the d−dimensional vector of observation at time t, denoted as

X
(k)
t , is explained by the joint component vector B̄F̄

(k)
t and group individual component vector

B̃gF̃
(k)
t , g = 1, 2, where

X
(k)
t = BgF

(k)
t + E

(k)
t (3)

=
[
B̄ B̃g

]F̄ (k)
t

F̃
(k)
t

+ E
(k)
t (4)

= B̄F̄
(k)
t + B̃gF̃

(k)
t + E

(k)
t (5)

= X̄
(k)
t + X̃

(k)
t + E

(k)
t , g = 1, 2, k = 1, . . . , 2K, (6)

and E
(k)
t = (E

(k)
i,t )i=1,...,d is a noise vector with zero mean and variance ΣE,k. To connect (3)–(6)

with (1) and (2), we define X
(k)
t as being explained by a linear combination of the rJ−dimensional

joint factor F̄
(k)
t = (F̄

(k)
j,t )j=1,...,rJ and rG−dimensional group individual factor F̃

(k)
t = (F̃

(k)
j,t )j=1,...,rG .

In summary, the model is defined as

Xk =


X

(k)′

1

...

X
(k)′

Tk

 = X̄k + X̃k +Ek =


X̄

(k)′

1

...

X̄
(k)′

Tk

+


X̃

(k)′

1

...

X̃
(k)′

Tk

+


E

(k)′

1

...

E
(k)′

Tk

 (7)

= FkB
′
g +Ek =


F

(k)′

1

...

F
(k)′

Tk

[B(g)′

1 . . . B
(g)′

d

]
+


E

(k)′

1

...

E
(k)′

Tk

 , (8)

where the block signal for kth subject is

FkB
′
g =


F̄

(k)′

1

...

F̄
(k)′

T

[B̄′
1 . . . B̄

′
d

]
+


F̃

(k)′

1

...

F̃
(k)′

T

[B̃(g)′

1 . . . B̃
(g)′

d

]
= F̄kB̄

′
+ F̃kB̃

′
g. (9)

By stacking up all multi-block observations, we have a large matrix of blocks in (1) as follows:
X1

...

X2K

 =


Y1

...

Y2K

+


E1

...

E2K

 =


X̄1

...

X̄2K

+


X̃1

...

X̃2K

+


E1

...

E2K

 , (10)

where X̄k refers to the joint component of kth subject and X̃k refers to the group individual com-

ponent of kth subject, which form the joint structure and group individual structures, respectively.

Each large matrix consists of n =
∑

k Tk samples in time and d variables, usually n > d. Moreover,

7



since the model (10) stacks up the observation blocks Xk ∈ RTk×d into a single matrix, unlike the

tensor-based decomposition models where the sample lengths Tk for all subjects should be equal,

the sample length Tk can be different across subjects. We also note that the way data blocks are

stacked in (10) is not the standard construction seen in the current literature on data integration.

A typical stacking is to have subjects on the horizontal axis and variables across several datasets

(blocks) on the vertical axis. The stacking used here arises because of the time dimension and is

also tied to the model of interest. The number of blocks 2K in (10) is also large, compared to what

is typically considered in the literature on data integration.

To complete the construction of the latent factor series, assume that VAR(p) model governs the

joint factor series, that is,

Ψ̄k(L)F̄
(k)
t = η̄

(k)
t ,

{
η̄
(k)
t

}
∼ WN(0,Ση̄,k), (11)

where Ψ̄k(L) = I−Ψ̄1,kL−. . .−Ψ̄p,kL
p is a rJ×rJ operator of finite length p with a lag operator L.

The roots of det(Ψ̄k(z)) lie outside the unit circle (e.g. Chapter 2.1 in Lütkepohl; 2005) so that the

series becomes stable. Note that, unlike unspecified properties of the noise at the observation level,

we quantify the noise for latent factor series to be white noise. The analogous VAR assumption is

made for the group individual factor series.

3 Methods

3.1 Overview of GRIDY procedure

We summarize the estimation procedure of GRIDY. In the first step, by assuming that the block

observations X1, . . . ,X2K can be approximated by rank r block signals as in (1), we obtain the joint

components X̄1, . . . , X̄2K and two group individual components X̃1, . . . , X̃K and X̃K+1, . . . , X̃2K

as in (7)–(8) via a principal angle-based block segmentation algorithm. This step is explained in

Section 3.2. Next, an algorithm that factorizes the obtained block structures into the loadings

matrices B̄, B̃1, B̃2 and the factor series F̄1, . . . , F̄2K , F̃1, . . . , F̃K , and F̃K+1, . . . , F̃2K designed

for multiple subject component models is applied separately to each block structure. Last, we

reestimate the factor series from observation blocks by regression and complete the reconstruction

of factor dynamics (11) by the Yule-Walker equations. The last two steps are explained in Section

3.3. In addition, if r is not explicitly given, we apply rotational bootstrap to estimate the unknown

rank r of the given block signals, which is described in Section 3.4. Note that each step of the
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proposed procedure can be replaced by some alternative method, some of which are considered in

the simulation experiment in Section 4.

3.2 Segmentation of joint and group individual variation

Joint Individual Variation Explained (JIVE; Lock et al.; 2013) first used the idea of singular

value decomposition (SVD) to segment concatenated block observations into joint and individ-

ual structures using low-rank approximations. In this approach, the desired structures are found

by considering the sums of squared residuals to minimize the unexplained variability. However, a

permutation-based rank selection for the joint structure is not guaranteed to achieve the true rank,

in particular when there is some correlation across individual structures. Common orthogonal basis

extraction (COBE; Zhou et al.; 2015) can improve the basis extraction in JIVE in a systematic

way by adding orthogonality constraints for joint and individual loadings. However, the algorithm

is still iterative and the rank selection is not supported theoretically.

Recently, a non-iterative integrative data analysis framework, namely Angle-Based Joint Indi-

vidual Variation Explained (AJIVE; Feng et al.; 2018), was developed. This framework decomposes

multi-block data into the desired structures. Unlike previous works that determine the joint struc-

ture by enforcing orthogonality between the joint structure and the individual structure, AJIVE

employs the concept of Principal Angle Analysis (PAA). Furthermore, the estimation procedure

is non-iterative, which saves computational cost when the number of blocks is substantial. The

details of the block segmentation algorithm and the identifiability condition of the produced block

structures are presented in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Estimation of block structures

The AJIVE method applied to our problem works as follows. An initial rank estimate r̂k of the

signal block Yk of Xk is needed for each k. Let

Ŷk = ÛkŜkV̂
′
k (12)

be rank-r̂k approximation of Yk obtained from the SVD of Xk, where Ûk and V̂k are Tk × r̂k and

d× r̂k matrices of orthonormal columns and Ŝk is a diagonal matrix with r̂k singular values. Note

that V̂k can be thought as an approximation of Bg under our model (8). Since we are looking for

a joint structure among 2K subjects, it is natural to consider the following (
∑

r̂k)× d matrix and
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its SVD:

Ĵ =


V̂′

1

...

V̂′
2K

 = ÛJ ŜJV̂
′
J , (13)

where, in particular, the diagonal matrix ŜJ consists of singular values σ̂J,i in decreasing order.

The idea then is to decide on the number r̂J of singular values σ̂J,i and take the corresponding

columns of V̂J to capture a joint structure among 2K subjects.

Two approaches were suggested in Feng et al. (2018) for the number of singular values σ̂J,i for

a joint structure: the random direction bound approach and the Wedin bound approach. In the

random direction approach, one replaces V̂k by randomly generated matrices with orthonormal

columns and computes the largest singular value of the resulting matrix in (13). The process is

repeated M times and the 5th percentile of the distribution of such largest singular values is taken

as a threshold for σ̂J,i. In the other approach, the Wedin bound (in the second inequality below

concerning principal angles) is used to show that

σ̂2
J,i ≥ 2K −

2K∑
k=1

sin2(θk,rk∧r̂k) ≥ 2K −
2K∑
k=1

{
max(∥EkV̂k∥2, ∥E′

kÛk∥2)
σmin(Ŷk)

∧ 1

}2

, (14)

where σmin(Ŷk) denotes the smallest singular value of Ŷk in (12) and θk,rk∧r̂k is the largest principal

angle between subspaces for Yk and Ŷk. In practice, ∥EkV̂k∥2 and ∥E′
kÛk∥2 are approximated

by ∥XkṼk∥2 and ∥X′
kŨk∥2 where Ṽk and Ũk have the same dimensions as and are orthogonal to

V̂k and Ûk, respectively. Repeating this process L(= M) times, one obtains L approximations of

the lower bound in (14) and takes their 95 percentile as a threshold for the squared singular values

σ̂2
J,i. The final determination of the joint rank r̂J is achieved by counting the number of σ̂J,i that

exceed both thresholds.

Finally, define the matrix V̄J by retaining the r̂J columns of V̂J . Let P̄J = V̄JV̄
′
J be the

projection matrix onto the estimated joint space. The estimators of X̄k, the joint structure for

each k, are obtained through XkP̄J . Similarly, the estimation of the individual structure for each

k, denoted as X̃k, is estimated by Xk(V̂kV̂
′
k − P̄J). We regard them as the estimators of group

individual structures X̃k in GRIDY model, but taking into account the following remark.

Remark 3.1 We note that the joint structures XkP̄J = (XkV̄J)V̄
′
J are of the factor model form

F̄kB̄
′ as in (9). This is not the case for the group individual structures Xk(V̂kV̂

′
k − P̄J) where

k = 1, . . . ,K for group 1 and k = K + 1, . . . , 2K for group 2. We nevertheless refer to the latter
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as group individual structures, and under our model, fit factor models of the form F̃kB̃
′
g as in

(9) through simultaneous component analysis (SCA) in Section 3.3.1 below. The factor model is

also refitted through SCA for the joint structures. We also note that in our simulation study, we

consider the procedure where the joint and group individual structures are identified through double

application of SCA, but this approach performs considerably worse than the suggested method

based on AJIVE. It should also be stressed that only AJIVE can currently produce reasonable

estimates of the various ranks needed for our model. For further discussion, see Section 4.

3.2.2 Identifiability of the block structure

Note that the model (3)–(6) should ideally satisfy two kinds of identifiability conditions. The first

condition is to ensure that the factor model in (3) can be uniquely decomposed into the joint com-

ponents F̄kB̄
′ and the group individual components F̃kB̃

′
g as in (5). To distinguish this condition

from the next one, we call it an identifiability condition. Another important condition is to ensure

that the loadings matrices B̄, B̃1, B̃2 and the factor series F̄
(k)
t , F̃

(k)
t can also be identified. We will

see that unlike the first condition, these loadings matrices and factor scores are not identifiable until

additional assumptions are imposed. We shall refer to determinacy as the condition for identifying

the loadings and the factor series in the components of our decomposition. This condition will be

discussed in Section 3.3.2.

The identification of the first two block structures in (10) can be obtained by checking suit-

able identifiability conditions of AJIVE. The following lemma adapted from Feng et al. (2018) to

our setting shows that under certain conditions, the uniqueness of the decomposed blocks can be

achieved. To discuss the condition below, we define a subspace spanned by joint loadings matrix

as

row(X̄1) = . . . = row(X̄2K) =: row(X̄).

Lemma 1 (Feng et al. (2018)) Given a set {Y1, . . . ,Y2K} of matrices, there are unique sets

{X̄1, . . . , X̄2K} and {X̃1, . . . , X̃2K} of matrices so that

1. Yk = X̄k + X̃k for all k = 1, . . . , 2K.

2. row(X̄k) = row(X̄) ⊂ row(Yk) for all k = 1, . . . , 2K.

3. row(X̄) ⊥ row(X̃k) for all k = 1, . . . , 2K.

4.
⋂2K

k=1 row(X̃k) = {0}.

11



Condition 1 corresponds to our setting of interest. Note that each row space row(X̄k) is defined

by the loadings, specifically by the linear combinations of entries of loadings matrices multiplied

by the factor scores. Also, note that the row subspaces of the joint components are spanned by the

same loadings matrix, that is, row(X̄k) = row(F̄kB̄
′) = row(B̄′) = row(X̄) since the subspace is

represented by a linear combination of basis columns in the loadings matrix, where the coefficients

are the factor scores, which rarely have the same values across different rows. Hence, condition 2

is satisfied assuming X̄k = F̄kB̄
′ in our setting. Consider next condition 3. It assumes that for

fixed k, X̄kX̃
′
k = F̄kB̄

′B̃gF̃
′
k = 0Tk×Tk

, g = 1, 2, and is implied by B̄′B̃1 = B̄′B̃2 = 0rJ×rG . This

means that all columns in both of group loadings matrices are perpendicular to the corresponding

columns of joint loadings matrix. The easiest way to achieve this condition is when the non-zero

row entries of joint loadings matrix B̄ do not overlap with any other non-zero row entries of both

group loadings matrices B̃g, g = 1, 2. Interestingly, this condition implies that the rows can be

shared between group loadings matrices. Lastly, condition 4 states that there are no rows shared

by all group loadings matrices. This is implied by our model where row(B̃′
1)∩row(B̃′

2) = {0}. That

is, the blocks span different subspaces depending on groups. We thus identified natural condition

on the elements of our model (B̄, B̃1, B̃2) so that its components are the unique components of the

decomposition given in Lemma 1.

We also note that the identifiability condition can be summarized as

B′
gBg =

 B̄′B̄ 0rJ×rG

0rG×rJ B̃′
gB̃g

 , g = 1, 2.

As we will discuss in Section 3.3, consideration of conditions on loadings matrices is not important

to obtain the determinacy of factor series.

3.3 Reconstruction of loadings matrices and factor series

After the segmentation using AJIVE, the remaining task is to reconstruct the factor structure in

(5). A typical way to ensure the determinacy of the loadings matrices and factor series up to the

transformation with the sign changes of the columns is to assume that the factor covariance is an

identity matrix (e.g., Lam et al.; 2011; Bai and Ng; 2013). For fixed k, by assuming we have only

kth subject, the condition implies that the variances within the joint factor series and the group

individual factor series should be identity matrices,

EF̄ (k)
t F̄

(k)′

t = IrJ , EF̃ (k)
t F̃

(k)′

t = IrG . (15)
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The same determinacy condition has been applied for multiple subjects (e.g., Fan et al.; 2018) as

well. This condition, however, is quite stringent; it does not allow for the joint or group individual

factor series to be correlated and forces the covariance of factors to be identical across subjects,

which limits the degree of heterogeneity.

To relax the stringent restrictions (15), we adopt the SCA introduced by Timmerman and

Kiers (2003). SCA was designed for multivariate time series from multiple subjects to study both

intra- and inter-individual differences. We will demonstrate that the factor dynamics can also be

reconstructed using this determinacy condition.

The idea of SCA is not different from PCA but various restrictions on the component factor

scores may be imposed. There are four types of covariance structures suggested in Timmerman

and Kiers (2003). However, we focus on SCA with PARAFAC2 constraints (SCA-PF2), inspired

by tensor decomposition PARAFAC (e.g., Kiers et al.; 1999). Additionally, we consider a more

restrictive but useful covariance structure, namely SCA with INDSCAL constraints (SCA-IND).

To compare the various covariance structures of the factors, consider the joint factor series. Then,

the two covariance structures mentioned above are

EF̄ (k)
t F̄

(k)′

t =: E
(
C̄kĀ

(k)
t

)(
C̄kĀ

(k)
t

)′

= C̄kΦ̄C̄k, (SCA-PF2) (16)

EF̄ (k)
t F̄

(k)′

t =: E
(
C̄kĀ

(k)
t

)(
C̄kĀ

(k)
t

)′

= C̄2
k, (SCA-IND) (17)

where Φ̄ = (ϕ̄i,j) is a rJ × rJ positive definite matrix and C̄k = (C̄
(k)
i,j ) are diagonal matrices. Note

that to identify matrices within their multiplications, we let the diagonal entries of Φ̄ be unit-scaled

so that they become correlation matrices of the scaled joint factors Ā
(k)
t and the absolute values

of C̄k represent the standard deviations of the joint factors F̄
(k)
t . Note also that (16) allows for

correlations across joint factors while (17) does not. Lastly, one can think of (17) as a special case

of (16) by letting Φ̄ = IrJ . Obviously, these conditions do not require any restriction on loadings

matrices. The same assumption on the covariance of group individual factors can be applied, which

in turn produces

EF̃ (k)
t F̃

(k)′

t =: C̃kΦ̃C̃k,

EF̃ (k)
t F̃

(k)′

t =: C̃2
k,

where Φ̃ is rG × rG positive definite and C̃k = (C̃
(k)
i,j ) are diagonal as similarly defined as above.

The details of the fitting algorithm and the determinacy of the factor series are in Sections 3.3.1

and 3.3.2, respectively.
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Remark 3.2 While the conditions as in (16)–(17) enable the model to have more complex co-

variance structures, one can think that with more restrictions, as (15) in an extreme case, the

model becomes more parsimonious. In the other direction, the most flexible covariance structure

is known as SCA with Invariant Pattern (SCA-P) (see Timmerman and Kiers; 2003). To our best

knowledge, there are no tests to decide on particular structures. As long as we deal with the latent

factor series and their characteristics are not known in advance, it is beneficial to allow the model

to be as flexible as possible. Therefore, we do not prefer the most restrictive condition (15). At the

same time, our hope is to incorporate the heterogeneity of subjects without losing identifiability.

However, the SCA-P condition is known not to guarantee such uniqueness. Therefore, we prefer

the SCA-PF2 condition and as a special case, the SCA-IND condition.

Remark 3.3 Among studies related to SCA, using a rotational matrix to make targeted factor

scores (e.g., Schouteden et al.; 2013, 2014) or particular structural loadings matrices (e.g., Helwig;

2017) has been tried. However, the former requires a known target structure of factor scores

in advance or requires additional steps to determine the target. It also carries relatively large

computational costs since estimation of factor scores and loadings are involved in finding rotational

transformation. Furthermore, the adopted determinacy condition in the approach is SCA-P, which

does not guarantee the identification of factor scores. The latter also demands a pre-specified

structure of loadings matrices in advance. When we do not know the relationship between factors

themselves or desired loadings matrices, this blocking approach has limitations.

We estimate loadings matrices B̄, B̃1, B̃2 and factor series {F̄k, F̃k}k=1,...,2K through a direct

fitting algorithm for SCA-PF2 model, which will be described separately in Section 3.3.1. As

the last step of the estimation procedure, we refit the latent factors through subject-wise linear

regressions: (
ˆ̄Fk

ˆ̃Fk

)
= argmin

Fk=(F̄k F̃k)

∥Xk − F̄kB̄
′ − F̃kB̃

′
g∥2F , (18)

for k = 1, . . . , 2K and g = 1, 2 accordingly. Although there are alternative ways to refit the model

from SCA, handling F̄k and F̃k together has an advantage over treating them separately. First,

(18) can be solved explicitly. Also, since the VAR in the factor models is latent, other refitting

methods may be difficult to apply. Naturally, the squared error of the fitting becomes smaller

after refitting the factor series by (18). Then, we compute the empirical covariance matrix for the

joint and group individual factor series, respectively. Finally, by the Yule-Walker equations (e.g.,

14



Chapter 11 in Brockwell and Davis; 2009), we estimate the parameters in the model (11), including

the covariance matrix of noise Σ̄η,k. We repeat this process for k = 1, . . . , 2K subjects.

3.3.1 Estimation of loadings matrices and factor series

For the algorithm of estimating the joint loadings matrix and joint factor series at the second stage

of our procedure, we use the direct fitting algorithm developed by Kiers et al. (1999). Direct fitting

means that one estimates components of factor-type models in the least squares sense, by regressing

responses on covariates. It is different from the indirect fitting. Harshman (1970) suggested an

indirect fitting algorithm through alternating least squares (ALS) that can be described on the

joint structure as follows. If we denote the covariance matrix of the joint component X̄k as Σ̄k, the

model can be estimated by minimizing

min
B̄,C̄1:2K ,Φ̄

2K∑
k=1

∥Σ̄k − B̄C̄kΦ̄C̄kB̄
′∥2F .

Instead, we focus on the direct fitting algorithm. This algorithm has advantages because not only

it has a fast convergence but it also produces the factor scores, which are used for constructing

factor dynamics. Moreover, one can easily incorporate additional constraints such as non-negative

entries in scaler matrices.

We now describe the direct fitting algorithm. From F̄k = ĀkC̄k where Āk is a Tk × rJ matrix

consisting of scaled factor series F̄
(k)
t , the goal is to solve the following problem:

(Â1:2K , Ĉ1:2K , B̂) = argmin
Ā1:2K ,C̄1:2K ,B̄

2K∑
k=1

∥∥X̄k − ĀkC̄kB̄
′∥∥2

F
, (19)

s.t. Ā′
kĀk = Ā′

k′Āk′ , k, k′ ∈ {1, . . . , 2K}. (20)

The key idea is to convert the problem (19)–(20) into 2K separate orthogonal Procrustes problems,

which have been dealt with in psychometrics (e.g., Green; 1952; Schönemann; 1966).

Note that the optimal solution (19)–(20) exists when Ā′
kĀk = Ā′Ā for all k. Then, one can

always find a columnwise orthonormal Tk × rJ matrix P̄k such that Āk = P̄kĀ (e.g., Exercise

14.3.13 in Harville; 2006) so that

Ā′
kĀk = Ā′P̄′

kP̄kĀ = Ā′Ā.

This corresponds to the necessary and sufficient conditions for the optimality described in Section
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2 in Kiers et al. (1999). Thus, the original problem (19)–(20) becomes

(P̂1:2K , Â, Ĉ1:2K , B̂) = argmin
P̄1:2K ,Ā,C̄1:2K ,B̄

2K∑
k=1

∥∥X̄k − P̄kĀC̄kB̄
′∥∥2

F
, (21)

s.t. P̄′
kP̄k = IrJ , k = 1, . . . , 2K. (22)

Note that the objective function for fixed k is Tr(X̄′
kX̄k)−2Tr(X̄′

kP̄kĀC̄kB̄
′)+Tr(B̄C̄kĀ

′ĀC̄kB̄
′),

where Tr(·) is a trace operator. Hence, a minimizer of (21)–(22) over P̄k for fixed other components

is obtained by

P̂k = argmax
P̄′

kP̄k=IrJ

Tr(ĀC̄kB̄
′X̄′

kP̄k). (23)

Take the SVD as ĀC̄kB̄
′X̄′

k = ŪkS̄kV̄
′
k, where Ūk and V̄k are rJ × rJ and rJ × Tk matrices with

orthogonal columns and S̄k consists of singular values of ĀC̄kB̄
′X̄′

k. By replacing ĀC̄kB̄
′X̄′

k with

ŪkS̄kV̄
′
k, the solution of (23) becomes P̄k = V̄kŪ

′
k, which can be shown by using Cauchy–Schwarz

inequality. This completes the first step of the direct fitting algorithm. Next, substituting V̄′
kŪk

for P̄k in (21) leads to

(Â, Ĉ1:2K , B̂) = argmin
Ā,C̄1:2K ,B̄

2K∑
k=1

∥∥∥P̂′
kX̄k − ĀC̄kB̄

′
∥∥∥2
F
. (24)

The problem (24) can be solved by CANDECOMP/PARAFAC (CP) model as the ALS algorithm

(CP-ALS, see Kiers; 1998, for the details). This completes the second step. The two steps are

repeated until a convergence criterion is satisfied. The same algorithm is applied to the estimates

Ãk, C̃k, and B̃g, with group individual components X̃k, k = 1, . . . , 2K, for the corresponding

g = 1, 2.

3.3.2 Determinacy of loadings matrices and factor series

Determinacy of loadings and factors in SCA was studied by several researchers. Harshman and

Lundy (1996) proved the uniqueness of a general form of parameters of multi-view data which led to

the rotational determinacy of SCA-PF2 models. In particular, when the rank r of factors exceeds

2, the estimated components multiplied with some scaling and permutation matrices described

below can be determined if the number of subjects is greater than r(r + 1)(r + 2)(r + 3)/24 for

rank r. So, although the inequality seems to require a quite larger number of subjects to obtain

the determinacy, the computational experiments by ten Berge and Kiers (1996) suggested that the

determinacy can be achieved even for larger ranks if the number of subjects exceeds 4. However, a

rigorous proof for this or the other minimum number of subjects remains to be found.
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The proved determinacy for SCA-PF2 is as follows. If the SCA-PF2 model can be expressed

through two sets B̄, Ā
(k)
t , C̄k and ¯̄B, ¯̄A

(k)
t , ¯̄Ck of joint loadings matrices, scaled joint factor series,

and the diagonal matrices, then

¯̄B = B̄W̄∆B̄,
¯̄A
(k)
t = zk∆ĀW̄′Ā

(k)
t , ¯̄Ck = zkW̄

′C̄kW̄∆C̄, (25)

where W̄ is a permutation matrix, zk = −1 or 1, and ∆Ā,∆B̄,∆C̄ are rJ×rJ non-singular diagonal

scaling matrices satisfying ∆Ā∆B̄∆C̄ = IrJ . By convention, one can fix zk = 1 for all k to overcome

the sign indeterminacy (e.g., Helwig; 2013). Thus, the joint factors can be related as

¯̄F
(k)
t := ¯̄Ck

¯̄A
(k)
t , (26)

and the correlation matrix of the scaled joint factors is of the form ¯̄Φ = ∆ĀW̄′Φ̄W̄∆Ā so that

E ¯̄F
(k)
t

¯̄F
(k)′

t = ¯̄Ck
¯̄Φ ¯̄Ck = W̄′C̄kW̄︸ ︷︷ ︸

=:C̄W̄
k

∆−1
B̄

W̄′Φ̄W̄︸ ︷︷ ︸
=:Φ̄

W̄

∆−1
B̄

W̄′C̄kW̄ = C̄W̄
k ∆−1

B̄
Φ̄

W̄
∆−1

B̄
C̄W̄

k , (27)

where C̄W̄
k is again diagonal with permutated entries. That is, modulo the scaling matrix ∆B̄, one

has the same covariance structure of the factor series up to their rearrangement. Note that from

(25)–(27), the determinacy can be achieved with the multiplication of the scalers and permutations.

In the sense that although the model still has an issue of scaling, the identification up to the change

of rows and columns of matrices by imposing SCA-PF2 structure is remarkable.

Similar results hold for group individual factor series. For each group g = 1, 2, the group

loadings matrices B̃g,
˜̃Bg, scaled group individual factors Ã

(k)
t , ˜̃A

(k)
t , and the diagonal matrices

C̃k,
˜̃Ck are related as

˜̃Bg = B̃W̃g∆B̃g
, ˜̃A

(k)
t = zg,k∆Ãg

W̃′
gÃ

(k)
t , ˜̃Ck = zg,kW̃

′
gC̃kW̃g∆C̃g

.

Here, W̃g is a permutation matrix of gth group and zg,k = −1 or 1, so we take zg,k = 1 for all

cases by convention. Obviously, the index k goes from 1 to K when g = 1, and k = K + 1, . . . , 2K

are used for g = 2. Finally, ∆Ãg
,∆B̃g

,∆C̃g
are rG × rG non-singular diagonal matrices such that

∆Ãg
∆B̃g

∆C̃g
= IrG . Accordingly, the group individual factors are related as

˜̃F
(k)
t = ˜̃Ck

˜̃A
(k)
t ,

for corresponding g and k as above, so that the covariance of each group individual factor is

E ˜̃F
(k)
t

˜̃F
(k)′

t = ˜̃Ck
˜̃Φ ˜̃Ck = W̃′

gC̃kW̃g︸ ︷︷ ︸
:=C̃

W̃g
k

∆−1
B̃

W̃g
′
Φ̃W̃g︸ ︷︷ ︸

:=Φ̃
W̃g

∆−1
B̃

W̃g
′
C̃kW̃g = C̃

W̃g

k ∆−1
B̃

Φ̃
W̃g

∆−1
B̃

C̃
W̃g

k ,
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where ˜̃Φg := ∆Ãg
W̃′

gΦ̃gW̃g∆Ãg
, g = 1, 2.

In Section 4 with simulation results, the determinacy conditions allow us to assess the estimation

performance as follows. We start by permuting the columns of the estimated loadings matrices for

each structure and determine the permutation orders by minimizing the mean squared errors to the

true loadings. Subsequently, we rearrange the factor series in each structure based on these orders.

3.4 Initial rank selection

As seen in (13), AJIVE requires an initial guess r̂k of the rank rk. This is required not only for

AJIVE but also for other estimation algorithms of reduced-rank models. The rank can be estimated

through various methods. We acknowledge that as the number of subjects increases, deciding on

the initial rank using graphical tools like a scree plot becomes more challenging. Moreover, even

when employing cross-validation-based rank selection algorithms (e.g., Bro and Kiers; 2003), our

model encompasses several distinct structures within the joint and two-group individual structures,

with all structures being interrelated. Furthermore, our application involves a large number of

subjects, making the implementation of cross-validation complex.

Instead, we opt for the rotational bootstrap algorithm developed by Prothero et al. (2022).

While this algorithm was originally designed to identify partially shared structures, it can also be

used to explore the best reduced-rank approximation of the true block signals. This algorithm is

also rooted in PAA, and involves bootstrap to construct an upper bound for the largest principal

angle between the subspace of the unknown signal block and the low-rank approximation of the

observation block. We apply the algorithm to each block observation and simplify notation by

omitting the subscript k for the subject number.

The first step of the algorithm is to compute shrunk singular values and imputed noise matrices.

Suppose that a data block X = Y+E is given. Consider the SVD X̂ = ÛŜV̂′, where Û, V̂ consist

of orthonormal columns Ûi and V̂i, and diagonal matrix Ŝ with singular values σ1 ≥ . . . ≥ σd∧T ,

where d ∧ T is the minimum between the number of variables d and the sample length T for the

subject of interest. Then, the thresholded singular values are σ̌i := κ̌h∗(σi/κ̌), i = 1, . . . , d ∧ T ,

where κ̌ = σmed√
MP(β)0.5

for σmed = med(σ1, . . . , σd∧T ), MP(β)q is the 100q percentile (hence, the

median for κ̌) of the Marchenko-Pastur distribution with the so-called aspect ratio β = d∧T
d∨T (e.g.,

Gavish and Donoho; 2014), and the thresholding function used is

h∗(a) =

 1√
2

√
a2 − β − 1 +

√
(a2 − β − 1)2 − 4β, if a ≥ 1 +

√
β,

0, if a < 1 +
√
β.

18



Naturally, the maximal allowable rank ř is determined by the number of non-zero σ̌i’s. Thus, Šř

represents a ř-dimensional diagonal matrix with entries σ̌r for r = 1, . . . , ř. The estimate Ě of the

noise matrix E for bootstrapping is computed by

Ě =
ř∑

i=1

κ̌MP(β)uiÛiV̂
′
i +

d∧T∑
i=ř+1

σiÛiV̂
′
i ,

where u1, . . . , uř are i.i.d. uniform random variables on (0, 1). This estimate is thought of as

imputed noise, which is justified in Appendix C in Prothero et al. (2022).

The rest of the algorithm consists of two nested loops. In the outer loop, obtain T × ř and

d × ř independently generated orthonormal matrices, Ū
(ℓ)
ř and V̄

(ℓ)
ř , ℓ = 1, . . . , L, and construct

X̄(ℓ) = Ū
(ℓ)
ř ŠřV̄

(ℓ)′

ř + Ě. Then, compute matrices with orthonormal columns associated with r

largest singular values from the SVD of X̄(ℓ), denoted as Û
(ℓ)
r and V̂

(ℓ)
r , r = 1, . . . , ř. In the

inner loop, compute the smallest singular values σmin(·) from SVDs of Ū
(ℓ)′

ř Û
(ℓ)
r and V̄

(ℓ)′

ř V̂
(ℓ)
r for

r = 1, . . . , ř and then, convert them into the largest principal angles θ
(ℓ)
U,r and θ

(ℓ)
V,r between Ū

(ℓ)
ř

and Û
(ℓ)
r , and V̄

(ℓ)
ř and V̂

(ℓ)
r by arccos(σmin(Ū

(ℓ)′

ř Û
(ℓ)
r )) and arccos(σmin(V̄

(ℓ)′

ř V̂
(ℓ)
r )), respectively.

This leads to L× ř computed principal angles θ
(ℓ)
U,r and θ

(ℓ)
V,r for each of the row and column spaces.

After sorting those angles for each r, select the final initial rank estimate r̂ by

r̂ = min

(
ř∑

r=1

1{[95 percentile of θ
(ℓ)
U,r, ℓ=1,...,L] < ξθ0,U},

ř∑
r=1

1{[95 percentile of θ
(ℓ)
V,r, ℓ=1,...,L] < ξθ0,V }

)
.

Here, θ0,U and θ0,V represent the random direction angle bounds for the row and column subspaces

and are computed in parallel in the inner loop of the bootstrapping algorithm. Similarly to AJIVE,

the candidates of the random direction bounds are calculated as the largest principal angles between

U⃗
(m)
ř and U⃗

(m)
r , and between V⃗

(m)
ř and V⃗

(m)
r , where U⃗

(m)
r and V⃗

(m)
r are independently generated

orthonormal matrices of the sizes T × r and d× r, r = 1, . . . , ř, respectively. The algorithm repeats

this computation m = 1, . . . ,M(= L) times and selects the 5 percentile of all replications. The

tuning parameter ξ, when multiplied by the bounds, controls the maximum allowed principal angles.

An increase in the value of ξ leads to larger angles falling within the criterion, typically resulting

in higher estimated initial ranks. The method for fine-tuning ξ may vary depending on the specific

case and remains somewhat unclear. However, it is generally recommended to keep it within the

range of (0, 0.5]. In our empirical results in Section 4.3 and the application illustrated in Section 5,

we set ξ = 0.5, which has shown reasonable performance. We refer to Algorithm 1 in Section 2.1.3

in Prothero et al. (2022) for the remaining details.
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In practice, the rotational bootstrap is applied to the block observation of each subject. Then,

the initial rank is finalized by a majority vote, as a mode of 2K number of r̂’s. We use this

estimate for selecting the rank of the joint factors r̂J produced by AJIVE. Naturally, this leads to

r̂G = r̂ − r̂J . Potentially, one can also take different initial ranks for each group, or even different

initial ranks for each subject, depending on the context. As noted in Section 3.2.1, while AJIVE

does not require identical initial ranks across subjects and neither does the rotational bootstrap,

we assume that the initial ranks are identical at least within each group. In order to apply the

factor structure described below for the rest of the procedure, the ranks of the joint and the two

group blocks should be specified. Furthermore, to impose determinacy conditions across subjects

which are described below, it is convenient for the ranks within each group to be identical in

that SCA described below can be employed for both joint and group individual structures. The

identification of factor structure relies on the performance of the initial rank selection from the

rotational bootstrap and the joint rank selection from AJIVE. We will assess the performance of

the initial rank selection in Section 4.3.

4 Illustrative examples

4.1 Simulation design

In this section, we describe the simulation design that is used to assess estimation performance under

different scenarios. The results are reported in Sections 4.2 and 4.3 below. The simulation study

has several settings. First, we vary d, T , and K related to the size of the problem to see whether

the estimators exhibit what one can expect from the standard factor models. Second, for the fixed

size of the problem, inspired by the group-level analysis, we vary the signal-to-noise ratio (SNR) to

check the effect on model recovery. Third, we examine how well the proposed bootstrap procedure

identifies the initial ranks. The R package multiway and other supplementary code of Helwig and

Snodgress (2019), and the R package ajive of Carmichael (2020) were used in simulations. For

ajive, since the last maintenance was many years ago, we extracted and reorganized the functions

for the estimation.

The data generating processes (DGPs) are as follows.

- X
(k)
i,t =


∑rJ

j=1 B̄i,jF̄
(k)
j,t +

∑rG
j=1 B̃

(1)
i,j F̃

(k)
j,t + E

(k)
i,t , if k = 1, . . . ,K,∑rJ

j=1 B̄i,jF̄
(k)
j,t +

∑rG
j=1 B̃

(2)
i,j F̃

(k)
j,t + E

(k)
i,t , if k = K + 1, . . . , 2K,

20



- Among the indices i = 1, . . . , d, choose 50% at random and make B̄i,j , j = 1, . . . , rJ , non-

zero as B̄i,j
i.i.d.∼ Unif(0, 1). Otherwise, B̄i,j = 0 for the non-selected indices i. This ensures

identifiability as discussed in Section 3.2.2.

- Among the non-selected indices i above, half of them are chosen to make B̃
(1)
i,j , j = 1, . . . , rG,

have non-zero entries. The remaining half are used for B̃
(2)
i,j , j = 1, . . . , rG, to be non-zero.

Both are generated by B̃
(1)
i,j , B̃

(2)
i,j

i.i.d.∼ Unif(0, 1). Otherwise, let B̃
(1)
i,j , B̃

(2)
i,j be zero for the

non-selected indices of i.

- For each k = 1, . . . , 2K, generate the series Ā
(k)
t and Ã

(k)
t , t = 1, . . . , Tk, from VAR(1) models,

Ā
(k)
t = Ψ̄Ā

(k)
t−1 + ξ̄

(k)
t , {ξ̄(k)t } ∼ WN(0, σξ̄IrJ ),

Ã
(k)
t = Ψ̃Ã

(k)
t−1 + ξ̃

(k)
t , {ξ̃(k)t } ∼ WN(0, σξ̃IrG).

For simplicity, let σξ̄ = σξ̃ = σξ. Let also assume Ψ̄ and Φ̄ = EĀ(k)
t Ā

(k)′

t have the same

structures as Ψ̃ and Φ̃ = EÃ(k)
t Ã

(k)′

t , respectively. For stable factor series, the VAR transition

matrices Ψ̄ and Ψ̃ satisfy the following equations,

Φ̄ = Ψ̄Φ̄Ψ̄
′
+ σξIrJ , (28)

Φ̃ = Ψ̃Φ̃Ψ̃
′
+ σξIrG . (29)

From the known fact of algebraic Riccati equations, the stable solutions Ψ̄ and Ψ̃ can be

uniquely determined (e.g., Boyd et al.; 1994). To ensure the stability of the factor series,

we fix Φ̄ and Φ̃ described below first and solve the equation (28)–(29) to obtain the VAR

transition matrices. Different structures of Φ̄ and Φ̃ will be referred to as types below.

- Take F̄
(k)
t = C̄kĀ

(k)
t and F̃

(k)
t = C̃kÃ

(k)
t , where C̄k and C̃k are diagonal and

C̄k = C̃k =
√
c diag((4 + 1), . . . , (4 + r)),

where c > 0 is a SNR parameter, r is the number of factor series, r = rJ for Ā
(k)
t and r = rG

for Ã
(k)
t .

- E
(k)
t ∼ N (0,ΣE,k = σεId) with σε = 1, k = 1, . . . , 2K.

Note that the necessity condition of the model identifiability in Section 3.2.2 is satisfied by hav-

ing non-overlapping non-zero rows in loadings matrices. In summary, DGP is fully controlled by

(type, c, σξ) for fixed (d, T,K, rJ , rG). By changing the size of the problem and the parameters, we
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vary the generated series to see how the realizations with different characteristics affect estimation

performance.

We assess estimation performance in three ways involving 5 measures of interest. First, we

report R2 statistics to measure how much each structure contributes to explain the variability of

Xk. For the joint structure, define this measure by

R2 =
1

2K

2K∑
k=1

(
1−

∥Xk − ˆ̄FkB̂∥2F
∥Xk∥2F

)
,

where ˆ̄Fk is the output from either PARAFAC2 fitting (19)–(20), the subject-wise linear regression

(18), or the benchmark methods. Replacing ˆ̄Fk
ˆ̄B

′
and 2K by ˆ̃Fk

ˆ̃B
′
g and K, gives the R2 statistics

of the group individual structures for g = 1, 2.

Another measure of the model fit is a root mean squared error (RMSE). RMSE considers the

fitness of both the joint and group individual components to their model counterparts, rather than

the component variability as in R2 statistics. For the joint structure, we define

RMSE =

√√√√ 1

2dK

2K∑
k=1

1

Tk
∥X̄k − ˆ̄Fk

ˆ̄B′∥2F .

Replacing X̄k,
ˆ̄Fk

ˆ̄B
′
and 2K by X̃k,

ˆ̃Fk
ˆ̃B

′
g andK, gives the RMSE of the group individual structures

for g = 1, 2.

Finally, at each component level, we compute three measures of how estimators capture spatial

information and temporal dependence. We introduce the Tucker congruence coefficient (CCM )

defined as

CCM =
M′M̂

√
M′M

√
M̂′M̂

,

where M is a parameter vector and M̂ corresponds to its estimate. We consider loadings matrices,

factor series, and VAR transition matrices in place of M, with their corresponding performance

measures denoted by CCB, CCF , and CCΨ, respectively. For loadings matrices, the congruence

coefficients are computed for each column, and their mean is reported. Analogous calculations are

performed on the columns of the factor series, but only the average over all subjects is reported.

Note that CCF may inherently vary more, as the measure compares two random processes. Nev-

ertheless, we expect that these CCF scores are still informative. For VAR transition matrices, we

vectorize them to compute CCΨ. The CC scores will be reported for the joint and two groups

separately.
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For each simulation setting, we replicate the data generation and estimation 100 times. For the

first simulation setting, we fix c = 1 and consider type = 1 and 2, where the types are described

below. For the size of the problem, we let (d, T,K) be:

• Growing numbers of variables: Fix T = 200, K = 50. Take d = 200 and 400.

• Growing observation times: Fix d = 100, K = 50. Take T = 200 and 400.

• Growing numbers of subjects: Fix d = 100, T = 200. Take K = 10 and 100.

For each case, we fix the ranks as (rJ , rG) = (2, 2) so that, as we can see from the results in Section

4.3, the sums of the given ranks are guaranteed to be found through the initial rank selection

algorithm.

For the second setting, we define the SNR by

SNR =
∥B̄C̄kΦ̄C̄kB̄

′ + B̃gC̃kΦ̃C̃kB̃
′
g∥F

∥ΣE,k∥F
= f(c), (30)

as a function of c = 0.25, 0.5, 0.75, 1.25, 2, and 4 in our simulation. The type refers to the correlation

structure Φ̄ and Φ̃ between the factor series in each structure. Φ̄ and Φ̃ for type 1 are

Φ̄, Φ̃ = 1,

 1 −0.6

−0.6 1

 ,


1 −0.6 0.3

−0.6 1 −0.6

0.3 −0.6 1

 ,


1 −0.6 0.3 −0.1

−0.6 1 −0.6 0.3

0.3 −0.6 1 −0.6

−0.1 0.3 −0.6 1

 , (31)

with σξ = 0.2 and the correlation structures for type 2 are the identity matrices with the corre-

sponding ranks, where σξ = 0.3.

We consider six other methods as benchmarks for comparison. The first group of alternative

methods consists of replacing the PARAFAC2 fitting for joint and group individual components

at the second stage of GRIDY with another procedure. Here, we use SCA-P and GICA. Note

that SCA-P fitting follows a similar algorithm as PARAFAC2 fitting described in Section 3.3.1

but with simplified steps since the constraint (20) need not be considered. Once the estimates

are produced, they are refitted by using varimax rotation of Kaiser (1958). For fitting GICA, we

follow the estimation through the tensor decomposition of Beckmann and Smith (2005). The R

code is provided in the supplementary material of Helwig and Snodgress (2019) and the detailed

discussion of the model is included in Helwig (2013). Another benchmarks are to use the SCA-

PF2 and GICA model at the first two stages of our approach. Consider, for example, PARAFAC2
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fitting. Recall that the first two stages consist of fitting PARAFAC2 models to three factorized data

blocks (joint component block and two group individual component blocks) obtained by AJIVE.

However, motivated by practical considerations, one could fit PARAFAC2 to the whole data block

first. The extracted signal block naturally becomes the joint structure. Then, for the remainder of

each group (that is, the difference between the data and the joint block), one could fit PARAFAC2

again to obtain the group individual structure. The rest of the steps are the same as GRIDY.

The same approach is possible with the GICA model as well. We refer to these benchmarks as

double-SCA (DSCA) and double-GICA (DGICA), respectively. However, we stress that these types

of approaches have an issue, despite being used by researchers, since in order to fit PARAFAC2

models, one has to know the ranks for the factors in advance. We note that the AJIVE implicitly

selects the joint rank and this joint rank estimation is quite reliable as shown in the literature. For

this comparison, we assume that the joint rank is explicitly known.

Finally, one can directly use the estimated factor series from PARAFAC2 or GICA fitting at

the second stage of our approach. That is, one can omit the refitting of factor series in (18). We

denote these benchmarks as Unfitted SCA-PF2 and Unfitted GICA, respectively. In summary, the

first two benchmarks focus on different factor models. The next two benchmarks concern cases

where other decomposition methods are used, while the models of the factors remain the same.

The last two benchmarks focus on the absence of a refitting step for the same factor models.

4.2 Simulation results

We present the simulation results in the order of the settings described in Section 4.1. All figures

are displayed at the end of this work. Each of the figures consists of 5 rows, each of which represents

R2 statistics, RMSEs, and three Tucker congruence coefficients for the loadings (CCB), factor series

(CCF ), and VAR transition matrices (CCΨ). Columns in each figure present the measures for joint,

group individual 1, and group individual 2 structures, respectively.

Figure 1 presents the first simulation setting where correlations between the factor series within

each structure are allowed. Regarding the sizes of problems, either the number of variables d, the

number of samples T , or the number of subjects K varies while the rest among d, T , and K are

fixed. As d and T increase, the variabilities of R2 statistics and RMSEs tend to decrease, whereas

they increase as K increases. Having more subjects thus makes the analysis more challenging.

Another interesting point is that DSCA and DGICA tend to have slightly higher R2 statistics and

RMSEs for the joint structures. For the group individual structures, on the other hand, both R2
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statistics and RMSEs are worse compared to any other benchmarks. Next, for the three congruence

coefficients, GRIDY, DSCA, and Unfitted SCA-PF2 seem to recover the joint loadings matrices and

joint factor series better compared to other benchmarks, while they are less capable of identifying

group individual loadings and group individual factor series. We conjecture that this phenomenon is

related to the estimation procedure, in that the three methods, including GRIDY, use PARAFAC2

fitting, while the rest rely on SCA-P fitting or its variants. Lastly, most of the methods can identify

the VAR transition matrix of the factor series. However, GRIDY and DSCA show less variability

in the measure.

Figure 2 depicts the simulation results for the same setting as Figure 1, but assuming that

the factor series within structures are uncorrelated. Interestingly, the landscapes of performance

measures from the two figures look quite different. When there are no correlations between the

factors (Figure 2), the differences between the methods become more pronounced. The current

simulation setting with the rank r = rJ + rG = 4 is typical to factor model literature. However,

as we can see in the subfigures for R2 statistics and RMSEs, the values for increasing d, T , or K

vary little, unlike what we would expect in standard factor models (e.g., Table 1 in Doz et al.;

2011). Among the methods, DSCA and DGICA seem to struggle to fit the model, while the rest

of the methods tend to perform similarly as in the previous figure. In data applications, where we

cannot assume the correlation structure of the factor series in advance, it would be beneficial to

use GRIDY or other benchmarks that use a similar estimation procedure as GRIDY. Additionally,

it seems advantageous to refit the estimates from PARAFAC2 or GICA when identifying the VAR

transition matrices of the factor series, as seen by the worse performance for CCΨ in the unfitted

cases. Finally, among GRIDY, SCA-P, and GICA, while the other two show the larger variability

in this type of correlation structure, our proposed method is the most robust in the sense that the

performance is similar across the different types.

The next two figures concern the second simulation setting. Figure 3 presents the results for

SNR parameter c increasing from c = 0.25 to c = 4. Notably, unlike in the previous two simulation

results, R2 statistics and RMSEs tend to improve along the increase of the SNR parameter. We

also see that their variabilities are decreasing. However, the congruence coefficients for the loadings

matrices, factor series, and VAR transition matrices seem to be little influenced by the increase in

the strength of the signals. This might be related to the fact that the fitting algorithm factorizes

the estimated blocks, not the (smoothed) raw block observations (e.g., see Figure 3 in Helwig and

Snodgress; 2019).
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Finally, Figure 4 presents the same simulation results as in Figure 3 but assuming zero correla-

tions between the factor series in each structure. Generally, the results seemingly exhibit a mixture

effect of the two previous simulation results in Figures 2 and 3. While R2 statistics and RMSEs are

increasing along the increase of SNR, the three congruence coefficients tend to remain the same. In

particular, DSCA and DGICA have the same issue as seen in Figure 2, and the benefit of refitting

can be observed again.

4.3 Choice of initial rank selection

We consider several DGPs from Section 4.1 with various ranks and run the bootstrap procedure

in Section 3.4 to see if it can capture the correct initial ranks. We set the type as 1, and different

sizes (d, T ) and SNR parameters c are considered while 2K = 100 is fixed. We do not consider

the case of growing K since the rotational bootstrap is performed for each block, and gathering

multiple data blocks does not help to estimate initial ranks. Then for all SNRs described above,

we generate the DGPs along the combinations of ranks as follows:

R. (rJ , rG) = (1, 1), (1, 2), (1, 3), (2, 2), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4).

Note that along the increase of rJ and rG, the corresponding transition matrices Φ̄ and Φ̃ are

adjusted by preserving (28) and (29) with Ψ̄ and Ψ̃ in (31) and fixed σξ. Accordingly, we run the

rotational bootstrap to evaluate the performance of the initial rank selection. For the combinations

in R above, the initial ranks are r = rJ + rG = 2, 3, 4, 4, 5, 5, 6, 6, 7, 8.

Figure 5 shows several interesting results. First of all, the rank combinations used in Section

4.2 are purple, orange, and dark brown bars, respectively. These are usually correctly estimated

for (d, T ) = (200, 100) or (d, T ) = (100, 200) when the SNR parameter is 1.25 or higher. This is

also true for the rest of the higher initial ranks when d or T is increased to 300. This indicates

that the large problem size seems advantageous in the same way the higher dimensions help in the

usual factor models.

Furthermore, for the same initial total ranks, parameters and fixed problem sizes, the case

where the number of joint factor series is equal to the number of group individual factors is more

favorable than the case where the latter is larger. For example, the algorithm is more likely to

choose the correct initial ranks in the case (rJ , rG) = (3, 3) than the case (rJ , rG) = (2, 4). Hence,

larger ranks in the joint structure is favorable for selecting the correct ranks rather than larger

ranks in the group individual structures.
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5 Data application

5.1 Autism Brain Imaging Data Exchange preprocessed data

In this section, we consider a large pre-processed dataset from the Autism Brain Imaging Data

Exchange (ABIDE preprocessed, e.g., Craddock et al.; 2013). ABIDE is an international collection

of R-fMRI data from 20 site locations. The data consists of two different groups. Subjects with

autism spectrum disorder (ASD) are marked as group 1. The rest of the subjects are from the

control group, denoted as group 2. Group 1 consists of 474 males and 65 females and group 2

contains 474 males and 99 females. The average ages for the two groups are 17.01 and 17.08 years,

respectively. The dataset from ABIDE is known to have been preprocessed by five teams with their

preferred methods.

Among 1112 subjects, we work with 505 subjects from the ASD group and 530 subjects from

the control group. We choose only the subjects whose profiles are identifiable from the separate

phenotype file, and the missing observations of the subjects do not occur across all variables.

However, some variables in some subjects still contain missing values. This dataset consists of an

extensive array of BOLD signals. The brain atlas of Dosenbach et al. (2010) contains 160 ROIs.

The ROIs belong to one of six brain regions, Default network, Frontoparietal network, Cingulo-

Opercular network, Sensorimotor network, Cerebellum, and Occipital lobe. The numbers of ROIs in

each network are 34, 21, 32, 33, 18, and 22, respectively. In our analysis, the average of the sample

lengths over 1035 subjects is 193 time points. Each of 160 ROI labels consists of a combination of

the network and the number. More specifically, the network means the brain region where the ROI

is measured. In the illustration in Section 5.3, different colors are used for representing the same

unique regions.

5.2 Connection to VAR-type model

In this section, we briefly introduce the network construction by converting DFMs into VAR-

type models. This will be useful in thinking about temporal and contemporaneous effects in the

considered models. Consider the DFM in (3)–(5). From (11), we assume that the joint and group

individual latent factor series follow VAR(1), F̄
(k)
t = Ψ̄kF̄

(k)
t−1 + η̄

(k)
t and F̃

(k)
t = Ψ̃kF̄

(k)
t−1 + η̃

(k)
t ,
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respectively. Then, one can rewrite the DFM as

X
(k)
t = BgF

(k)
t + E

(k)
t =

[
B̄ B̃g

]F̄ (k)
t

F̃
(k)
t

+ E
(k)
t

=
[
B̄ B̃g

] Ψ̄k 0rJ×rG

0rG×rJ Ψ̃k

F̄ (k)
t−1

F̃
(k)
t−1

+

η̄(k)t

η̃
(k)
t

+ E
(k)
t

=: Bg

(
ΨkF

(k)
t−1 + η

(k)
t

)
+ E

(k)
t .

By using the fact that F
(k)
t−1 = (B′

gBg)
−1B′

g(X
(k)
t−1 − E

(k)
t−1) where

(B′
gBg)

−1 =

(B̄′B̄)−1 0rJ×rG

0rG×rJ (B̃′
gB̃g)

−1

 ,

X
(k)
t can be expressed further as

X
(k)
t =

(
B̄Ψ̄k(B̄

′B̄)−1B̄′ + B̃gΨ̃k(B̃
′
gB̃g)

−1B̃′
g

)
X

(k)
t−1 + ζ

(k)
t (32)

=:
(
Θ̄k + Θ̃k

)
X

(k)
t−1 + ζ

(k)
t , k = 1, . . . , 2K, (33)

where ζ
(k)
t is a centered noise with covariance matrix Σζ,k, which is given by

Σζ,k =
(
Θ̄k + Θ̃k

)
(Id +ΣE,k) + B̄Ση̄,kB̄

′ + B̃gΣη̃,kB̃
′
g, (34)

and Θ̄k = B̄Ψ̄k(B̄
′B̄)−1B̄′, Θ̃k = B̃gΨ̃k(B̃

′
gB̃g)

−1B̃′
g. Hence, for each subject k, the dynamics is

defined by the two transition matrices Θ̄k, Θ̃k in (32)–(33) and the error covariance matrix Σζ,k

in (34). The equation (33) is a high-dimensional VAR(1) model. Note that, unlike the high-

dimensional VAR models where the sparsity on the transition matrices is imposed, the matrices

Θ̄k, Θ̃k are not sparse objects in general but have reduced rank. The model is akin to reduced-rank

VAR since the rank of the transition matrix constructed by the sum of low-rank matrices cannot

exceed the sum of two ranks. In the network context, the VAR transition matrix and covariance

of the noise are called the directed network and contemporaneous network, respectively. From this

perspective, we examine in the next section the differences between the two groups by comparing

how their model network connectivities differ.

5.3 Application results

Figure 6 presents the results of the initial rank selection. Different colors, which are the same

as used in quality assessment (QA) measures at the website ABIDE Preprocessed: Functional
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Preprocessing (2016), represent data collected from 20 different sites. The estimated initial ranks

are divided into three regions: the left with lower ranks, the middle with intermediate ranks, and the

right with higher ranks. The distribution of initially estimated ranks for group 1 closely resembles

that of group 2. The data-collecting sites are more influential to the initial ranks, which suggests

preprocessing differences, rather than the group differences. We expect that GRIDY framework

can further facilitate the study of heterogeneity in R-fMRI across different multi-site differences

(e.g., Abraham et al.; 2017; Wang et al.; 2019) in future research.

We exclude data where the initially estimated ranks are zero or exceed 15. As it can be seen

through the gray dashed line in Figure 6, approximately 40% of the subjects are retained for the

remaining analysis. Consequently, the majority of the estimated ranks are 2. Interestingly, although

the AJIVE result for the joint rank selection is 2, the ranks for the remaining individual structures

within each group, as produced by AJIVE, are mostly 1. This indicates that AJIVE detects

systematic variation within each subject even after factoring out the joint structures. Therefore,

for the remaining analysis, we set the joint structure as rank 2 and model the group individual

structures with a rank of 1 for each group. We also exclude subjects whose ranks for the group

individual structures are zero for the rest of the procedure. Thus, 290 subjects are considered for

the rest of the analysis, and each group has 157 and 137 subjects, respectively.

Next, we consider the estimates of the loadings matrices, covariance matrices, and the VAR

transition matrices of the factor series separately. From the simulation in Section 4, the proposed

GRIDY and the two benchmarks SCA-P and GICA have shown better performance than the others,

making it difficult to conclude which method is the best. Hence, we consider these three estimation

methods. Figure 7 displays the estimated loadings matrices from the three methods, with each

method presented in a separate column. All variables are reordered based on their networks, with

each of the 6 networks represented by its own color. The first two rows and the second two rows

represent the joint and group individual structures, respectively. Interestingly, while the landscape

of the estimated loadings matrices in the group individual structures looks similar, one can notice

both similarities and differences in the joint structures. For example, the values of the estimated

loadings from each method in the group individual structures are very similar, except for their signs.

However, while the estimates of the first and second loadings matrices from GRIDY resemble those

of the second and first loadings matrices from GICA, the estimates of the loadings matrices from

SCA-P do not exhibit similar patterns to those from the other methods.

In terms of the factor series, Figure 8 presents the sample covariances and VAR transition matri-
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ces of the factor series, estimated from the three methods. Interestingly, in the joint structure, the

entries of the sample covariance matrices and the transition matrices exhibit considerable diversity

across the methods. In particular, the off-diagonal entries of the sample covariance, indicating the

covariance between the factors, differ noticeably among the methods. This discrepancy corresponds

to the large range of the off-diagonal entries, which are often linked to the existence of Granger

causality (e.g., Chapter 2.3 in Lütkepohl; 2005). Notably, from the estimated loadings in Figure

7, we observed that the two estimated loadings matrices from GRIDY look similar to those from

GICA. The estimates for the factor series from the two methods are also similar to each other in

their absolute scales, except that the orders are switched in the current figure.

In Figure 9, we present box plots of the R2 statistics across ROIs obtained by regressing the

univariate observations X
(k)
i,t on a particular factor estimate, as discussed in Stock and Watson

(2002) and Jungbacker and Koopman (2015), from the three estimation methods. These statistics

indicate how much variability for each variable can be explained by each factor. Interestingly,

between the ASD group (on the left column of each panel) and the control group (on the right

column of each panel), the distributions of R2 statistics in each structure are quite similar. More

intriguingly, while we confirmed that the estimated loadings matrices and the estimates for the

factor series in the joint structures from GRIDY and GICA were similar, their R2 statistics look

quite different in terms of their vertical scales. In particular, values of R2 statistics from SCA-P

and GICA often exceed 1, while the values from GRIDY tend to remain below 1. By the definition

of this statistic, values are allowed to exceed 1. However, if we consider the R2 statistics structure-

wise, it is difficult for the value to exceed 1 in general. This implies that the contribution to fitness

from each factor series can be canceled out by the large estimated correlation between the factors.

Finally, the VAR connection explained in Section 5.2 is considered to illustrate network struc-

tures. Figure 10 summarizes the network structures across all subjects. The left panel presents

the averages of the directed networks and the contemporaneous networks for group 1, while the

results for group 2 are displayed in the right panel. The two heatmaps in the top panel represent

the directed networks, and the two in the bottom panel represent contemporaneous networks. The

ROIs in the networks are the same as in the previous figures. We can clearly observe distinct block

structures in both the directed networks and contemporaneous networks. Interestingly, while the

sizes and locations of the identified blocks in the directed networks are quite similar, the subpat-

terns within each block are quite different. Although the scales of the contemporaneous networks

are relatively larger, they exhibit a similar tendency as the directed networks. On the contrary,
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although the contemporaneous network structures for both groups are also different, they exhibit

relatively high similarity. Further study including confirmatory factor analysis is needed to link

these observations with the clinical interpretations of the difference between the ASD group and

the control group (e.g., Subbaraju et al.; 2017; Easson et al.; 2019).

6 Discussion

In this study, we propose a novel approach for group-level analysis of DFMs where the resulting

integrated model is considered as the summation of joint components, group individual components,

and the observation noise. Each signal structure is further decomposed into loadings matrices and

latent factor series, with these series assumed to follow VAR models. Unlike the standard DFMs,

our model allows different factor series within the same structure to be correlated. To handle

such latent and correlated structures, we employ simultaneous component analysis. We conducted

simulations to compare our modeling approach with several benchmark models suitable for the

considered setting. Using various estimation performance measures, the empirical evidence suggests

that our approach outperforms the considered alternatives. To illustrate the practical application

of our approach, ABIDE preprocessed dataset is used. This demonstrates how our approach can

be employed to compare configurations and network structures between autism spectrum disorder

and control groups.

There are several extensions and limitations of this work that could be addressed in the future.

First, forecasting issues under the proposed model could be considered. In fact, we carried out sim-

ulations to assess forecasting performance, but among the methods considered, neither GRIDY nor

other benchmarks were superior in terms of forecasting accuracy. Another practical issue to address

is the case of missing observations. Indeed, missing values occurred even in our data application,

and corresponding subjects had to be removed from the groups if the degree of missingness was

severe. Improvement of the proposed algorithm is also an interesting direction for future research.

For example, one could consider adopting a more efficient algorithm for estimating the SCA-PF2

model, as developed by Perros et al. (2017). This algorithm would prove indispensable in speeding

up computation and improving memory efficiency, particularly as the number of subjects increases.

Additionally, from the VAR representation discussed earlier, our model bears similarities to the

multi-VAR model of Fisher et al. (2022) albeit with sparse VAR transition matrices. Lastly, a

highly promising avenue for future research involves the consideration of multiple subgroups. In
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such cases, incorporating a partially-shared structure (e.g., Gaynanova and Li; 2019; Prothero et al.;

2022) could allow for only some grouped subjects to possess shared structures when the number of

groups exceeds two.
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Figure 1: ox plots of the first result of the first simulation setting as one of the numbers of variables

d, the numbers of samples T , and the numbers of subjects K increases while the rest two are fixed.

The correlation type is 1, the ranks used in the simulation are (rJ , rG) = (2, 2), and the SNR

parameter is set to be c = 1. Details of the rest of the model parameters are described in Section

4.1. The leftmost red box for each figure represents GRIDY, while the other six boxes with different

colors represent benchmarks.
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Figure 2: Box plots of the second result of the first simulation setting as one of the numbers of

variables d, the numbers of samples T , and the numbers of subjects K increases while the rest two

are fixed. The correlation type is 2, the ranks used in the simulation are (rJ , rG) = (2, 2), and the

SNR parameter is set to be c = 1. Details of the rest of the model parameters are described in

Section 4.1. The leftmost red box for each figure represents GRIDY, while the other six boxes with

different colors represent benchmarks.
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Figure 3: Box plots of the first result of the second simulation setting as SNR parameter c increases

from c = 0.25 to c = 4. The correlation type is 1, the size of problems is fixed by (d, T,K) =

(100, 200, 50), and the ranks used in the simulation are (rJ , rG) = (2, 2), and the SNR is set to be

c = 1. Details of the model parameter are described in Section 4.1. The leftmost red box for each

figure represents GRIDY, while the other six boxes with different colors represent benchmarks.
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Figure 4: Box plots of the first result of the second simulation setting as SNR parameter c increases

from c = 0.25 to c = 4. The correlation type is 2, the size of problems is fixed by (d, T,K) =

(100, 200, 50), and the ranks used in the simulation are (rJ , rG) = (2, 2), and the SNR is set to be

c = 1. Details of the model parameter are described in Section 4.1. The leftmost red box for each

figure represents GRIDY, while the other six boxes with different colors represent benchmarks.
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Figure 5: The frequencies of the estimated initial ranks are presented, with the expectation that

as more ranks, denoted as r, are correctly estimated, the bars corresponding to those ranks should

be positioned at r = rJ + rG. We employ SNR parameters ranging from c = 0.25 to c = 4, as

described in Section 4.1. Each column represents different problem sizes denoted as (d, T ). For all

cases, we keep 2K fixed at 100, resulting in 100 replications for each setting.
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Figure 6: Initial rank estimation results. The rank estimation result for the two groups is presented

in the top panel. The estimation result for group 1 is in the middle panel and the result for group

2 is displayed in the bottom panel. The colored bars are estimated ranks for each site and the grey

solid line is for the sums of the colored bars for each estimated rank.
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(fourth row), estimated from three estimation methods (column-wise)
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Figure 8: Estimated covariances of factor series (left) and VAR transition matrices (right) through

the three fitting methods (columns in each panel). For each column, the first two rows concern the

joint factor series and the last two columns concern the group individual factor series, each of the

rows represents the estimates from the factor series belonging to each group.
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Figure 9: R2 statistics for the estimated factors against each variable are presented across all
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based on the network. The same colors of the labels indicate that the corresponding ROIs are

known to belong to the same network. The results from the ASD group and the control group are

displayed in the odd and even columns, respectively. The results from the joint components are

shown in the top two rows. The panels in the third row of the left column and the fourth row of

the right column display the results from group individual components for each group.
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Figure 10: Heatmaps for the averages of estimated network matrices for the ASD group (left panel)

and control group (right panel). Two plots in the top panel are directed networks and the two

bottom plots are contemporaneous networks. The ROIs are reordered based on the network.
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