
Raster Interval Object Approximations for Spatial Intersection Joins

Thanasis Georgiadis∗ Eleni Tzirita Zacharatou† Nikos Mamoulis‡

Abstract

Spatial join processing techniques that identify intersections between complex geometries (e.g.,
polygons) commonly follow a two-step filter-and-refine pipeline; the filter step evaluates the query
predicate on the minimum bounding rectangles (MBRs) of objects and the refinement step elimi-
nates false positives by applying the query on the exact geometries. We propose a raster intervals
approximation of object geometries and introduce a powerful intermediate step in pipeline. In a
preprocessing phase, our method (i) rasterizes each object geometry using a fine grid, (ii) models
groups of nearby cells that intersect the polygon as an interval, and (iii) encodes each interval by a
bitstring that captures the overlap of each cell in it with the polygon. Going one step further, we
improve our approach to approximate each object by two sets of intervals that succintly capture the
raster cells which (i) intersect with the object and (ii) are fully contained in the object. Using this
representation, we show that we can verify whether two polygons intersect by a sequence of joins
between the interval sets that take linear time. Our approximations can effectively be compressed
and can be customized for use on partitioned data and polygons of varying sizes, rasterized at differ-
ent granularities. Finally, we propose a novel algorithm that computes the interval approximation
of a polygon without fully rasterizing it first, rendering the computation of approximations orders
of magnitude faster. Experiments on real data demonstrate the effectiveness and efficiency of our
proposal over previous work.

1 Introduction

We study the problem of computing the spatial intersection join between two spatial object collections
R and S, which identifies all pairs of objects (r, s), r ∈ R, s ∈ S such that r shares at least one common
point with s. Besides being a common operation in geographic information systems (GIS), the spatial
intersection join finds a wide range of applications in geo-spatial interlinking [30], GeoSPARQL queries
on RDF data stores [41], interference detection between objects in computer graphics [33], suggestion
of synapses between neurons in neuroscience models [27]. Recently, there is a growing interest in spatial
query evaluation over complex object geometries (i.e., polygons) [13, 14, 20, 45, 26, 29, 34, 40, 49, 50].

A naive way to evaluate the join is to run an intersection test algorithm from computational geometry
for each pair (r, s) in R×S. However, this method is extremely expensive, since (i) the number |R×S|
of pairs to be tested can be huge and (ii) for each pair the test takes O(n log n) time [8]. To mitigate
(i), the join is evaluated in two steps. Provided that the minimum bounding rectangles (MBRs) of
the objects are available (and possibly indexed), in the filter step, an efficient MBR-join algorithm
[9, 43] is used to find the pairs of objects (r, s) ∈ R × S such that MBR(r) intersects with MBR(s).
In the refinement step, for each pair that passes the filter step, the expensive intersection test on the
exact object geometries is applied. To further reduce the number of pairs to be refined, intermediate

∗Department of Computer Science & Engineering, University of Ioannina, Greece, ageorgiadis@cs.uoi.gr
†IT University of Copenhagen, Denmark, elza@itu.dk
‡Department of Computer Science & Engineering, University of Ioannina, Greece, nikos@cs.uoi.gr

1

ar
X

iv
:2

30
7.

01
71

6v
2

 [
cs

.D
B

]
 1

 M
ay

 2
02

4

filters can be added to the pipeline [8, 52]. The main idea is to use, in addition to the MBR, object
approximations that can help to identify fast whether a candidate pair (r, s) that passes the MBR filter
is (i) a sure result, (ii) a sure non-result, or (iii) an indecisive pair, for which we still have to apply the
geometry intersection test. Brinkhoff et al. [8] investigated the use of different object approximations
(e.g., the convex hull) to be used as subsequent filters after MBR-intersection. Zimbrao and de Souza
[52] proposed a more effective raster object approximation, where each object MBR is partitioned using
a grid and the object is approximated by the percentages of grid cell areas that the object overlaps.
This approach has several limitations. First, the raster object representations may occupy a lot of
space. Second, the approximations of two candidate objects may be based on grids of different scales;
their re-scaling and subsequent comparison can be quite expensive. Third, the cost of comparing two
rasters in order to filter a candidate pair is linear to the number of cells in the rasters.

In this paper, we first introduce Raster Intervals (RI); a raster approximation technique for polygonal
objects, which does not share the drawbacks of [52] and reduces the end-to-end spatial join cost up
to 10 times, when we use it as a pre-refinement, intermediate filter. Our technique uses a global fine
grid to approximate all objects, hence, no re-scaling issues arise. In addition, RI encodes each cell
by a 3-bit sequence; whether two objects overlap in a cell can be determined by bit-wise ANDing the
corresponding sequences. Finally, RI models the set of cells that approximate an object o by a sorted
list of raster intervals, determined by the Hilbert curve order of continuous cells in o’s representation.
For each such interval, we unify in a bitstring all 3-bit sequences of the included cells. Object pair
filtering is then implemented as a merge join between the corresponding raster interval lists. For each
pair of intersecting intervals, the sub-bitstrings corresponding to the common cells are ANDed to find
whether there is at least one cell wherein the polygons overlap.

Despite its effectiveness and efficiency compared to previous filters, RI has a relatively high preprocess-
ing cost and occupies significant space. We also propose APRIL (Approximating Polygons as Raster
Interval Lists), a significant improvement over RI. Unlike previous work [52] that divides the raster
cells intersecting a polygon into three classes, APRIL uses only two cell classes, which improves storage
efficiency and accelerates the intermediate filter. Second, the main novelty of APRIL lies in the way
it represents objects using two lists of intervals: the first (A-list) includes all cells, regardless of their
class, and the second (F -list) includes only cells that are fully covered by the object. The intermediate
filter is then implemented as a sequence of three simple merge joins between the sorted interval lists
of a given object pair. The first join, performed between the two A-lists, effectively identifies all true
negatives. The last two joins, performed between one object’s A-list and the other object’s F -list,
identify true positives. Since it does not explicitly store or encode cell-class information and does not
perform cell-specific comparisons, APRIL is significantly faster. Finally, APRIL applies a compression
technique based on delta encoding to greatly reduce the space required to store the interval lists. As
a result, APRIL approximations may require even less space than object MBRs, making it possible
to store and process them in main memory. Moreover, APRIL’s compression scheme allows partial,
on-demand decompression of interval lists during interval join evaluation.

In addition to improving RI to APRIL, in this paper we show the generality of APRIL in supporting
spatial selection queries, spatial within joins, and joins between polygons and linestrings. Furthermore,
we present a space partitioning approach, which increases the resolution of the raster grid and achieves
more refined object approximations as necessary, leading to fewer inconclusive cases and, therefore,
faster query evaluation. We also investigate options for defining and joining APRIL approximations of
different polygons at different granularities based on their geometries. Finally, a significant contribution
of our work is a novel, one-step “intervalization” algorithm that computes the APRIL approximation
of a polygon without having to rasterize it in full. We show that this method is orders of magnitude
faster compared to other rasterization approaches on CPU [52, 40].

2

The rest of this document is structured as follows: Section 2 provides the necessary background. In
Section 3, we introduce our raster approximations (RI) technique as an intermediate filter for spatial
intersection joins. Section 4 introduces APRIL, our improved raster intervals representation and delves
into its features, construction, and usage. Section 5 presents customization options for tuning APRIL
to specific system or dataset requirements. In Section 6, we study the efficient construction of APRIL
approximations. Section 7 presents our experiments that verify APRIL’s performance. Section 8
reviews related work, and finally, Section 9 concludes the paper while offering suggestions for future
work.

2 Background

Figure 1 illustrates the spatial intersection join pipeline. An MBR-join algorithm takes as input the
MBR approximations of objects to identify all pairs of objects that intersect (filter step) [19, 43]. Before
accessing and comparing the exact object geometries for each such candidate pair, in an intermediate
step, more detailed object approximations (than the MBR) are used to verify (fast) whether the pair is a
sure result (true hit) or a sure non-result (false hit), or we cannot decide based on the approximations
[8, 52]. Finally, if the pair is still a candidate, it is passed to the refinement step where the exact
geometries are accessed and an (expensive) algorithm from computational geometry [32] is run to
determine whether the pair is a result. Most previous work focused on the filter step [9, 19, 27,
43]. However, the refinement step dominates the overall cost, as discussed in the Introduction. The
intermediate step using additional object approximations has been proved valuable toward reducing
the overal join cost [8].

Filter step
(MBR-join)

MBRs
of S

candidate
pairs (IDs) Refinement

step
hitsIntermediate

filter
Join

results

true hitsMBRs
of R

Approximations
of R

Approximations
of S

candidate
pairs (IDs)

Geometries
of R

Geometries
of S

<latexit sha1_base64="5SCkwNoHK6nBdog9FEdcTUtY+kw=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69rBbBU0hKbXssevFYwX5AE8pmu2mXbjZhdyOU0h/hxYMiXv093vw3btoIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW3Szu7e/sH5cOjropTSWiHxDyW/QArypmgHc00p/1EUhwFnPaC6XXm9+6pVCwWd3qWUD/CY8FCRrA2Uk96px4TaFiuOHbz0nUbVeTYzhIZqTdd10FurlQgR3tYfvdGMUkjKjThWKmB6yTan2OpGeF0UfJSRRNMpnhMB4YKHFHlz5fnLtC5UUYojKUpodFS/T4xx5FSsygwnRHWE/Xby8S/vEGqw6Y/ZyJJNRVktShMOdIxyn5HIyYp0XxmCCaSmVsRmWCJiTYJlUwIX5+i/0m3art1u3Zbq7Su8jiKcAJncAEuNKAFN9CGDhCYwgM8wbOVWI/Wi/W6ai1Y+cwx/ID19gm+lI8z</latexit>

r2

<latexit sha1_base64="5SCkwNoHK6nBdog9FEdcTUtY+kw=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69rBbBU0hKbXssevFYwX5AE8pmu2mXbjZhdyOU0h/hxYMiXv093vw3btoIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW3Szu7e/sH5cOjropTSWiHxDyW/QArypmgHc00p/1EUhwFnPaC6XXm9+6pVCwWd3qWUD/CY8FCRrA2Uk96px4TaFiuOHbz0nUbVeTYzhIZqTdd10FurlQgR3tYfvdGMUkjKjThWKmB6yTan2OpGeF0UfJSRRNMpnhMB4YKHFHlz5fnLtC5UUYojKUpodFS/T4xx5FSsygwnRHWE/Xby8S/vEGqw6Y/ZyJJNRVktShMOdIxyn5HIyYp0XxmCCaSmVsRmWCJiTYJlUwIX5+i/0m3art1u3Zbq7Su8jiKcAJncAEuNKAFN9CGDhCYwgM8wbOVWI/Wi/W6ai1Y+cwx/ID19gm+lI8z</latexit>

r2 <latexit sha1_base64="5SCkwNoHK6nBdog9FEdcTUtY+kw=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69rBbBU0hKbXssevFYwX5AE8pmu2mXbjZhdyOU0h/hxYMiXv093vw3btoIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW3Szu7e/sH5cOjropTSWiHxDyW/QArypmgHc00p/1EUhwFnPaC6XXm9+6pVCwWd3qWUD/CY8FCRrA2Uk96px4TaFiuOHbz0nUbVeTYzhIZqTdd10FurlQgR3tYfvdGMUkjKjThWKmB6yTan2OpGeF0UfJSRRNMpnhMB4YKHFHlz5fnLtC5UUYojKUpodFS/T4xx5FSsygwnRHWE/Xby8S/vEGqw6Y/ZyJJNRVktShMOdIxyn5HIyYp0XxmCCaSmVsRmWCJiTYJlUwIX5+i/0m3art1u3Zbq7Su8jiKcAJncAEuNKAFN9CGDhCYwgM8wbOVWI/Wi/W6ai1Y+cwx/ID19gm+lI8z</latexit>

r2<latexit sha1_base64="KL8Vfwr4VNtANWPCoyDvq8WqLgA=">AAAB7nicdVDLSgMxFM3UV62vqks30SK4GjJ1+phd0Y3LCvYBnaFk0rQNzWSGJCOUoR/hxoUibv0ed/6N6UNQ0QMXDufcy733hAlnSiP0YeXW1jc2t/LbhZ3dvf2D4uFRW8WpJLRFYh7LbogV5UzQlmaa024iKY5CTjvh5Hrud+6pVCwWd3qa0CDCI8GGjGBtpI7yT30mYL9YQjaqeG6tDJFdQY7nXhrieXW3WoGOjRYogRWa/eK7P4hJGlGhCcdK9RyU6CDDUjPC6azgp4ommEzwiPYMFTiiKsgW587guVEGcBhLU0LDhfp9IsORUtMoNJ0R1mP125uLf3m9VA/rQcZEkmoqyHLRMOVQx3D+OxwwSYnmU0MwkczcCskYS0y0SahgQvj6FP5P2mXbqdrurVtqXK3iyIMTcAYugANqoAFuQBO0AAET8ACewLOVWI/Wi/W6bM1Zq5lj8APW2ycHs49m</latexit>

s2
<latexit sha1_base64="KL8Vfwr4VNtANWPCoyDvq8WqLgA=">AAAB7nicdVDLSgMxFM3UV62vqks30SK4GjJ1+phd0Y3LCvYBnaFk0rQNzWSGJCOUoR/hxoUibv0ed/6N6UNQ0QMXDufcy733hAlnSiP0YeXW1jc2t/LbhZ3dvf2D4uFRW8WpJLRFYh7LbogV5UzQlmaa024iKY5CTjvh5Hrud+6pVCwWd3qa0CDCI8GGjGBtpI7yT30mYL9YQjaqeG6tDJFdQY7nXhrieXW3WoGOjRYogRWa/eK7P4hJGlGhCcdK9RyU6CDDUjPC6azgp4ommEzwiPYMFTiiKsgW587guVEGcBhLU0LDhfp9IsORUtMoNJ0R1mP125uLf3m9VA/rQcZEkmoqyHLRMOVQx3D+OxwwSYnmU0MwkczcCskYS0y0SahgQvj6FP5P2mXbqdrurVtqXK3iyIMTcAYugANqoAFuQBO0AAET8ACewLOVWI/Wi/W6bM1Zq5lj8APW2ycHs49m</latexit>

s2 <latexit sha1_base64="KL8Vfwr4VNtANWPCoyDvq8WqLgA=">AAAB7nicdVDLSgMxFM3UV62vqks30SK4GjJ1+phd0Y3LCvYBnaFk0rQNzWSGJCOUoR/hxoUibv0ed/6N6UNQ0QMXDufcy733hAlnSiP0YeXW1jc2t/LbhZ3dvf2D4uFRW8WpJLRFYh7LbogV5UzQlmaa024iKY5CTjvh5Hrud+6pVCwWd3qa0CDCI8GGjGBtpI7yT30mYL9YQjaqeG6tDJFdQY7nXhrieXW3WoGOjRYogRWa/eK7P4hJGlGhCcdK9RyU6CDDUjPC6azgp4ommEzwiPYMFTiiKsgW587guVEGcBhLU0LDhfp9IsORUtMoNJ0R1mP125uLf3m9VA/rQcZEkmoqyHLRMOVQx3D+OxwwSYnmU0MwkczcCskYS0y0SahgQvj6FP5P2mXbqdrurVtqXK3iyIMTcAYugANqoAFuQBO0AAET8ACewLOVWI/Wi/W6bM1Zq5lj8APW2ycHs49m</latexit>

s2

Figure 1: Spatial intersection join pipeline [8]

Zimbrao and de Souza [52] introduced an effective intermediate filter, by imposing a grid over each
object’s MBR. The cells of the grid comprise the raster approximation of the object. Each cell belongs
to one of the following four types: full (the object completely covers the cell), strong (the object covers
more than 50% of the cell), weak (the object covers at most 50% of the cell), or empty (the object is
disjoint with the cell). Figure 2 shows an example.

To create the raster approximation (RA) of a polygon, a grid of at most K square cells is defined. The
side of each cell should be ω2k, for some k ≥ 0, where ω is a minimum cell side (unit). In addition, the
coordinates of each cell should be multiples of ω2k.

For a pair (r, s) of candidate objects, the cells in their approximations RA(r) and RA(s) that overlap
with their common MBR are identified and the remaining ones are ignored. If the cells of RA(r) are
smaller than the cells of RA(s), groups of neighboring cells in RA(r) are combined to infer the type of

3

Full

Strong

Weak

Empty

Figure 2: Four types of cells in a raster approximation [52]

a larger cell that is perfectly aligned with a cell of RA(s). Re-scaling is expensive, results in accuracy
loss and reduces the effectiveness of the filter, rendering RA useful mainly for polygons of similar size,
which is rarely the case in real-world data.

After re-scaling, the common cells in the two raster approximations are examined and, for each such
cell, we use the cell’s types in the two approximations to conclude whether the objects intersect in the
cell, according to Table 1. Specifically, if at least one of the two types is empty the objects definitely
do not intersect in the cell. If at least one of the two types is full and the other is not empty or both
types are strong, then the objects definitely intersect in the cell. In all other cases, we cannot conclude
whether the objects intersect in the cell. If we find at least one cell, where the objects intersect, the
pair is directly reported as a spatial join result (true hit). If at all common cells, the objects do not
intersect, then the pair is pruned (false hit). If we cannot conclude about the object pair, the refinement
step should be applied.

Table 1: Do two objects intersect in a cell, based on the cell’s types in the two raster approximations?
[52]

empty weak strong full
empty no no no no
weak no inconclusive inconclusive yes
strong no inconclusive yes yes
full no yes yes yes

3 Raster Intervals

We propose a new framework for the intermediate step of spatial joins, which builds upon, but is
significantly more effective than the raster approximation technique of previous work [52]. Our approach
has three important differences: (i) we use the same global (and fine-grained) grid to rasterize all
objects; (ii) we use bitstring representations for the cell types of object approximations; and (iii) we
represent the set of all non-empty cells of each object as a sorted list of intervals paired with binary
codes. In this section, we present in detail the steps that we follow in order to generate the raster
intervals approximation for each object.

4

3.1 Object rasterization and raster encoding

We superimpose over the entire data space (e.g., the map) a 2N × 2N grid. For each data object o, we
identify set of the cells Co that the object intersects and use this set to approximate o. Each cell in Co

may belong to three types: full, strong, or weak; as opposed to [52], we do not include empty cells in
Co. In order to compute Co for each object, and the type of each cell, we apply the algorithm of [52].
In a nutshell, the algorithm first identifies the grid columns (stripes) which overlap with o. It clips the
object in each stripe, and then runs a plane-sweep algorithm along the stripe to identify the cells and
the type of each cell.

Furthermore, we encode the three types of cells that we are using, as shown in Table 2. Note that we
use a different encoding for the cell types depending on whether the object comes from join input R or
S. This encoding has two important properties. First, if for two objects r ∈ R and s ∈ S and for a cell
c, the bitwise AND of the codes of r and s in cell c is non-zero, then we are sure that r and s intersect
in cell c. Indeed, this corresponds to the case where at least one type is full or both are strong. If the
logical AND is 0, we cannot be sure whether r intersects s in c.

The second property of the encoding is that it allows us to swap the roles of R and S in the join, if
necessary. Specifically, the code for a cell c of an object in one join input (e.g., R) can be converted
to the code for c if the object belonged to the other join input (e.g., S) by XORing the code with the
mask m = 110. For example, 011, the R-encoding of full cells, after bitwise XORing with m, becomes
101, i.e., the S-encoding of full cells. This is important for the case where the rasterization of a dataset
has been precomputed before the join, according to the R-encoding and we want to use the dataset
as the right join input S. XORing can be done on-the-fly when we apply our filter, as we explain in
Section 3.3, with insignificant cost.

Table 2: 3-bit type codes for each input dataset

input R input S

full 011 101
strong 101 011
weak 100 010

3.2 Intervalization

We use the Hilbert curve [18] to order the cells in the 2N ×2N grid. Hilbert curve is a well-known space
filling curve that preserves spatial proximity. Hence, each cell is mapped to a value in [0, 22N − 1]. By
this, the set of cells Co that intersect an object o can be represented as a list of intervals Lo formed
by consecutive cells in Co according to the Hilbert order. Figure 3 exemplifies the intervalization for
a polygonal object o in a 23 × 23 space. The cells are marked according to their Hilbert order and
shaded based on their type. There are in total 36 cells in Co, which are represented by 7 intervals.
To intervalize Co, we sort the cells there in Hilbert order and scan the sorted array, merging cells of
consecutive cells into the current interval. The cost for this is O(|Co| log |Co|).
For each interval in Lo, during the interval construction, we concatenate the bitwise representations of
the cells in their Hilbert order, to form a single code for the entire interval. This allows us to replace
the set Co of cells that intersect an object o by Lo. For example, assume that the polygon of Figure
3 belongs to the left join input R. We replace cells 9, 10 and 11 in Co with codes 100, 101 and 100,
respectively, by interval [9, 12) with binary code 100101100, as shown in the figure. This helps us to
greatly reduce the space requirements for the rasterized objects. In addition, as we will show next,
we save many computations while verifying a pair of objects, because we can apply the bitwise AND

5

0

1 2

3 4

7 6

5

13

12

8

11 10

914

1716

15

28

27

26

1819

20

21 22

23 24

25

29

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

Full
Strong
Weak
Empty

[9,12)

9 10 11

100 101 100

100101100

interval

Figure 3: The Hilbert curve cell enumeration and interval generation for a polygon in a 8× 8 space.

for multiple cells simultaneously. The resulting raster intervals (RI) approximation of each object is
a sequence of ⟨st, end, code⟩ triples (ordered by st), where [st, end] is an interval in the Hilbert curve
space and code is a bitstring that encodes the cell types in the interval.

Practical considerations A larger value for N results in a finer-grained grid and thus more accurate
approximations. Moreover, a polygon rasterized with higher granularity has an increased probability
to have completely covered cells (i.e., type full), which increases the chances of the intermediate spatial
join filter to identify a true hit. At the same time, a large N requires more space for storing the
endpoints of the intervals in Lo. We choose N = 16, which results in a grid with a fine granularity;
in addition, the Hilbert order of cells (i.e., the interval endpoints) can be stored as 32-bit unsigned
integers. As each cell in an interval contributes three bits to the interval’s concatenated binary code,
for a [st, end) interval, we need ⌈(end − st) ∗ 3/8⌉ bytes to encode its cells. We may opt to compress
binary codes consisting of many bytes and the RI approximation of an object, overall.

3.3 Intermediate filter

For a join candidate pair (r, s), r ∈ R, s ∈ S which is produced by the MBR-join algorithm, our objective
is to use the raster intervals approximations RI(r) and RI(s) of r and s to verify fast whether r and
s definitely intersect, (ii) r and s definitely do not intersect, or (iii) we cannot conclude about the
intersection of r and s, based on their RIs. This is done via our RI-join procedure (Algorithm 1).

RI-join merge-joins the sorted interval lists RI(r) and RI(s), denoted by X and Y in the pseudocode,
respectively, and identifies pairs (Xi, Yj) of intervals that overlap; i.e., Xi and Yj include at least one
common cell. For each such pair, there is a possibility to find out that (r, s) is a true hit (i.e., a
spatial join result) and avoid sending the pair to the refinement step. Specifically, if in at least one of
the common cells of Xi and Yj the logical AND of the cell codes is non-zero, we have a sure true hit
and we do not need to continue the RI-join. Having the codes of the cells in Xi and Yj concatenated

6

Algorithm 1 RI-join algorithm

Require: RI(r) as X, RI(s) as Y
1: ovl← False; ▷ no overlapping interval pair found yet
2: i← 0; j ← 0
3: while i < |X| and j < |Y | do
4: if Xi overlaps with Yj then
5: if AlignedAND(Xi.code, Yj .code) then
6: return true hit ▷ bitwise AND is non-zero
7: end if
8: ovl← True; ▷ found an overlapping interval pair
9: end if

10: if Xi.end ≤ Yj .end then i← i+ 1 else j ← j + 1
11: end while
12: if ovl then ▷ at least one overlapping interval pair
13: return indecisive
14: else
15: return false hit ▷ no common cells in X and Y
16: end if

in two single bitstrings Xi.code and Yj .code allows us to perform this check (abstracted by Function
AlignedAND) efficiently. We first select from each bitstring the fragment that includes the codes of
all cells in [max{Xi.st, Yj .st},min{Xi.end, Yj .end}], i.e., the intersection interval of Xi and Yj . Then,
we bitwise AND the fragments. If the fragments have been encoded by the same encoding (i.e., both
have R or S encoding as shown in Table 2), ANDing is preceded by XORing one of the two codes.
If there is at least one pair (Xi, Yj) of overlapping intervals (variable ovl of Algorithm 1 is True at
the end of the while-loop), but the object pair is not found to be a true hit, then the object pair is
indecisive, meaning that we will have to apply the refinement step for it. On the other hand, if there
are no overlapping intervals in the two RIs (ovl remains False), there are no common cells in the raster
representations of the objects, and we can conclude that the two objects definitely do not intersect
(false hit). As an example, Figure 4 shows two rasterized polygons and the pairs (Xi, Yj) of intervals
from the two raster intervals that overlap.

In general, the codes (bitstings) of two intersecting intervals may occupy multiple bytes and the common
subinterval may be of arbitrary length. Before bit-shifting, Function AlignedAND truncates all un-
matched bytes from the two bitstrings. In addition, bit-shifting is done at the bytes of one interval
only (the one that starts earlier), making sure to carry over the required bits from the next byte to
avoid any loss of information. This continuous shifting and matching (binary AND between aligned
bitstrings) is performed byte-by-byte, hence, once two ANDed bytes give a non-zero, we immediately
report the true hit. XORing, (if both join inputs have the same encoding), is done on-demand on
the shifted byte, after any potential bit carryover. A byte-wide XOR mask mbyte is used, created by
concatenating our mask m = 110 a few times to fill a byte; mbyte is shifted, if necessary. The whole
process can easily be parallelized (shifting and bitwise operations are independent for each byte).

For each pair of intervals, the last bytes to be matched is a special case and has to be treated cautiously,
since the remaining bits that need checking may be less than 8 and the rest of the bits in that byte
should not be included in the bitwise operations. In other words, the XOR and AND operations applied
on the last bytes should consider bits only in the positions relevant to the compared intervals, otherwise
we may mistake a false positive as a true hit. Hence, we apply one last bit mask with 1s at the positions
of the bits that need to partake in the operation, setting the rest to zero.

Figure 5 shows how the codes for first pair (X0, Y1) of intersecting intervals from the example of Figure
4 are matched, where X0 = ⟨[9, 13), 100101101101⟩ and Y1 = ⟨[11, 15), 100100101100⟩ (i.e., assume that

7

both datasets are R-coded). Each code occupies 2 bytes. Since the interval of Y1 starts 2 cells after
the interval of X0, the code of X0 is shifted by 2× 3 = 6 bits in the first step. This aligns the common
cells (11 and 12) in the two codes. The common fragment (6 bits) occupies 1 byte, so there will be
one byte-by-byte match. As both intervals are R-coded, we first XOR the X0-byte with the (shifted)
byte-wise XOR mask mbyte. Before ANDing the two bytes, we AND the shifted byte with a mask
that clears the bits that are outside the common fragment of the intervals, as we are at the last byte.
Finally, the bytes are ANDed with a 0 result, so the intersection of the two objects remains indecisive
with respect to (X0, Y1). As a result, Algorithm 1 continues to find next pair of overlapping intervals
(X5, Y2) and performs the corresponding code matching.

1

0

6

3 5

7

8

4

40

33

61

34

23

15

29

30

28

31

35

32

2724

17

36 39

45

46

18

25 26 37 38

2
11: Strong - Weak
12: Strong - Weak
57: Weak - Weak

Common Cells

12 11

57
Overlaps

[9,13) and [11,15)
[50,58) and [57,59)58

10

91314 50

515253

54 55

56

Full Strong

Weak

Full Strong

Weak

[9,13)
[15,16)
[17,19)
[23,41)
[45,47)
[50,58)
[61,62)

Intervals
[0,9)
[11,15)
[57,59)

Figure 4: Two rasterized polygons, the overlaps between their raster intervals, and their common cells

Analysis. RI-join requires a single scan of interval lists X and Y , since no two intervals in the same
list (i.e., in the same polygon) overlap. Assuming that bitstrings are relatively short so that their
matching (a call to Function AlignedAND) takes constant time, the time complexity of Algorithm 1
is O(|X|+ |Y |) since the number of overlapping interval pairs is at most |X|+ |Y |.

3.4 “Within” spatial joins

Although we focus on polygon-polygon intersection joins, RI can also be used as an intermediate filter
for within joins. The objective of a spatial within join is to find pairs (r, s) of objects, r ∈ R, s ∈ S,
such that r is within s, i.e. the space occupied by r is a subset of the space occupied by s. For each
pair (r, s) of polygons that passes the filter step of the within join (i.e., the MBR of r is within the
MBR of s), we can apply Algorithm 1 with the following changes in order to identify whether (r, s) is a
true negative (false hit), a true positive (i.e., true hit), or an indecisive pair w.r.t. the within predicate:
As soon as we find an interval Xi ∈ RI(r) which is not a subset of any interval Yj ∈ RI(r), we can
terminate with the assertion that r is not within s, since there is at least one non-empty cell of r which
is empty in s. In addition, for an identified pair of (Xi, Yj), such that Xi ⊆ Yj , if there is a cell in Xi

that is (i) full in Xi but not full in Yj or (ii) strong in Xi and weak in YJ , then (r, s) should a true

8

1. Overlapping intervals and their bitstrings

To align the bitstrings, shift X0
(Y1.st - X0.st)*3 = 6 bits

9 10 11 12

11 12 13 14

101101* * * * * * * * * *

10010010 1100 * * * *

9 10 11

11 12 13 14

10010110 1101* * * *

10010010 1100* * * *

100101

2. Aligned bitstrings

11 12

11 12

101101* *

10010010

Bytes to check: 1
Bits to check: 6

XOR the shifted
bitstring with mask

11 12

11 12

011011* *

10010010

11011011 =XOR

check
byte 1

11111100 =AND

11 12

11 12

10010010

01101100
AND = 0

(indecisive)
Last byte: mask out
excess (8-6=2) bits

12

X0

Y1

3. Byte-wise XOR and AND

Figure 5: Intervals [9, 13) and [11, 15) of our two example polygons overlap but are not aligned. Byte
truncation and bit shifting (if necessary) align their bitstrings before performing the bitwise operation(s)

negative and the algorithm terminates. For (x, y) to be characterized as a true hit without refinement,
for all identified (Xi, Yj) such that Xi ⊆ Yj , all cells in the subinterval Xi where Xi and Yj overlap
should be full in Yj ; if at least one such cell is not full, then we cannot guarantee a true hit and the
pair (x, y) must be passed to the refinement step, unless it is found to be a true negative.

4 APRIL

In this section, we present APRIL (Approximating Polygons as Raster Interval Lists), a significant
enhancement of RI, which can be used as an intermediate filtering method for spatial query processing
and is more efficient and less space consuming compared to RI.

4.1 A- and F -Interval Lists

APRIL is a succinct polygon approximation for intermediate filtering, which categorizes raster cells
into Full, Partial, and Empty, based on their coverage percentage with the object’s geometry (100%,
less than 100%, and 0%, respectively). In other words, APRIL unifies the Strong and Weak cell classes
used by RI and [52] to a single Partial class. Under this, APRIL approximates a polygon with two
sorted interval lists: the A-list and the F -list. The A-list contains intervals that concisely capture
all cells that overlap with the polygon, regardless of their type (Full or Partial), whereas the F -list
includes only Full cells. An interval list having n intervals is stored as a simple sorted integer sequence
in which the i-th interval’s start, end are located at positions 2i and 2i+ 1 respectively, for i ∈ [0, n).

The A-list and F -list for the example polygon of Figure 3 are shown in Figure 6. Strong and Weak cell
types become Partial, which results in a simpler representation than RI. Note that the set of intervals
in each of the A- and F - lists are disjoint. The new relationship identification table for a cell shared by
two polygons, is shown in Table 3. Removing the Strong cell type renders the approximation unable

9

0

1 2

3 4

7 6

5

13

12

8

11 10

914

1716

15

28

27

26

1819

20

21 22

23 24

25

29

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

Full
Partial
Empty

A-list F-list
[9,12)
[24,29)
[31,41)
[45,46)
[50,58)
[61,62)

[32,33)
[35,37)
[53,54)
[55,56)

Figure 6: The interval generation for a polygon in a 8× 8 space, without bit-coding and using interval
lists.

to detect true hits for cells of the Strong-Strong case, as common cells that are both Partial cannot
decide definite intersection between the two polygons.1

Table 3: APRIL: Do two objects intersect in a common cell?

Partial Full
Partial Inconclusive yes
Full yes yes

Construction To construct an APRIL approximation we need to first identify the cells intersected
by the polygon’s area in the grid, while also labeling each one of them as Partial or Full. Then,
Intervalization derives the F-list, by sorting the set of Full cells by ID (i.e., Hilbert order) and merging
consecutive cell IDs into intervals. To derive the A-list, we repeat this for the union of Full and Partial
cells. In Section 6.2, we propose an efficient algorithm that derives the F- and A-list of a polygon
without having to label each individual cell that intersects it.

4.2 APRIL Intermediate Spatial Join Filter

APRIL is used as an intermediate filter (Figure 1) that is situated between the MBR filter and the
refinement phase. Given a pair (r, s) of objects coming as a result of an MBR-join algorithm [9, 31, 43],
APRIL uses the A- and F-lists of r and s to detect fast whether the polygons (i) are disjoint (true
negative), (ii) are guaranteed to intersect (true hit), or (iii) are inconclusive, so they have to be
forwarded to the refinement stage to verify their intersection.

1As we have found experimentally (Sec. 7.4.2), this has minimal effect on the amount of true hits and true negatives
that the intermediate filter manages to detect. This is due to the fact that the only cases of true hits missed are pairs of
polygons that intersect with each other exclusively in cells typed Strong for both polygons and nowhere else.

10

Whether r and s are disjoint (i.e. do not intersect), can be determined by checking whether their
A-lists have any pair overlapping of intervals or not. If they have no overlapping intervals, then r and
s do not have any common cell in the grid and thus they cannot intersect. We check this condition by
merge-joining the A-lists and stoping as soon as we detect two overlapping intervals.

Pairs of polygons that have at least one pair of overlapping intervals in their A-lists are then checked
using their F -lists. We perform two more merge-joins: A(r) ▷◁ F(s) and F(r) ▷◁ A(s); detecting an
overlapping intervals pair in one of these two joins means that there is a Full cell in one object that is
common to a Full or Partial cell of the other object. This guarantees that the two objects intersect and
the pair (r, s) is immediately reported as a spatial join result. If A(r) ▷◁ F(s) fails to detect (r, s) as a
true hit, then F(r) ▷◁ A(s) is conducted; if the latter also fails, then (r, s) is an inconclusive candidate
join pair, which is forwarded to the refinement step.

In summary, APRIL’s intermediate filter sequence consists of three steps: the AA-join, AF -join, and
FA-join, as illustrated in Figure 7 and described by Algorithm 2. Each step is a simple merge-join
between two sorted interval lists. Since each list contains disjoint intervals, each of the three interval
joins takes O(n+m) time, where n and m are the lengths of the two interval join input lists. Hence,
the total cost of the APRIL filter (i.e., Algorithm 2) is linear to the total number of intervals in the A-
and F -lists of r and s.

IntervalJoin
(r.Alist,s.Alist)

IntervalJoin
(r.Alist,s.Flist)

IntervalJoin
(r.Flist,s.Alist)

A-list of
r ∈ R

A-list of
s ∈ S

A-list of
r ∈ R

F-list of
s ∈ S

F-list of
 r ∈ R

A-list
s ∈ S

Refine(r,s)

no
overlapno overlapoverlap

no overlap
(true negative)

overlap
(true positive)

overlap
(true positive)

MBR-
filter incon-

clusive

(r.id,
s.id)

Figure 7: The three steps of the intermediate filter for a candidate pair of polygons.

Join Order Optimization The AA-join, AF -join, and FA-join could be applied in any order in
Algorithm 2. For example, if (r, s) is a true hit, it would be more beneficial to perform the AF -join
and the FA-join before the AA-join, as this would identify the hit earlier. On the other hand, if (r, s)
is a true negative, conducting the AA-join first avoids the futile AF - and FA-joins. However, there is
no way to know a priori whether (r, s) is a true hit or a true negative. In addition, we experimentally
found that changing the join order does not have a high impact on the intermediate filter cost and the
overall cost. For a typical candidate pair (r, s) the common cells are expected to be few compared to
the total number of cells covered by either r or s, making AA-join the most reasonable join to start
with. This is confirmed by our experiments where the number of candidate pairs identified as true
negatives is typically much larger compared to the number of identified true hits.

4.3 Generality

In this section, we demonstrate the generality of APRIL in supporting other queries besides spatial
intersection joins between polygon-sets. We first show how we can use it as an intermediate filter in
selection (range) queries. Then, we discuss its application in spatial within joins. Finally, we discuss

11

Algorithm 2 APRIL join algorithm.
Require: (r, s) such that MBR(r) intersects MBR(s)
1: function IntervalJoin(X,Y)
2: i← 0; j ← 0
3: while i < |X| and j < |Y | do
4: if Xi overlaps with Yj then
5: return true ▷ overlap exists
6: end if
7: if Xi.end ≤ Yj .end then i← i+ 1 else j ← j + 1
8: end while
9: return false ▷ no overlaps detected
10: end function
11:
12: if not IntervalJoin(A(r), A(s)) then
13: return false ▷ true negative
14: end if
15: if IntervalJoin(A(r), F (s)) then
16: return true ▷ true hit
17: end if
18: if IntervalJoin(F (r), A(s)) then
19: return true ▷ true hit
20: end if
21: return REFINEMENT(r, s) ▷ forward pair to refinement

the potential of using APRIL approximations of polygons and raster approximation of linestrings to
filter pairs in polygon-linestring intersection joins.

4.3.1 Selection Queries

Similarly to joins, APRIL can be used in an intermediate filter to reduce the cost of selection queries.
Consider a spatial database system, which manages polygons and where the user can draw a selection
query as arbitrary polygon QP ; the objective is to retrieve the data polygons that intersect with the
query polygon QP . Assuming that we have pre-processed all data polygons and computed and stored
their APRIL representations, we can process polygonal selection queries as follows. We first pre-process
QP to create its APRIL approximation. Then, we use the MBR of QP to find fast the data polygons
whose MBR intersects with the MBR of the query (potentially with the help of an index [17, 44]).
For each such data polygon r, we apply the APRIL intermediate filter for the (r,QP) pair to find fast
whether r is a true negative or a true hit. If r cannot be pruned or confirmed as a query result, we
eventually apply the refinement step.

4.3.2 Spatial Within Joins

APRIL can also applied for spatial joins having a within predicate, where the objective is to find the
pairs (r, s), where r ∈ R and s ∈ S and r is within s (i.e., r is completely covered by s). In this case, the
intermediate filter performs only two of its three steps. The AA-join is applied first to detect whether
r and s are disjoint, in which case the pair should be eliminated. Then, we perform a variant of the
AF -join, where the objective is to find if every interval in the A-list of r is contained in one interval in
the F -list of s; if this is true, then (r, s) is guaranteed to be a within join result and it is reported as a
true hit. In the opposite case, (r, s) is forwarded to the refinement step. We do not apply an FA-join,
because this may only detect whether s is within r.

12

4.3.3 Linestring to Polygon Joins

Another interesting question is whether APRIL can be useful for intersection joins between other spatial
data types, besides polygons. The direct answer is no, since APRIL is designed for spatially-extended
objects. Still, our method can be useful for the case of joins between polygons and linestrings. A
linestring is a sequence of line segments and it is used to approximate geographic objects such as roads
and rivers. The rasterization of a linestring results in only Partial cells, as linestrings have zero area
and cannot cover a cell entirely. In addition, as exemplified in Figure 8, linestrings do not really benefit
from merging consecutive cells into intervals, as linestrings that follow the Hilbert order (or any other
fixed space-filling curve) are rare. Hence, it is more space-efficient to approximate a linestring as a
sorted sequence of cell-IDs (which are guaranteed to be Partial). Having the linestring approximations,
we can evaluate spatial intersection joins between a collection of polygons and a collection of linestrings,
by applying two of the three steps in the APRIL intermediate filter; namely, (i) a merge-join between
the A-list of the polygon and the cell-ID list of the linestring to find out whether the pair is a true
negative and (ii) a merge-join between the F -list of the polygon and the cell-ID list of the linestring
to find out whether the pair is a true hit. Algorithm 2 can easily be adapted for polygon-linestring
filtering, by simply changing IntervalJoin(X,Y) to take a sequence of cell-IDs Y and treat them as
intervals of duration 1.

Partial
Empty

Intervals
[9,12)
[17,19)
[30,31)
[32,33)
[52,54)
[55,56)
= 48 (12 x 4)
bytes0

1 2

3 4

7 6

5

13

12

8

11 10

914

1716

15

28

27

26

1819

20

21 22

23 24

25

29

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657 61 62

58 59 60 63

Cells
9,10,11,17,18,
30,32,52,53,55
= 40 (10 x 4)
bytes

Figure 8: A linestring’s APRIL approximation size in bytes, if stored as intervals versus cells.

5 Customization

We have explored a series of optimization and customization options that can potentially reduce
APRIL’s space complexity and improve its performance in terms of filter effectiveness and speed.

5.1 Compression

Recall that the only information that APRIL stores for each polygon is two interval lists: the A-list
and the F -list. The interval lists are essentially sorted integer arrays, so we can exploit delta encoding
and more specialized lossless compression schemes to reduce their space requirements. Since any of

13

the AA- AF - and FA-join that we may apply on the lists may terminate early (as soon as an interval
overlap is detected), we should go for a compression scheme that does not require the decompression
a list entirely before starting processing it. In other words, we should be able to perform joins while
decompressing the lists. This way, we may avoid uncompressing the lists at their entirety and still be
able to perform the joins. In view of this, we use delta encoding, where we store the first value of the
list precisely and from thereon store the differences (gaps) between consecutive numbers.

There are dozens of different compression schemes for gaps between ordered integers, each with their
pros and cons. We chose the Variable Byte (VByte) method [11, 42], a popular technique that even
though it rarely achieves optimal compression, it is adequately efficient and really fast [21]. We use
the libvbyte [10] library that has an option for sorted integer list compression, which matches our case
and boosts performance by utilizing delta encoding. Compression hardly affects APRIL’s construction
time, which is dominated by the rasterization/intervalization cost.

At the same time, we adapt our interval join algorithm to apply decompression and join at the same
time, i.e., each time it needs to get the next integer from the list it decompresses its value and adds it
to the previous value in the list.

5.2 Partitioning

The accuracy of APRIL as a filter is intertwined with the grid granularity we choose. A more fine-
grained grid results in more Full cells, increasing the chance of detecting true hits; similarly, empty
cells increase, enhancing true negative detection. However, simply raising the order N is not enough
to improve performance. Increasing N beyond 16 means that a single unsigned integer is not enough
to store a Hilbert curve’s identifier, which range from [0, 22N − 1]. For N = 17 or higher, we would
need 8 bytes (i.e., an unsigned long) to store each interval endpoint, exploding the space requirements
and the access/processing cost.

In view of this, we introduce a partitioning mechanism for APRIL, that divides the data space into
disjoint partitions and defines a dedicated rasterization grid and Hilbert curve of order N = 16 to
each partition. This increases the global granularity of the approximation, without using long integers,
while giving us the opportunity to define smaller partitions for denser areas of the map for which a finer
granularity is more beneficial. Partitioning is done considering all datasets (i.e., layers) of the map.
That is, the same space partitioning is used for all datasets that are joined together. The contents
of each partition are all objects that intersect it; hence, the raster area of the partition is defined by
the MBR of these objects and may be larger than the partition, as shown in the example of Figure 9.
APRIL approximations are defined based on the raster area of the partition. The spatial join is then
decomposed to multiple joins, one for each spatial partition. Duplicate join results are avoided at the
filter step of the join (MBR-join) as shown in [12, 43] .

5.3 Different Granularity

If we use the same (fine) grid to rasterize all polygons, the APRIL approximations of large polygons
may contain too many intervals, slowing down the intermediate filter. We can create approximations
using a different order N of the Hilbert curve for different datasets, based on the average sizes of their
contents. There is a trade-off between memory and performance, since an order lower than 16 means
fewer intervals and thus lower memory requirements and complexity, but also means reduced APRIL
accuracy.

When joining two APRIL approximations of different order, we need to adjust one of the two interval

14

raster area

ra
ste
ra
re
a

P

Figure 9: Example of a partition P , a group of polygons in it and P ’s raster area with granularity
order N = 8.

lists so that it can be joined with the other. For this, we scale down the list with the highest order.
Specifically, before comparing two intervals a = [astart, aend) and b = [bstart, bend) at orders N and L
respectively, where N > L, the highest order interval a should be right shifted by n = |N −L| × 2 bits,
to form a transformed interval a′, as follows:

a′ = [astart >> n, (aend − 1) >> n] (1)

Right shifting creates intervals in a more coarse-grained grid and thus, they may represent larger areas
than the original. Therefore, this formula works only for A-intervals, since there is no guarantee that
a Full interval at order N will also be Full at order L. For this reason, in Algorithm 2, we perform
only one of the AF- and FA- joins, using the F-list of the coarse approximation (which is not scaled
down). This has a negative effect on the filter’s effectiveness, as a trade-off for the coarser (and smaller)
APRIL approximations that we may use for large polygons.

6 APRIL Approximation Construction

In this section, we present two methods for the construction of a polygon’s APRIL approximation. In
Section 6.1 we present a rasterization approach that efficiently finds the cells that intersect an input
polygon and their types, based on previous research on polygon rasterization, and then sorts them to
construct the A- and F-interval lists. In Section 6.2, we propose a more efficient approach tailored for
APRIL, which avoids classifying all cells, but directly identifies the intervals and constructs the A- and
F-interval lists.

15

6.1 Efficient Graphics-Inspired Rasterization

RI and the previous raster-based filter of [52] require the classification of each cell to Full, Strong, Weak,
or Empty, based on the percentage of the cell covered by the original polygonal geometry. For this,
they apply an algorithm that involves numerous polygon clippings and polygonal area computations, at
a high cost. On the other hand, to define an APRIL approximation, we only need to identify the cells
which are partially or fully covered by the input polygon’s area. Inspired by rasterization techniques
in the graphics community [4, 35], we propose a polygon rasterization technique which involves two
stages. Firstly, we compute the Partial cells, which essentially form the boundary of the polygon in
the grid. Next, we compute the Full cells using the previously-computed boundary cells.

Identifying the Partial cells is closely related to the pixel drawing problem in graphics that involves
detecting which cells to “turn on” to draw a target line. While Bresenham’s algorithm [7] is a popular
and fast pixel drawing algorithm, it approximates a line segment by turning on a minimal amount of
cells and may thus not detect all intersected cells. In contrast, the Digital Differential Analyzer (DDA)
method [25] is slower, but identifies correctly and completely all intersected cells. To detect the Partial
cells, we use an efficient variant of DDA [4] that uses grid traversal. We execute the grid traversal for
each edge of the polygon and store the IDs of the identified Partial cells in a list. The leftmost grid in
Figure 10 shows the Partial cells detected by the grid traversal algorithm for the polygon drawn in the
figure.

Next, to identify the Full cells, a naive approach would be to sweep the grid in each line, starting from
the polygon’s leftmost Partial cell, and “fill” the grid until reaching another Partial cell. Instead, we
use a more efficient technique, called flood fill [35], which is commonly used to color or “fill” a closed
area in an image. The classic flood fill algorithm first selects an unlabeled cell that is guaranteed to
be within the polygon, called seed. Then, it traverses all neighboring cells of the seed until it finds the
boundaries of the enclosed area, classifying the encountered cells as fully covered. We implemented
a variant of this algorithm which minimizes the number of point-in-polygon tests required to identify
whether a cell is inside or outside the polygon. Specifically, we iterate through the cells of the polygon’s
MBR area. If a cell c has not been labeled yet (e.g., as Partial), we perform a point-in-polygon check
from c’s center. If the cell c is found to be inside the polygon, c is marked as Full and we perform a
flood fill using c as the seed, stopping at labeled cells, and label all encountered unchecked cells as Full.
If the cell c is found to be outside the polygon, c is marked as Empty and we perform flood fill to mark
Empty cells. The algorithm repeats as long as there are unchecked cells to flood fill from. This reduces
the number of point-in-polygon tests that need to be performed, as it suffices to perform a single test
for each contiguous region in the grid with Full or Empty cells.

Figure 10 illustrates the complete flood fill process for an example polygon. The unchecked cells form
three contiguous regions bounded by Partial cells, two of them being outside the polygon and one
inside. Instead of looking for cells within the polygon to flood fill starting from them, it is faster to
fill both the inside and outside of the polygon (marking cells as Full and Empty, respectively), as the
number of point-in-polygon tests is minimized.

After all Partial and Full cells have been identified, the algorithm merges consecutive cell identifiers
into intervals to create the A- and F -lists that form the APRIL approximation.

6.2 One-Step Intervalization

The approach described in the previous section identifies the types (Partial, Full, Empty) of all cells that
intersect the MBR of the input polygon. For polygons which are relatively large and their MBRs define
a large raster area this can be quite expensive. We propose an alternative approach that identifies the

16

Grid Traversal Flood Fill from c
(empty)

c

Flood Fill from c
(empty)

c

Flood Fill from c
(full)

partially covered empty uncheckedfully covered

c

Figure 10: The flood fill algorithm, performing 3 iterations with different seeds c to completely fill all
unchecked cells.

F-intervals of the APRIL approximation efficiently and directly uses them to identify the A-intervals
that include them in one step, without the need to identify the types of all individual cells in them.

As in Sec. 6.1, we first apply DDA [4] to detect the Partial cells and sort them in Hilbert order. An
important observation is that “gaps” between nonconsecutive identifiers in the sorted Partial cells list,
indicate candidate Full intervals on the Hilbert curve. Fig. 11 shows how these gaps are formed for
an example polygon. Identifying the first cell c of each candidate interval as Full or Empty, through a
point-in-polygon (PiP) test, is enough to label the whole interval as Full or Empty, respectively. The
first “gap” interval is [7, 8) containing just cell 7, which can be marked empty after a PiP test. From
all “gap” intervals those marked in bold (i.e., 32-34 = [32, 35) and 52-54 = [52, 55)) are Full intervals
and can be identified as such by a PiP test at their first cell (i.e., 32 and 52, respectively).

Additionally, we can skip some of these PiP tests by checking all adjacent cells (north, south, west,
east) of the first cell c with smaller identifiers than c; if any of them is Full or Empty, we can also give
the same label to the candidate interval, as it should exist in the same inner/outer area of the raster
image. For example, in Figure 11, when the algorithm moves to identify the interval [52, 55), it can
detect that its first cell 52 is adjacent to another Full cell with smaller order (cell 33), that has been
previously identified. Thus, the interval [52, 55) exists in the same inner area as cell 33 and it inherits
its label (Full), without performing another PiP test for it. In this example, a total of 5 PiP tests will
be performed, for the intervals that start with the cells 7, 13, 30, 32 and 42, instead of 11 PiP tests that
would be performed otherwise, if we did not take into consideration the neighboring cells.

Algorithm 3 is a pseudocode for the one-step intervalization process, which takes as input the sorted
Partial cells list P computed by DDA. The algorithm creates the A-list, F-list of the polygon in a single
loop through P . In a nutshell, the algorithm keeps track of the starting point of every A-interval and
when an empty gap is identified, the algorithm “closes” the current A-interval and starts the next one
from the next Partial cell in the list. On the other hand, Full intervals start with the identifier of the
cell that is right after the last Partial cell of a consecutive sequence and end before the next Partial
cell in order.

In details, Algorithm 3, starting from the first cell p in P , keeps track of the starting cell-ID Astart of
the current A-interval; while the next cell p + 1 in Hilbert order is also in P (Lines 3–9) the current
A-interval is expanded. If the next cell c = p + 1 is not partial, it is the starting cell of a candidate
F-interval. We first apply function CheckNeighbors(c) to find whether there exists an adjacent cell of

17

partially-covered cells

5253

54 49

48

47

42

43

44

37

34

3332

26252221

20

19

14

15

16

13

7

30

35

10

31

2423

18

36

11

29

17

12

8 9

46

45

40

4138

3927

28

55 50

51

6 57 56

42

43

[6,7,8,9,10,11,12,13-16,17,18,19-22,23,24,25-26,27,28,29,30,31,
32-34,35,36,37,38,39,40,41,42-44,45,46,47-49,50,51,52-54,55,56,57]

cells in “gap” intervals

“gap” intervals

Figure 11: Example of the intervals/gaps for a set of Partial cells. Whether a gap will be labeled as
Full or Empty, depends on the outcome of the PiP test.

c which is part of a FULL or EMPTY interval. Specifically, for cell c and a neighbor n, we first check
whether n < c (if not, n is either Partial or unchecked); if yes, we binary-search P to check whether n
is a P -cell. If not, we apply a special binary search method on the current F-list to find out whether n
is part of an interval in it. If we find n as part of an F-interval, then c is definitely a Full cell. If we do
no find n, then c is definitely an Empty cell because n < c and n is not Partial. If for all neighbors n
of c, either n > c or n is Partial, then we cannot determine the type of c based on the current data, so
we perform a PiP test to determine c’s type (i.e., Full or Empty). If c is Full, then we know that the
entire interval [c, p) is FULL and append it to the F-list (Line 16). Otherwise (c is Empty), c is the
end of the current A-interval, so the interval is added to the A-list and the start of the next A-interval
is set to the next Partial cell p. The algorithm continues until the list P of partial cells is exhausted
and commits the last A-interval (Line 23).

Our one-step intervalization approach performs |P | − 1 PiP tests in the worst-case, which dominate
its cost. Compared to the FloodFill-based approach of Section 6.1, which explicitly marks and then
sorts all Full and Partial cells, Algorithm 3 is expected to be much faster for polygons which are large
compared to the cell size and include a huge number of Full cells. On the other hand, flood filling may
be a better fit for small polygons with a small MBR and relatively few Full cells.

7 Experimental Analysis

We assess the performance of our proposed methods (i.e., RI and APRIL), by experimentally comparing
them with previously proposed polygon approximations for intermediate filtering of spatial joins. These
include the 5-corner approximations comparison followed by a comparison of convex hulls (5C+CH)
(as proposed in [8]), and Raster Approximation (RA) of [52]. We also included a baseline approach

18

Algorithm 3 The One-Step Intervalization algorithm.
Require: Sorted Partial cell array P
1: function OneStepIntervalization(P)
2: i← 0 ▷ current position in array P
3: Astart← Pi; p← Pi ▷ cell-IDs of current A-interval and partial cell
4: while i < |P | and p+ 1 = Pi+1 do ▷ while next cell is partial
5: i← i+ 1
6: p← Pi

7: end while
8: c← p+ 1 ▷ next uncertain cell
9: i← i+ 1; p← Pi ▷ next partial cell
10: while i < |P | do
11: type← CheckNeighbors(c)
12: if type ̸= FULL and type ̸= EMPTY then ▷ type is still uncertain
13: type← PointInPolygon(c) ▷ PiP test gives FULL or EMPTY
14: end if
15: if type = FULL then
16: AppendFullInterval([c, p))
17: else ▷ type is EMPTY
18: AppendAllInterval([Astart, c)) ▷ current A-interval finalized
19: Astart← p ▷ start new A-interval
20: end if
21: Execute Lines 3–9 ▷ go through partial cells until next gap
22: end while
23: AppendAllInterval([Astart, Pi−1 + 1)) ▷ save last ALL interval
24: end function

Table 4: Statistics of the datasets and space requirements of the data and the approximations
T1 T2 T3 O5AF O6AF O5AS O6AS O5EU O6EU O5NA O6NA O5SA O6SA O5OC O6OC

of Polygons 123K 2.25M 3.1K 72K 191K 447K 622K 1.9M 7.1M 4.0M 999K 123K 228K 107K 223K

Avg # of vertices 25.4 31.9 2285.0 58.9 36.3 45.3 41.9 35.1 32.1 37.6 47.5 47.5 41.6 48.4 42.7

Avg obj MBR area 1.77E-04 4.03E-05 3.95E-01 2.03E-03 1.23E-03 1.03E-03 9.98E-04 1.25E-04 1.19E-04 1.11E-04 4.40E-04 1.34E-03 2.37E-03 5.00E-04 5.27E-04

Geometries size (MB) 51.1 1168.1 115.3 68.9 112.7 327.9 422.1 1120.7 3746.2 2453.4 767.4 94.9 153.7 84.2 151.3

MBR size (MB) 4.4 81.1 0.1 2.6 6.9 16.1 22.4 70.9 258.4 144.8 36.0 4.5 8.2 3.9 8.1

APRIL size (MB) 14.4 134.0 57.2 14.2 25.4 55.2 64.5 180.3 968.0 251.0 155.0 25.4 44.4 7.3 15.0

APRIL-C size (MB) 6.6 75.3 16.0 5.1 10.6 23.3 28.6 84.8 406.5 138.0 62.4 9.2 16.7 3.8 7.8

RI size (MB) 19.5 138.2 968.7 18.6 55.7 57.5 109.8 180.9 942.9 238.1 213.5 31.2 143.4 14.2 39.3

RA size (MB) 1100.0 20000.0 26.9 617.2 1700.0 3700.0 5700.0 342.2 11400.0 6200.0 1500.0 1100.0 2100.0 898.7 2000.0

5C-CH size (MB) 28.7 705.4 1.6 18.5 46.6 117.8 159.4 515.4 1700.0 1200.0 257.7 30.4 52.9 28.8 57.7

19

(None), which does not apply an intermediate filter between the MBR-join and the refinement step.
For RA, we set the grid resolution to K = 750 cells, except for a few datasets where we use K = 100,
due to memory constraints. For our methods (RI and APRIL), unless otherwise stated, we use a
granularity order N = 16 for the rasterization grid, meaning that the Hilbert order of each cell can be
represented by a 32-bit unsigned integer. The MBR filter of the spatial join pipeline was implemented
using the algorithm of [43]. The refinement step was implemented using the Boost Geometry library
(www.boost.org) and its functions regarding shape intersection. All code was written in C++ and
compiled with the -O3 flag on a machine with a 3.6GHz Intel i9-10850k and 32GB RAM, running
Linux.

7.1 Datasets

We used datasets from SpatialHadoop’s [36] collection. T1, T2, and T3 represent landmark, water and
county areas in the United States (conterminous states only). We also used two Open Street Maps
(OSM) datasets (O5 and O6) that contain lakes and parks, respectively, from all around the globe. We
grouped objects into continents and created 6 smaller datasets representing each one: Africa (O5AF,
O6AF), Asia (O5AS, O6AS), Europe (O5EU, O6EU), North America (O5NA, O6NA), Oceania (O5OC,
O6OC) and South America (O5SA, O6SA). From all datasets, we removed any non-polygonal objects
as well as multi-polygons and self-intersecting polygons. The first three rows of Table 4 show statistics
about the datasets. The cardinalities of the datasets vary from 3.1K to 7.1M. The smallest dataset
(T3) includes complex polygons (thousands of edges), each having a relatively large area (see third
row of Table 4). The other datasets are larger and include medium (e.g., T1, OSM data) to small and
relatively simple polygons (e.g., T2). We conducted spatial joins only between pairs of datasets that
cover the same area (i.e., T1 ▷◁ T2, T1 ▷◁ T3, O5AF ▷◁ O6AF, etc.).

7.2 Optimizations and Customizations

In this set of experiments, we showcase how the added features of APRIL perform both independently
and compared to RI. Additionally, we compare APRIL with RI in terms of space complexity, filter
effectiveness, filter cost and creation time.

7.2.1 The effect of N in RI

Recall that our RI approach superimposes a 2N × 2N grid over the data space and approximates each
object o with the set Co of cells that overlap with o. Co is then modeled by a set of intervals and a
bitstring for each interval, which encodes the types of the cells that it contains. As discussed in Section
3.2, we set the value of N to 16, in order to have a fine granularity and be able to store the interval
endpoints in 4-byte unsigned integers. We confirm the appropriateness of this choice, by evaluating
the effectiveness of both RI and APRIL in spatial joins for various values of N .

Table 5 analyzes the performances of RI and APRIL for different values of N in spatial join T1 ▷◁ T2.
The first three columns of the table show the percentage of candidate pairs identified by the intermediate
filters as true hits, false hits, or inconclusive (i.e., should be sent to the refinement step). The last
four columns show the cost of the filter step of the spatial join (MBR-join), the total cost of applying
our intermediate filters that use RI and APRIL to all candidate pairs, the total cost of the refinement
step, and the overall join cost. The MBR-join cost is N -invariant, as this operation is independent of
the subsequent steps (intermediate filter, refinement). Observe that the number of inconclusive pairs
shrinks as N increases; the refinement cost decreases proportionally. On the other hand, the cost of

20

Table 5: Effect of N on the performance of RI and APRIL in T1▷◁T2

True hits False hits Indecisive MBR-join (s) RI-filter (s) Refinement (s) Total time(s)

T1 ▷◁ T2 (RI)

N = 10 5.68% 24.96% 69.36% 0.03 0.03 1.44 1.50
N = 13 13.34% 46.88% 39.79% 0.03 0.06 0.63 0.72
N = 14 17.74% 52.20% 30.06% 0.03 0.09 0.48 0.60
N = 15 21.65% 56.07% 22.28% 0.03 0.15 0.37 0.54
N = 16 24.50% 59.42% 16.08% 0.03 0.28 0.27 0.59

T1 ▷◁ T2 (APRIL)

N = 10 5.67% 24.96% 69.37% 0.03 0.03 1.45 1.52
N = 13 13.46% 46.88% 39.66% 0.03 0.04 0.61 0.68
N = 14 17.99% 52.20% 29.81% 0.03 0.04 0.45 0.52
N = 15 21.85% 56.07% 22.08% 0.03 0.04 0.34 0.41
N = 16 24.29% 59.42% 16.29% 0.03 0.05 0.26 0.34

Table 6: Effect of N on the cost and space of RI and APRIL for T1 and T2

T1 RI constr. cost (s) APRIL constr. cost (s) RI Size (MB) APRIL Size (MB)

N = 10 0.98 0.29 2.6 3.0
N = 13 5.32 0.55 3.5 3.6
N = 14 13.90 0.85 4.7 4.4
N = 15 43.17 1.37 8.2 7.7
N = 16 148.72 2.37 19.0 13.8

T2 RI constr. cost (s) APRIL constr. cost (s) RI Size (MB) APRIL Size (MB)
N = 10 15.29 5.68 46.0 53.0
N = 13 43.95 8.08 53.0 58.4
N = 14 87.35 11.23 62.0 66.7
N = 15 214.04 16.57 82.0 84.1
N = 16 620.57 26.76 132.0 128.0

RI-filter increases with N as the intervals become more and longer. Eventually, for the largest value
of N , the overall join cost converges to less than 1 second.

In Table 6, we show the total time required to compute the RI and APRIL object approximations
of all objects in T1 and T2 and the corresponding storage requirements for them, as a function of
N . For small values of N , where the intermediate filters are not very effective, the computation cost
and the space requirements are low because, for each object, only a small number of intervals, each
approximating a small number of cells are constructed. On the other hand, for large values of N ,
where the intermediate filters are most effective, the approximations are very fine and require more
time for computation and more space. We performed the same analysis for all other pairs of joined
datasets (results are not shown, due to space constraints) and drew the same conclusions. Overall, due
to the high effectiveness for N = 16, which brings the best possible performance to the overall spatial
join, we choose this value of N in the rest of the experiments. Although we use a fixed grid for all
objects (independently of their sizes), the intervalization and compression of the raster representations
does not incur an unbearable space overhead and at the same time we achieve a very good filtering
performance even for small objects, while avoiding re-scaling at runtime (as opposed to [52]).

21

Table 7: Join order effect on APRIL filter cost.

Join Order True hits True negatives Indecisive Int. Filter (s)

T1 ▷◁ T2

AA-AF-FA 24.29% 59.42% 16.29% 0.0505
AA-FA-AF 24.29% 59.42% 16.29% 0.0501
AF-FA-AA 24.29% 59.42% 16.29% 0.0585
FA-AF-AA 24.29% 59.42% 16.29% 0.0601

T1 ▷◁ T3

AA-AF-FA 69.84% 28.13% 2.03% 0.1872
AA-FA-AF 69.84% 28.13% 2.03% 0.1891
AF-FA-AA 69.84% 28.13% 2.03% 0.1737
FA-AF-AA 69.84% 28.13% 2.03% 0.1773

7.2.2 Join Order

So far the interval joins in APRIL are assumed to be applied in a fixed order: AA, AF, and FA. As
discussed in Section 4.2, the joins can be performed in any order. Table 7 tests different join orders
for T1 ▷◁ T2 and T1 ▷◁ T3. T1 ▷◁ T2 (like the majority of tested joins) has a high percentage of true
negatives, so the original order is the most efficient one (changing the order of AF and FA does not
make a difference). On the other hand, for T1 ▷◁ T3, where the true hits are more, pushing the AA-join
at the end is more beneficial. Since knowing the number (or probability) of true negatives and true
hits a priori is impossible and because the join order does not make a big difference in the efficiency of
the filter (especially to the end-to-end join time), we suggest using the fixed order, which is the best
one in most tested cases. In the future, we investigate the use of data statistics and/or object MBRs
to fast guess a good join order on an object pair basis.

7.2.3 Partitioning

Tables 8 and 9 illustrate the effect of data partitioning (Section 5.2) on the effectiveness, query evalu-
ation time, and space requirements of APRIL approximations. A higher number of partitions means
finer-grained grids per partition and thus, more intervals per polygon (i.e., more space is required).
Even though this reduces the amount of inconclusive cases, it can slow down the intermediate filter,
since more intervals need to be traversed per candidate pair. For example, T1 ▷◁ T3 has already a
small percentage of inconclusive pairs, so partitioning may not bring a significant reduction in the total
join time. On the other hand, for joins with high inconclusive percentage, such as O5AS ▷◁ O6AS,
partitioning can greatly reduce the total cost. In summary, partitioning comes with a time/space
tradeoff.

7.2.4 Different Granularity

As discussed in Section 5.3, we can define and use APRIL at lower granularity than N = 16 for one or
both datasets, trading filter effectiveness for space savings. In Table 10, we study the effect of reducing
N for T3 in T1 ▷◁ T3. The size of T3’s APRIL approximations halves every time we decrease N by
one. The filter time also decreases, due to the reduced amount of intervals from T3 in the interval
joins. However, the percentage of indecisive pairs increases, raising the refinement cost. N = 15 is
the best value for T3, because it achieves the same performance as N = 16, while cutting the space
requirements in half.

22

Table 8: # partitions per dimension effect on join time.

Indecisive Int. Filter (s) Refinement (s) Total time (s)

T1 ▷◁ T2

1 16.29% 0.08 0.27 0.39
2 12.81% 0.06 0.22 0.32
3 11.36% 0.08 0.20 0.30
4 10.50% 0.09 0.20 0.32

T1 ▷◁ T3

1 2.03% 0.47 0.34 0.86
2 1.77% 0.29 0.29 0.62
3 1.67% 0.37 0.27 0.69
4 1.64% 0.49 0.26 0.80

O5AF ▷◁ O6AF

1 26.92% 0.06 0.36 0.45
2 21.24% 0.06 0.29 0.37
3 18.26% 0.07 0.25 0.34
4 16.63% 0.08 0.24 0.35

O5AS ▷◁ O6AS

1 30.76% 0.43 7.48 8.04
2 24.07% 0.41 5.30 5.83
3 20.52% 0.46 4.34 4.93
4 18.39% 0.55 3.61 4.29

O5EU ▷◁ O6EU

1 34.32% 5.83 30.55 38.01
2 27.97% 5.35 24.24 31.22
3 24.84% 6.06 21.55 29.24
4 22.60% 6.61 19.99 28.23

O5NA ▷◁ O6NA

1 22.26% 3.56 24.08 28.49
2 17.58% 3.14 18.81 22.81
3 15.68% 3.65 17.13 21.64
4 14.45% 4.52 16.02 21.40

O5SA ▷◁ O6SA

1 25.80% 0.17 1.44 1.66
2 20.74% 0.14 1.21 1.39
3 18.39% 0.17 1.12 1.33
4 17.03% 0.20 1.07 1.30

O5OC ▷◁ O6OC

1 24.42% 0.10 1.51 1.65
2 18.89% 0.12 1.09 1.25
3 16.17% 0.14 0.95 1.13
4 14.65% 0.16 0.88 1.08

23

Table 9: # of partitions per dimension, effect on APRIL size (MB).

T1 T2 T3 O5AF O6AF O5AS O6AS O5EU O6EU O5NA O6NA O5SA O6SA O5OC O6OC

1 14.4 134.0 57.2 14.2 25.4 55.2 64.5 180.3 968.0 251.0 155.0 25.4 44.4 7.3 15.0
2 26.1 236.3 112.0 29.2 49.2 106.9 124.2 336.9 1900.0 453.4 311.8 51.5 86 14.3 49.2
3 37.1 352.6 166.7 44.7 74.2 164.0 188.3 492.5 2800.0 654.2 459.6 76.9 129.8 35.2 76.3
4 47.2 465.9 224.9 61.4 99.5 219.1 255.1 653.0 3700.0 875.1 619.0 104.2 172.3 49.1 107.7

Table 10: Join between T1 (order 16) and T3 (order N).
N True hits True negs. Indecisive Int. Filter (s) Refinement (s) Total (s) T3 size (MB)

16 69.84% 28.13% 2.03% 0.19 0.33 0.57 57.2
15 69.63% 27.85% 2.52% 0.13 0.41 0.59 28.3
14 69.18% 27.46% 3.36% 0.11 0.54 0.70 14.0
13 68.39% 26.86% 4.75% 0.09 0.78 0.92 6.9
12 66.63% 25.70% 7.67% 0.09 1.23 1.37 3.4

7.3 APRIL Construction Cost

We now evaluate the APRIL construction techniques that we have proposed in Section 6, comparing
them with the rasterization method used in previous work [52] (and for RI). Note that RA [52] and RI
essentially apply polygon clipping and polygon-cell intersection area computations, because they need
to classify the cells that intersect the polygon to Weak, Strong, and Full. On the other hand, APRIL
uses two classes: Partial and Full, which enables the application of the techniques that we proposed
in Section 6. Table 11 shows the time taken to compute the APRIL approximations of all polygons
in each dataset (for N = 16), using (i) the rasterization+intervalization approach of RI, after unifying
Strong and Weak cells, (ii) the FloodFill approach tailored for APRIL presented in Section 6.1, and
(iii) two versions of our novel OneStep intervalization approach (Section 6.2): one that performs a
point-in-polygon (PiP) test for each first cell c of a candidate Full interval and one that checks the
Neighbors of c before attempting the PiP test.

Observe that our OneStep intervalization algorithm employing the Neighbors check is the fastest ap-

Table 11: Total construction cost (sec) for all datasets.

Dataset RI FloodFill OneStep (PiPs) OneStep (Neighbors)

T1 143.62 3.90 3.74 2.19

T2 601.67 28.05 33.76 23.43

T3 9919.06 265.72 75.40 28.33

O5AF 264.45 4.25 11.00 4.72

O6AF 468.47 13.06 5.66 4.17

O5AS 486.86 11.69 21.28 11.78

O6AS 994.93 28.98 65.01 25.07

O5EU 1193.71 36.08 55.79 33.71

O6EU 5493.15 172.20 243.17 156.94

O5NA 1530.92 53.33 133.39 66.60

O6NA 1630.29 43.40 51.79 30.71

O5SA 361.87 6.67 14.74 6.77

O6SA 1478.05 34.56 22.86 10.52

O5OC 39.99 2.88 3.82 2.49

O6OC 113.99 9.32 20.75 8.56

24

proach in most of the cases. OneStep (Neighbors) applies 40% − 70% fewer PiP tests compared to
OneStep (PiPs) that does not apply the Neighbors check. Only in a few datasets containing relatively
small polygons OneStep (Neighbors) is up to 24% slower than the FloodFill method. On the other
hand, in some datasets containing large polygons (e.g., T3, O6AF, O6SA) OneStep is up to one order
of magnitude faster than FloodFill. Both methods proposed in Section 6 are orders of magnitude faster
compared to RI-based rasterization.

Comparison to IDEAL We also compared OneStep to the rasterization technique used in IDEAL
[40], as implemented in [39]. We modified IDEAL’s granularity definition formula accordingly to match
APRIL’s Hilbert space grid of order N = 16. For such high granularity, IDEAL demanded too much
memory for most datasets and crashed, so we could only run it for three datasets as shown in Table
12. In all these cases, OneStep has 2x-3x lower cost compared to IDEAL’s rasterization approach.

Table 12: Comparison with IDEAL’s rasterization [40].

Dataset One-Step (Neighbors) IDEAL

T1 2.19 6.41
O5AF 4.72 10.80
O5OC 2.49 7.13

7.4 Comparative Study

Finally, we compare RI and APRIL with other intermediate filters in terms of space complexity, filter
effectiveness, and filter cost. For all experiments, we created RI and APRIL using a single partition
(i.e., the map of the two datasets that are joined in each case), rasterized on a 216 × 216 grid, which
is the best performing granularity for both methods. We used a fixed order (AA-, AF-, FA-) for the
interval joins of APRIL, as shown in Algorithm 2.

7.4.1 Space Complexity

Table 4 shows the total space requirements of the object approximations required by each intermediate
filter, for each of the datasets used in our experiments. APRIL and APRIL-C refer to the uncompressed
and compressed version of APRIL, respectively. As a basis of comparison we also show the total space
required to store the exact geometries of the objects and their MBRs. Note that, in most cases, our
methods (RI, APRIL and APRIL-C) are significantly more space efficient compared to RA and have
similar or lower space requirements to the 5C-CH. The only exception is T3, which includes huge
polygons that are relatively expensive to approximate even by APRIL-C. Notably, for most datasets,
the compressed APRIL approximations have similar space requirements as the object MBRs, meaning
that we can keep them in memory and use them in main-memory spatial joins [26] directly after the
MBR-join step, without incurring any I/O.

7.4.2 Comparison in Spatial Intersection Joins

We evaluate APRIL (both compressed and uncompressed version), 5C+CH, RA, and RI, on all join
pairs, in Figure 12. We compare their ability to detect true hits and true negatives, their computational
costs as filters, and their impact to the end-to-end cost of the spatial join.

Filter Effectiveness APRIL and RI have the highest filter effectiveness among all approximations
across the board. APRIL’s true hit ratio is slightly smaller compared to that of RI because APRIL

25

True hits True negatives
Inconclusive

MBR-Join Intermediate Filter
Refinement

True hits True negatives
Inconclusive

MBR-Join Intermediate Filter
Refinement

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

(a) T1 ▷◁ T2 (b) T1 ▷◁ T3

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 10

 20

 30

 40

 50

 60

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

(a) O5AF ▷◁ O6AF (b) O5AS ▷◁ O6AS

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 50

 100

 150

 200

 250

 300

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 50

 100

 150

 200

 250

 300

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

(a) O5EU ▷◁ O6EU (b) O5NA ▷◁ O6NA

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

p
er

ce
n
ta

g
e

o
f

 0

 2

 4

 6

 8

 10

 12

 14

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e
 (

se
c
)

(a) O5SA ▷◁ O6SA (b) O5OC ▷◁ O6OC

Figure 12: Filter effectiveness and spatial join cost for various intermediate filters.

fails to detect the (rare) pairs of polygons which only have Strong-Strong common cells. However, this
only brings a marginal increase in the refinement step’s cost, at the benefit of having a faster and more
space-efficient filter. In O5AS ▷◁ O6AS and O5OC ▷◁ O6OC, APRIL and RI have marginally lower
true hit ratio compared to RA; however, in these cases their true negative ratio is much higher than
that of RA. The least effective filter is 5C+CH, mainly due to its inability to detect true hits.

Intermediate Filter cost 5C+CH are simple approximations (a few points each), therefore the
corresponding filter is very fast to apply. Notably, APRIL has a filtering cost very close to that of
5C+CH and sometimes even lower. This is due to APRIL’s ability to model a raster approximation
as two sequences of integers, which are processed by a sequence of efficient merge-join algorithms.
5C+CH has poor filtering performance, which negatively affects the total join cost (last column),

26

Table 13: APRIL vs. RI (polygonal range queries).

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

1000 T3 queries against T1

RI 69.28% 28.60% 2.12% 0.52 0.10 0.64
APRIL 69.27% 28.60% 2.13% 0.06 0.10 0.18

1000 T3 queries against T2

RI 68.46% 29.87% 1.67% 9.26 1.58 11.07
APRIL 68.46% 29.87% 1.67% 1.02 1.58 2.84

whereas APRIL is very fast and very effective at the same time. The state-of-the-art filter RI is more
expensive than APRIL, because it requires the alignment and bitwise ANDing of the interval bit-
codes. As a result, APRIL is 3.5-8.5 times faster as an intermediate filter compared to RI (note the
“Intermediate Filter” part of the cost in the bars). A comparison between the filter costs of APRIL
and APRIL-C reveals that decompressing the interval lists while performing the joins in APRIL-C only
brings a small overhead, making compression well worthy, considering the space savings it offers (see
Table 4). The decompression cost is significant only in T1 ▷◁ T3, because T3’s A-lists and F -lists are
quite long. Still, even in this case, APRIL-C is much faster than RI.

Refinement cost The refinement cost is intertwined with the percentage if indecisive pairs. The de-
tection of fewer candidate pairs as true hits or true negatives leads to a higher refinement workload; this
is why APRIL and RI result in the lowest refinement cost, compared to the rest of the approximations.

Overall cost APRIL (Section 4) reduces the overall cost of end-to-end spatial joins up to 3 times
compared to using our RI intermediate filter (Section 3), while also achieving a speedup of 3.23x-25x
against the rest of the approximations. Adding the APRIL intermediate filter between the MBR filter
and the refinement step reduces the spatial join cost by 7x-28x. APRIL’s high filtering effectiveness,
low application cost, and low memory requirements render it a superior approximation for filtering
pairs in spatial intersection join pipelines.

7.4.3 Performance in other queries

We now evaluate the performance of APRIL in other queries, besides spatial intersection joins. We
start with selection queries of arbitrary shape (see Section 4.3.1). For this experiment, we sampled
1000 polygons from T3 and applied them as selection queries on T1 and T2, simulating queries of the
form: find all landmark areas (T1) or water areas (T2) that intersect with a given US county (T3). As
Table 13 shows, compared to RI, APRIL achieves a 3.5x-4x speedup in the total query cost.

Next, we compare all methods in spatial within joins, where the objective is to find pairs (r, s) such
that r is within s (see Section 4.3.2). As Table 14 shows, APRIL again achieves the best performance,
due to its extremely low filtering cost. APRIL is even faster than 5C+CH, because 5C+CH performs
two polygon-in-polygon tests which are slower compared to a polygon intersection test.

Finally, we test the effectiveness of APRIL in polygon-linestring joins, as described in Section 4.3.3. For
this experiment, we join the polygon sets T1, T2, and T3 with dataset T8 (from the same collection),
which contains 16.9M linestrings (roads in the United States), each having 20.4 vertices on average.
In this comparison, we do not include RI and RA, because Strong cell types cannot be used to detect
true hits. Table 15 compares APRIL with 5C+CH and the skipping of an intermediate filter (None).
5C+CH only detects true negatives (in the case where the 5C+CH approximations do not intersect).
APRIL outperforms 5C+CH by at least three times in total join time and by orders of magnitude in
T3 ▷◁ T8, where it can identify the great majority of join results as true hits.

27

Table 14: Performance of filters (spatial within joins)

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

T2 ▷◁ T1 (Tiger water in landmark areas)

None 0.00% 0.00% 100.00% 0.00 3.61 3.64
5C+CH 0.00% 34.71% 65.29% 0.10 1.33 1.46
RA 13.48% 29.18% 57.34% 0.14 1.11 1.28
RI 18.48% 59.46% 22.06% 0.20 0.48 0.71
APRIL 18.48% 59.42% 22.11% 0.05 0.49 0.58

T1 ▷◁ T3 (Tiger landmark in county areas)

None 0.00% 0.00% 100.00% 0.00 20.14 20.19
5C+CH 0.00% 20.72% 79.28% 0.37 14.02 14.44
RA 44.35% 14.29% 41.36% 0.51 8.26 8.82
RI 68.05% 28.13% 3.82% 1.56 0.80 2.41
APRIL 68.05% 28.13% 3.82% 0.21 0.80 1.06

T2 ▷◁ T3 (Tiger water in county areas)

None 0.00% 0.00% 100.00% 0.00 383.49 384.23
5C+CH 0.00% 22.17% 77.83% 7.70 274.54 282.98
RA 42.50% 15.25% 42.25% 9.53 165.50 175.77
RI 67.36% 29.88% 2.75% 27.08 12.22 40.04
APRIL 67.36% 29.88% 2.75% 3.47 12.22 16.43

Table 15: Polygon-linestring spatial intersection joins.

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

T1 ▷◁ T8 (Tiger landmarks and roads)

None 0.00% 0.00% 100.00% 0.00 27.82 28.25
5C+CH 0.00% 45.24% 54.76% 1.07 15.99 17.49
APRIL 12.70% 55.01% 32.29% 0.93 3.82 5.18

T2 ▷◁ T8 (Tiger water areas and roads)

None 0.00% 0.00% 100.00% 0.00 238.91 241.59
5C+CH 0.00% 68.13% 31.87% 6.24 90.60 99.52
APRIL 0.08% 90.22% 9.71% 5.58 19.92 28.17

T3 ▷◁ T8 (Tiger county areas and roads)

None 0.00% 0.00% 100.00% 0.00 2546.48 2543.37
5C+CH 0.00% 22.79% 77.21% 16.21 1855.63 1878.73
APRIL 66.25% 30.77% 2.98% 25.64 58.23 90.77

28

Applicability of OpenGL rasterization Finally, we have investigated the applicability of GPU-
based rasterization approaches in the construction of APRIL approximations. For this, we tested an
OpenGL implementation that uses a GPU (NVIDIA GeForce RTX 3060) and follows the approach
described in [49] to identify Partial and Full cells of a polygon on a raster. OpenGL is an API that
supports the graphics pipeline to perform efficient rasterization and drawing of the raster cells (pixels)
into a frame buffer for visualization. In addition to rasterization, APRIL requires the retrieval of the
cells’ Hilbert curve identifiers and cell type information to create interval lists. Furthermore, OpenGL’s
rendering pipeline is designed to work with triangles, and thus we have to triangulate all our input
polygons before rendering. Finally, the resolution of the frame buffer plays a crucial role in rasterization
accuracy.

The frame buffer ’s resolution must match the desired granularity (i.e., 216×216) of APRIL approxima-
tions. However, OpenGL does not allow frame buffers to have resolution higher than 215 × 215 pixels,
so APRIL approximations created using OpenGL are destined to have lower filter effectiveness than if
they were created using our CPU-based methods (Section 6).

In addition, in our experiments, we have found that triangulation, which is a pre-requisite of using
OpenGL’s rendering, takes up 66% - 94% of the total rasterization time. For example, triangulating
the T3 dataset in its entirety takes around 160 seconds, which is already about 6x more expensive
than the end-to-end production of the APRIL approximations of all objects in T3 using our OneStep
approach (see Table 11).

Overall, its limitations in setting an appropriate resolution and the high costs for initializing and post-
processing its rasterization process, make OpenGL-based APRIL construction suboptimal compared
to our CPU-based algorithms.

8 Related Work

Most previous works on spatial intersection joins [19] focus on the filter step of the join (denoted by
MBR-join). They either exploit the pre-existing indexes [9, 24] or partition the data on-the-fly and
perform the join independently at each partition [31, 27, 43]. Each partition-to-partition MBR-join
can be performed in memory with the help of plane-sweep [9, 5].

Intermediate filters To further reduce the candidate pairs that reach the refinement step, conserva-
tive and/or progressive object approximations can be used for identifying false hits and/or true hits,
respectively. Brinkhoff et al. [8] suggested the use of the convex hull and the minimum bounding
5-corner convex polygon (5C) as conservative approximations and the maximum enclosing rectangle
(MER) as a progressive approximation. MER is hard to compute and of questionable effectiveness
[52], hence, we did not include it in our comparison. In follow-up work [52], the object geometries are
rasterized and modeled as grids, where each cell is colored based on its percentage of its coverage by the
object. By re-scaling and aligning the grids of two candidate join objects, we can infer, in most cases,
whether the objects are a join pair or a false hit. Indecisive pairs are forwarded to the refinement step.
Hierarchical (quad-tree based) raster approximations based on a hierarchical grid have been used in the
past [16] for window and distance queries. In addition, Teng et al. [40] propose a hybrid vector-raster
polygonal approximation, targeting point-in-polygon queries and point-to-polygon distance queries.
This approach has significant storage overhead as it keeps both the raster representations and the
intersections of each polygon with its raster cells. Neither [16] or [40] use the full-strong-weak cell
classification [52] or the bit-string representation of cells and intervals in our RI method. In addition,
neither [16] nor [40] studied the spatial intersection join.

29

Speeding up the refinement step Identifying whether two polygons overlap requires point-in-
polygon tests and finding an intersection in the union of line segments that form both polygons [8]. A
point-in-polygon test bears a O(n) cost, while the second problem can be solved in O(n log n) time [32],
where n is the total number of edges in both polygons. Given a pair of candidate objects, Aghajarian
et al. [2] prune all line segments from the object geometries that do not intersect their common MBR
(CMBR) (i.e., the intersection area of their MBRs), before applying the refinement step. This reduces
the complexity of refinement, as a smaller number of segments need to be checked for intersection.
In addition, if one object MBR is contained in the other, then the point-in-polygon test is applied
before the segment intersection test. Polysketch [23] decomposes each object to a set of tiles, i.e., small
MBRs which include consecutive line segments of the object’s geometry. Given two candidate objects,
the refinement step is then applied only for the tile-pairs that overlap. A similar idea (trapezoidal
decomposition) was suggested by Brinkhoff et al. [8] and alternative polygon decomposition approaches
where suggested in [6]. PSCMBR [22] combines Polysketch with the CMBR approach. Specifically, for
the two candidate objects, the overlapping pairs of Polysketch tiles are found; for each such pair, the
segments in the two tiles that do not overlap with the CMBR of the tiles are pruned before refining the
contents of the tiles. Polysketch and PSCMBR focus on finding the intersection points of two objects,
hence, unlike our approach, they do not identify true hits. The CMBR approach [2] is fully integrated
in our implementation; still the refinement cost remains high. Finally, the Clipped Bounding Box
(CBB) [34] is an enriched representation of the MBR that captures the dead (unused) space at MBR
corners with a few auxiliary points, providing the opportunity of refinement step avoidance in the case
where object CBBs intersect only at their common dead-space areas. CBBs can also be used by R-tree
nodes to avoid their traversal if the query range overlaps only with their dead space.

Approximate spatial joins The approximate representation of objects and approximate spatial
query evaluation using space-filling curves was first suggested by Orenstein [28]. Recent work explores
the use of raster approximations for the approximate evaluation of spatial joins and other operations
[20, 50, 45]. Our work is the first to approximate polygon rasterizations as intervals for exact spatial
query evaluation.

Spatial joins on GPUs The widespread availability of programmable GPUs has inspired several
research efforts that leverage GPUs for spatial joins [38, 2, 1, 23, 22]. Sun et al. [38] accelerated the
join refinement step by incorporating GPU rasterization as an intermediate filter. This filter identifies
only true negatives using a low resolution, and has thus limited pruning effectiveness. Aghajarian et
al. [2, 1] proposed a GPU approach to process point-polygon and polygon-polygon joins for datasets
that can be accommodated in GPU memory. Liu et al. [23, 22] also proposed GPU-accelerated filters
to reduce the number of refinements. These filters [2, 1, 23, 22], in contrast to APRIL, do not identify
true hits, but rather focus on finding the intersection points between a candidate pair. Furthermore,
the above approaches [2, 1, 23, 22] do not involve rasterization and rely on CUDA, which is exclusive
to NVIDIA GPUs. A recent line of work [49, 13, 50, 14] proposes to use the GPU rasterization pipeline
as an integral component of spatial query processing. Doraiswamy et al. [13, 14] introduced a spatial
data model and algebra that is designed to exploit modern GPUs. Their approach leverages a data
representation called canvas, which stores polygons as collections of pixels. The canvas includes a flag
that differentiates between pixels that lie on the boundary of the polygon and those that are entirely
covered by it. Although current-generation GPUs can handle millions of polygons at fast frame rates,
the evaluation of spatial queries is still dominated by other costs, such as triangulating polygons and
performing I/Os [14].

Scalability in spatial data management The emergence of cloud computing has led to many
efforts to scale out spatial data management [29]. SJMP [51] is an adaptation of the PBSM spatial join
algorithm [31] for MapReduce. Other spatial data management systems that use MapReduce or Spark

30

and handle spatial joins include Hadoop-GIS [3], SpatialHadoop [15], Magellan [37], SpatialSpark [47],
Simba [46], and Apache Sedona [48]. All the aforementioned systems focus only on the filter step of
spatial joins.

9 Conclusions

In this work, we proposed a technique that captures raster approximations of polygons as sets of
intervals, offering a fast and effective intermediate step between the filter and the refinement steps of
polygon intersection joins. RI, the first version of our approach approximates each object as a single
list of intervals that represent the raster cells that intersect the object; together with each interval
we store a bitstring that encodes the classes of cells (Full, Strong, Weak) in the interval. APRIL is
an enhanced version of our method that captures the cells that are partially or fully covered by the
object by two lists of intervals and drops the space-consuming and burdensome bitstring. APRIL’s
intermediate filter is different in that of RI in that it performs a pipeline of three interval joins instead
of a single interval join paired with bitwise operations on the bitstrings.

As we have shown experimentally, compared to previous approaches [8, 52], APRIL is (i) lightweight, as
it represents each polygon by two lists of integers that can be effectively compressed; (ii) effective, as it
typically filters the majority of MBR-join pairs as true negatives or true positives; and (iii) efficient to
apply, as it only requires at most three linear scans over the interval lists. Specifically, RI and APRIL
offer at least 3x speedup in end-to-end spatial intersection joins compared to previous intermediate
filters (raster approximations [52], 5C-CH [8]). At the same time, the space complexity of RI and
APRIL is relatively low and the approximations can easily be accommodated in main memory.

APRIL is a general approximation for polygons that can also be used in selection queries, within-joins
and joins between polygons and linestrings. We propose a compression technique for APRIL and
customizations that trade space for filter effectiveness. Finally, we propose an efficient construction
technique for APRIL approximations, which is orders of magnitude faster than rasterization-based
techniques used for other filters.

References

[1] D. Aghajarian and S. K. Prasad. A spatial join algorithm based on a non-uniform grid technique
over GPGPU. In E. G. Hoel, S. D. Newsam, S. Ravada, R. Tamassia, and G. Trajcevski, editors,
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS 2017, Redondo Beach, CA, USA, November 7-10, 2017, pages 56:1–
56:4. ACM, 2017.

[2] D. Aghajarian, S. Puri, and S. K. Prasad. GCMF: an efficient end-to-end spatial join system over
large polygonal datasets on GPGPU platform. In Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS 2016, Burlingame,
California, USA, October 31 - November 3, 2016, pages 18:1–18:10. ACM, 2016.

[3] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H. Saltz. Hadoop-gis: A high performance
spatial data warehousing system over mapreduce. Proc. VLDB Endow., 6(11):1009–1020, 2013.

[4] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. In 8th European
Computer Graphics Conference and Exhibition, Eurographics 1987, Amsterdam, The Netherlands,
August 24-28, 1987, Proceedings. North-Holland / Eurographics Association, 1987.

[5] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Scalable sweeping-based spatial
join. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB’98, Proceedings of 24rd International

31

Conference on Very Large Data Bases, August 24-27, 1998, New York City, New York, USA, pages
570–581. Morgan Kaufmann, 1998.

[6] W. M. Badawy and W. G. Aref. On local heuristics to speed up polygon-polygon intersection tests.
In ACM-GIS ’99, Proceedings of the 7th International Symposium on Advances in Geographic
Information Systems, November 2-6, 1999, Kansas City, USA, pages 97–102. ACM, 1999.

[7] J. Bresenham. Algorithm for computer control of a digital plotter. IBM Syst. J., 4(1):25–30, 1965.

[8] T. Brinkhoff, H. Kriegel, R. Schneider, and B. Seeger. Multi-step processing of spatial joins. In
R. T. Snodgrass and M. Winslett, editors, Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, USA, May 24-27, 1994, pages 197–
208. ACM Press, 1994.

[9] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-trees. In
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Wash-
ington, DC, USA, May 26-28, 1993, pages 237–246. ACM Press, 1993.

[10] cruppstahl. libvbyte - Fast C Library for 32bit and 64bit Integer Compression, 2017.

[11] D. R. Cutting and J. O. Pedersen. Optimizations for dynamic inverted index maintenance. In
SIGIR’90, 13th International Conference on Research and Development in Information Retrieval,
Brussels, Belgium, 5-7 September 1990, Proceedings, pages 405–411. ACM, 1990.

[12] J. Dittrich and B. Seeger. Data redundancy and duplicate detection in spatial join processing. In
D. B. Lomet and G. Weikum, editors, Proceedings of the 16th International Conference on Data
Engineering, San Diego, California, USA, February 28 - March 3, 2000, pages 535–546. IEEE
Computer Society, 2000.

[13] H. Doraiswamy and J. Freire. A gpu-friendly geometric data model and algebra for spatial queries.
In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, pages 1875–1885. ACM, 2020.

[14] H. Doraiswamy and J. Freire. SPADE: gpu-powered spatial database engine for commodity hard-
ware. In 38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala Lumpur,
Malaysia, May 9-12, 2022, pages 2669–2681. IEEE, 2022.

[15] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework for spatial data. In
J. Gehrke, W. Lehner, K. Shim, S. K. Cha, and G. M. Lohman, editors, 31st IEEE International
Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 1352–
1363. IEEE Computer Society, 2015.

[16] Y. Fang, M. T. Friedman, G. Nair, M. Rys, and A. Schmid. Spatial indexing in microsoft SQL
server 2008. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 1207–1216, 2008.

[17] A. Guttman. R-trees: A dynamic index structure for spatial searching. In B. Yormark, editor,
SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June 18-21, 1984,
pages 47–57. ACM Press, 1984.

[18] D. Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. Mathematische Annalen,
38(1):459–460, 1891.

[19] E. H. Jacox and H. Samet. Spatial join techniques. ACM Trans. Database Syst., 32(1):7, 2007.

[20] A. Kipf, H. Lang, V. Pandey, R. A. Persa, C. Anneser, E. T. Zacharatou, H. Doraiswamy, P. A.
Boncz, T. Neumann, and A. Kemper. Adaptive main-memory indexing for high-performance
point-polygon joins. In Proceedings of the 23rd International Conference on Extending Database
Technology, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020, pages 347–358.
OpenProceedings.org, 2020.

[21] D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. CoRR,
abs/1209.2137, 2012.

32

[22] Y. Liu and S. Puri. Efficient filters for geometric intersection computations using GPU. In C. Lu,
F. Wang, G. Trajcevski, Y. Huang, S. D. Newsam, and L. Xiong, editors, SIGSPATIAL ’20: 28th
International Conference on Advances in Geographic Information Systems, Seattle, WA, USA,
November 3-6, 2020, pages 487–496. ACM, 2020.

[23] Y. Liu, J. Yang, and S. Puri. Hierarchical filter and refinement system over large polygonal datasets
on CPU-GPU. In 26th IEEE International Conference on High Performance Computing, Data,
and Analytics, HiPC 2019, Hyderabad, India, December 17-20, 2019, pages 141–151. IEEE, 2019.

[24] N. Mamoulis and D. Papadias. Slot index spatial join. IEEE Trans. Knowl. Data Eng., 15(1):211–
231, 2003.

[25] K. Museth. Hierarchical digital differential analyzer for efficient ray-marching in openvdb. In
Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH
’14, Vancouver, Canada, August 10-14, 2014, Talks Proceedings, page 40:1. ACM, 2014.

[26] S. Nobari, Q. Qu, and C. S. Jensen. In-memory spatial join: The data matters! In Proceedings of
the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy,
March 21-24, 2017, pages 462–465. OpenProceedings.org, 2017.

[27] S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan, and A. Ailamaki. TOUCH: in-memory
spatial join by hierarchical data-oriented partitioning. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013, pages 701–712. ACM, 2013.

[28] J. A. Orenstein. Redundancy in spatial databases. In Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, Portland, Oregon, USA, May 31 - June 2,
1989, pages 295–305. ACM Press, 1989.

[29] V. Pandey, A. Kipf, T. Neumann, and A. Kemper. How good are modern spatial analytics systems?
Proc. VLDB Endow., 11(11):1661–1673, 2018.

[30] G. Papadakis, G. M. Mandilaras, N. Mamoulis, and M. Koubarakis. Progressive, holistic geospatial
interlinking. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, pages 833–844. ACM / IW3C2, 2021.

[31] J. M. Patel and D. J. DeWitt. Partition based spatial-merge join. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada,
June 4-6, 1996, pages 259–270. ACM Press, 1996.

[32] M. I. Shamos and D. Hoey. Geometric intersection problems. In 17th Annual Symposium on
Foundations of Computer Science, Houston, Texas, USA, 25-27 October 1976, pages 208–215.
IEEE Computer Society, 1976.

[33] M. Shinya and M. Forgue. Interference detection through rasterization. Comput. Animat. Virtual
Worlds, 2(4):132–134, 1991.

[34] D. Sidlauskas, S. Chester, E. T. Zacharatou, and A. Ailamaki. Improving spatial data processing
by clipping minimum bounding boxes. pages 425–436. IEEE Computer Society, 2018.

[35] A. R. Smith. Tint fill. In T. A. DeFanti, B. H. McCormick, B. W. Pollack, N. I. Badler, and S. H.
Chasen, editors, Proceedings of the 6th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1979, Chicago, Illinois, USA, August 8-10, 1979, pages 276–283. ACM,
1979.

[36] SpatialHadoop. TIGER datasets, 2015.

[37] R. Sriharsha. Magellan: Geospatial analytics using spark.
https://github.com/harsha2010/magellan.

[38] C. Sun, D. Agrawal, and A. El Abbadi. Hardware acceleration for spatial selections and joins. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, San Diego,
California, USA, page 455–466. ACM, 2003.

33

[39] D. Teng. IDEAL, 2021.

[40] D. Teng, F. Baig, Q. Sun, J. Kong, and F. Wang. IDEAL: a vector-raster hybrid model for efficient
spatial queries over complex polygons. In 22nd IEEE International Conference on Mobile Data
Management, MDM 2021, Toronto, ON, Canada, June 15-18, 2021, pages 99–108. IEEE, 2021.

[41] K. Theocharidis, J. Liagouris, N. Mamoulis, P. Bouros, and M. Terrovitis. SRX: efficient manage-
ment of spatial RDF data. VLDB J., 28(5):703–733, 2019.

[42] L. H. Thiel and H. S. Heaps. Program design for retrospective searches on large data bases. Inf.
Storage Retr., 8(1):1–20, 1972.

[43] D. Tsitsigkos, P. Bouros, N. Mamoulis, and M. Terrovitis. Parallel in-memory evaluation of spatial
joins. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL 2019, Chicago, IL, USA, November 5-8, 2019,
pages 516–519. ACM, 2019.

[44] D. Tsitsigkos, K. Lampropoulos, P. Bouros, N. Mamoulis, and M. Terrovitis. A two-layer parti-
tioning for non-point spatial data. In 37th IEEE International Conference on Data Engineering,
ICDE 2021, Chania, Greece, April 19-22, 2021, pages 1787–1798. IEEE, 2021.

[45] C. Winter, A. Kipf, C. Anneser, E. T. Zacharatou, T. Neumann, and A. Kemper. Geoblocks: A
query-cache accelerated data structure for spatial aggregation over polygons. In Proceedings of the
24th International Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus,
March 23 - 26, 2021, pages 169–180. OpenProceedings.org, 2021.

[46] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient in-memory spatial analytics. In
F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 1071–1085. ACM, 2016.

[47] S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query processing in cloud. In
CloudDB, ICDE Workshops, pages 34–41, 2015.

[48] J. Yu, Z. Zhang, and M. Sarwat. Spatial data management in apache spark: the geospark per-
spective and beyond. GeoInformatica, 23(1):37–78, 2019.

[49] E. T. Zacharatou, H. Doraiswamy, A. Ailamaki, C. T. Silva, and J. Freire. GPU rasterization for
real-time spatial aggregation over arbitrary polygons. Proc. VLDB Endow., 11(3):352–365, 2017.

[50] E. T. Zacharatou, A. Kipf, I. Sabek, V. Pandey, H. Doraiswamy, and V. Markl. The case for
distance-bounded spatial approximations. In 11th Conference on Innovative Data Systems Re-
search, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org,
2021.

[51] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: parallelizing spatial join with mapreduce on
clusters. In Proceedings of the 2009 IEEE International Conference on Cluster Computing, August
31 - September 4, 2009, New Orleans, Louisiana, USA, pages 1–8. IEEE Computer Society, 2009.

[52] G. Zimbrao and J. M. de Souza. A raster approximation for processing of spatial joins. In VLDB’98,
Proceedings of 24rd International Conference on Very Large Data Bases, August 24-27, 1998, New
York City, New York, USA, pages 558–569, 1998.

34

	Introduction
	Background
	Raster Intervals
	Object rasterization and raster encoding
	Intervalization
	Intermediate filter
	``Within'' spatial joins

	APRIL
	A- and F-Interval Lists
	APRIL Intermediate Spatial Join Filter
	Generality
	Selection Queries
	Spatial Within Joins
	Linestring to Polygon Joins

	Customization
	Compression
	Partitioning
	Different Granularity

	APRIL Approximation Construction
	Efficient Graphics-Inspired Rasterization
	One-Step Intervalization

	Experimental Analysis
	Datasets
	Optimizations and Customizations
	The effect of N in RI
	Join Order
	Partitioning
	Different Granularity

	APRIL Construction Cost
	Comparative Study
	Space Complexity
	Comparison in Spatial Intersection Joins
	Performance in other queries

	Related Work
	Conclusions

