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Abstract

We derive upper bounds on the Wasserstein distance (W7), with respect to sup-norm, between
any continuous R? valued random field indexed by the n-sphere and the Gaussian, based on
Stein’s method. We develop a novel Gaussian smoothing technique that allows us to transfer a
bound in a smoother metric to the W; distance. The smoothing is based on covariance functions
constructed using powers of Laplacian operators, designed so that the associated Gaussian process
has a tractable Cameron-Martin or Reproducing Kernel Hilbert Space. This feature enables us
to move beyond one dimensional interval-based index sets that were previously considered in the
literature. Specializing our general result, we obtain the first bounds on the Gaussian random
field approximation of wide random neural networks of any depth and Lipschitz activation
functions at the random field level. Our bounds are explicitly expressed in terms of the widths
of the network and moments of the random weights. We also obtain tighter bounds when the
activation function has three bounded derivatives.

Keywords: Distributional approximation, Gaussian random field, Stein’s method, Laplacian-
based smoothing, Deep neural networks.
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1 INTRODUCTION

Random fields that arise in a variety of applications related to deep learning (Neal, 1996; Lee et al.,
2018; de G. Matthews et al., 2018; Yang, 2019; Hanin, 2023) and stochastic optimization (Benveniste
et al., 2012; Sirignano and Spiliopoulos, 2020; Chen et al., 2020; Rotskoff and Vanden-Eijnden, 2022;
Balasubramanian et al., 2023) can exhibit limiting Gaussian behavior, rigorously understood through
the theory of weak convergence. Combining this asymptotic behavior with the comprehensive theory
of Gaussian random fields leads to insights about the qualitative and quantitative behavior of the
random field of interest. In order to justify the accuracy of the approximation of quantities of
interest by those of their limits, it is important to quantify the error in the Gaussian random field
approximation. Indeed, in the standard multivariate central limit theorem, Berry-Esseen bounds
precisely determine when the Gaussian behavior “kicks-in”. Our main goal in this work is to
develop such quantitative Berry-Esseen-type bounds for Gaussian random field approximations via
Stein’s method. We focus in particular on bounds in the Wasserstein metric (W;) with respect
to sup-norm, and highlight that convergence of these bounds to zero implies asymptotic weak
convergence. Moreover, such bounds immediately imply Wasserstein bounds between important
statistics of the fields, such as finite-dimensional distributions and extrema.

Stein’s method has been extensively developed to provide quantitative distributional approxima-
tion bounds in both the Gaussian and non-Gaussian settings; we refer to Chen, Goldstein, and Shao
(2011); Ross (2011); Nourdin and Peccati (2012) for a detailed treatment of the former. Recent
works (see, for example, Barbour et al. (2024, Section 1.1)) have focused on developing Stein’s
method to derive Gaussian process approximations results. These works pertain to random process
indexed by the interval [0, T], for some T' < co. As is common in Stein’s method, bounds are first
developed in some “smooth” metric and are then transferred to the metric of interest, such as the
Wasserstein, Lévy-Prokhorov or Kolmogorov metrics, via various smoothing techniques.

For instance, Barbour et al. (2024, Lemma 1.10) develops an infinite-dimensional analog of a
widely-used finite-dimensional Gaussian smoothing technique. Based on this foundation, the authors
establish Gaussian process approximation bounds for processes indexed by the interval [0, 7], in
the Wi and Lévy-Prokhorov metrics. However, their smoothing technique is restricted to random
processes indexed by some subset of the real line, as it relies on a detailed understanding of the
Cameron-Martin space of one-dimensional Brownian motion. As there are no canonical Gaussian
random fields indexed by more general sets, e.g., the n-sphere, which have explicit Cameron-Martin
spaces, new ideas are required to adapt these smoothing techniques to this setting.

A main contribution of this work is the development of a novel smoothing technique which can
be used in conjunction with Stein’s method to derive Gaussian random field approximation bounds
in the W7 metric. The smoothing technique is based on the construction of a Gaussian random field
with an explicit Cameron-Martin space via Laplacian operators. Though we focus on the case of
random fields indexed by the n-sphere 8", our approach is generally applicable to random fields
indexed by any compact metric measure space M, subject to increased technical complexity.

We apply our general result to derive quantitative bounds for the W; distance between the output
of a wide random neural network indexed by inputs in §™ and the corresponding Gaussian random
field. Though wide random neural networks produce highly complicated random fields, such bounds
allow them to be studied via their more tractable limiting Gaussian behavior. In the one hidden
layer case, Neal (1996) argues that wide random neural networks asymptotically behave as Gaussian
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’ Notation \ Description
(M,d,v) Metric space (M, d) equipped with a measure v
Sn n-sphere
C(M; Rd) Banach space of continuous functions equipped with sup-norm
(e,9) Regularization and smoothing parameters respectively
F H Random fields in C(M;R?)
G Gaussian Random Field used to approximate F € C(M;R?)
S Smoothing Gaussian Random Field
dy(F, H) Integral probability metric over a class of test functions H
DF k-th order Fréchet derivative

Table 1: Summary of some main notations used.

random fields. The works of de G. Matthews et al. (2018) and Lee et al. (2018) give heuristic and
empirical evidence that general depth neural networks exhibit Gaussian random field limits. Very
recently, Hanin (2023) proves that deep neural networks converge weakly to appropriately defined
Gaussian random fields as the layer widths tend to infinity. At a high-level, one proceeds here by
first establishing convergence of finite dimensional distributions, which typically follows directly
from the multivariate CLT. Weak convergence then follows from tightness results. In a different but
related direction, Li et al. (2022) provide a characterization of the limiting covariance matrix of the
output of the neural network when evaluated at a finite-set of points, as the depth and width tends
to infinity at the same rate.

From a quantitative point of view, the question of how wide a random neural network has to be
in order that the limiting Gaussian random field provides a good approximation is left unanswered
by results that only demonstrate weak convergence. Works that addresses this gap include Eldan
et al. (2021); Basteri and Trevisan (2022); Klukowski (2022); Bordino et al. (2023b), discussed
in more detail in Section 1.2.1. However, results currently known to us have at least one of the
following drawbacks: they (i) work in weaker topologies, such as Wasserstein metrics with respect to
integral (e.g., L?) distances, rather than the sup-norm, (ii) only provide approximation bounds for
finite dimensional distributions, and not at the random field level, (iii) require Gaussian or similar
restrictive assumptions on the random weights, (iv) consider special cases like one hidden-layer
neural networks or use restricted activation functions, such as polynomials. In contrast, our work
provides precise quantitative bounds for the error in approximating wide random neural networks
with Gaussian random fields, without any of the above-mentioned restrictions.

In the remainder of the introduction, we state and discuss our main results. Section 1.1 is
devoted to our smoothing result, Theorem 1.1. Section 1.2 contains our Gaussian approximation
results for wide random neural networks, Theorems 1.2 and 1.4.

1.1 Bounds for random field approximations

We now formally describe our setting and main result. Consider a compact metric space (M, d),
equipped with a finite Borel measure v that is positive on open balls. Let C(./\/l;]Rd) denote
the (separable) Banach space of continuous functions f : M — R, equipped with the sup-norm
[ £]loo := supge g | £(@)]|2, where || - |2 is the usual Euclidean norm in R¢. For two random fields
F,H € C(M;R%), we are interested in the distributional approximation of the random field F by
H in appropriate distances, which we introduce next.

For a function ( : C(M;Rd) — R, we denote taking Fréchet derivatives by D, D?, ..., and
let the operator norm | - || be defined for a k(> 1)-linear form A on C(M;RY) by ||A|| :=
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sup|f||o=1|ALfs- .-, f]|. The (integral) probability distances we consider are given by the supremum
of the differences | E¢(F') — [EC(H)| taken over all functions in some class H of test functions that
map C(M;R%) — R:

dy(F, H) := EEEIE[C(F)] ~E[((H)]|.

In particular, we are interested in the case where the role of H is played by

W= C:C(M;Rd)—ﬂR:supwgl ,
f#h I =Rl

the class of 1-Lipschitz functions, in which case the distance is called as the Wasserstein metric
(W1), denoted by dyy (F, H); convergence in this metric is known to imply weak convergence in (the
Polish space) (C(M;R?), || - ||o0); see Dudley (2018, Theorem 11.3.3).

To proceed, we introduce the following weaker metric based on the class of “smooth” test
functions

F={¢C: C(M;R%) — R : sup || D¢(f)]| < 1,k =1,2; sup ID*¢(7) = DX (A <1h (L)
f

Fh 1f = Plloo

The metric dr is well-suited to Stein’s method, but, in contrast to analogous metrics in the finite
dimensional case, it does not directly imply weak convergence, or provide bounds on more informative
metrics such as the Wasserstein or Lévy-Prokhorov. Conceptually speaking, this disconnect can
occur because it is not established that the test functions in F capture tightness, and practically
speaking, it can occur because the technical tools used in finite dimensions (approximation by
smoother functions and boundary measure inequalities) do not generally directly carry over to
infinite dimensions. Using our novel Laplacian-based smoothing method, we non-trivially adapt the
techniques of Barbour et al. (2024), and prove the following general approximation result in the W3
metric for random fields indexed by the sphere.

Theorem 1.1. [Master Theorem] Let F, H € C(S™;R%) be random fields, where S™ is the unit
sphere in R" Y for some finite integer n. Then for any ,6 € (0,1) and ¢ > 0,

dyw(F, H) < C(d =2 2n+)

dr(F,H)| + |B|F - Flloo|+|BIH - Helloo| + [0Vd] ), (12)

Section 4 Section 5 Section 3

where F. and H. are e-reqularizations of F' and H defined at (2.9) below, and C is a constant
depending only on n and t.

To explain the terms appearing in the bound, we first give the basic idea behind the proof of
Theorem 1.1. Given a function ¢ : C(8";R%) — R which is Lipschitz, we define a (e, §)-regularized
version (. s such that for k =1, 2, DkCEV(;( f) exists and has norm bounded uniformly in f of order
smaller than §—2¢=2("+4) and DQCS,(; is Lipschitz with respect to the operator norm, with constant
of order §~2¢=2("*)  In particular, there is a constant ¢ such that, 65282(H+L)C&5 € F. Applying
the triangle inequality yields

[E[C()] = BCH))| < [BlGs(F)] - Blees(H)]] + [EC(F)] — ElC s (F)]| + Bl s(H)] — B¢ (H)]].

Because ¢ §2e2(" )¢, 5 € F, the first term is bounded of order § 272"+ x dz. Tn Theorem 4.1 we
bound dz(F, H) when H is a continuous and centered R? valued Gaussian random field, denoted
by (G(x))zem, having non-negative definite covariance kernel Cj;(z,y) = E[G;(x)G;(y)]. This

4



Neural Net Gaussian Approximation

result follows from a development of Stein’s method closely related to that of Barbour et al. (2023),
following Barbour (1990).

In contrast to the first term in (1.2), the remaining three terms decay as € and § become small,
and in particular, the second and third terms become small because ¢ and (. s become close. The
quantity ||F' — F:||« is closely related to the modulus of continuity of F' (see Definition 5.1), and
hence the term E||F'— F.||~ can be further bounded using classical quantitative tightness arguments,
which we present in Lemma 5.3. The optimal choice of € and ¢ is the one having the best tradeoff
between the first and the remaining terms, which may in applications depend on the rate of decay
of dr(F, H) as a function of ‘sample’ or ‘network’ size, and which mitigates its prefactor tending to
infinity.

While this approach is a standard way to parlay a preliminary bound in a smooth metric into a
stronger one, the crux of the problem at the random field level is: how does one construct (. 57 In
finite dimensions, a fruitful regularization takes a function ¢ and replaces it with (5(z) = E[{(x+J5)],
where S is a “smoothing” standard Gaussian. The smoothness of (5 follows by making a change
of measure and using the smoothness of the Gaussian density. See, for example, Rai¢ (2018) and
references therein for additional details.

For random fields indezed by M (or even 8™ with n > 2), there is no “standard” Gaussian and
in choosing an appropriate smoothing Gaussian S there are two related potential difficulties. The
first is that Cameron-Martin change of measure formulas involve Paley-Wiener integrals, which
in general do not have closed form expressions. Moreover, the Cameron-Martin (or Reproducing
Kernel Hilbert) space where the change of measure formula holds is typically restricted to a strict
subset of C(M;R%), meaning that .Z(f + 65) and £ (55) will be singular for many reasonable f.
Following the strategy of Barbour et al. (2024), one approach is to define a smoothing Gaussian
random field S : M — R?, where the Cameron-Martin space is a subset of smooth functions. In
the simpler setting of Barbour et al. (2024) where M = [0,T], S is taken to be Brownian motion
with a random Gaussian initial value, and the Cameron-Martin space is well known to be absolutely
continuous functions equipped with L?-derivative inner product. In our more general setting of
random fields indexed by M, there is no canonical Gaussian process like Brownian motion with a
well-understood Cameron-Martin space.

In our construction of a smoothing Gaussian random field indexed by S”, the associated
Cameron-Martin space contains a class of functions in the domain of a certain fractional Laplacian
and whose images are L? bounded, and thus can be equipped with a related L? inner product.
With this function class in hand, there is still the issue that not all functions f € C(S";R%) are
in the domain of a fractional Laplacian, and so we use a second e-regularization, now of f, given
by f:(z) = Ef (Bégc))7 where (Bt(x))@g is a Brownian motion on S" started from x. Now defining
C.s(f) = B[((f: +65)], bounds on derivatives of (. 5 can be derived from quantitative information
on the spectrum of the Laplacian, which is available in detail for M = S™. This procedure is
elaborated in Section 2.

Although Theorem 4.1 for bounding dx(F,G) holds for any compact metric measure space
(M, d,v), specializing to the case of M = 8™ in Theorem 1.1 allows us to obtain explicit bounds
in terms of the problem parameters (i.e., n and d, etc.). The technology of our Laplacian-based
smoothing approach applies in more general settings. Explicit bounds can be obtained using our
approach anytime there are appropriate estimates for the heat kernel (to prove analogs of Lemma 5.3)
and the spectrum of the Laplacian (to construct covariance functions analogous to Section 2.1). For
general Riemannian manifolds, such quantitative spectral estimates are well studied; for example,
see Grigor’yan (2009), Grieser (2002) and Zelditch (2017). Even more generally, understanding
Gaussian random fields and Laplacian operators on general metric measure spaces is an active area;
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see, for example, Sturm (1998) and Burago et al. (2019). We highlight that our proofs would also
work with functionals of the Laplacian other than fractional powers, as long as they would ensure
the required smoothness conditions are satisfied. This flexibility in our proof technique might turn
out to be crucial in cases when M is not the n-sphere.

1.2 Application to wide random neural networks

We now show how Theorem 1.1 is used to obtain quantitative bounds on the distributional
approximation of wide random neural networks by appropriately defined Gaussian random fields.
Our first motivation to do so is as follows. In practice, widely used training algorithms like stochastic
gradient descent are initialized randomly. In light of that, an interesting question was raised
by Golikov and Yang (2022): Does the distribution of the initial weights matter for the training
process? The authors demonstrate that for a large class of distributions of the initial weights, wide
random neural networks are Gaussian random fields in the limit. Based on this outcome, they argue
that as long as the distribution of the weights are from this universality class, the answer to the
above question is no. Our results in this section could be used to quantify this phenomenon.

Our second motivation is to initiate the study of the training dynamics of neural networks for
prediction problems, at the random field level. Several works (Sirignano and Spiliopoulos, 2020;
Chen et al., 2020; Rotskoff and Vanden-Eijnden, 2022) demonstrate that when neural networks
are trained by gradient descent with small order step-sizes, certain functionals exhibit limiting
Gaussian behavior along the training trajectory. Under larger order step-sizes, the works (Damian
et al., 2022; Ba et al., 2022; Abbe et al., 2022) demonstrate that neural networks behave differently
than Gaussian-process based prediction methods (including certain classes of kernel methods), thus
suggesting the existence of a phase transition from Gaussian to non-Gaussian limits. Our result in
this section, along with the associated proof techniques, take a first step towards understanding
the above phenomena at the random field level, by developing quantitative information about the
setting where the Gaussian behavior is observed.

Formally, we consider a fully connected L-layer neural network that is defined recursively through
random fields F© : M — R™, ¢ =1,..., L, where ny,...,ny, are positive integers corresponding to
the widths of the network, with n;, assumed constant. We also assume that M C IR™. The random
fields are generated by a collection of random matrices (T/V(E))fz_o1 where W : R™ — R™+1, with
W) having i.i.d. rows, W having independent entries for 1 < ¢ < L — 1, and a collection (b(g))eL:_O1
of centered Gaussian “bias” vectors. For x € M, we define

FW(z) = w0z +p©),
FO@) =wE D (FED (@) 40D, ¢=2,... L,

where o : R — R is an activation function that we apply to vectors coordinate-wise. We assume

that
(0)

Var(Wi(jz)) = cnl, and Var(bl(-é)) = cl(f).
l

The limiting Gaussian random field is defined inductively as follows. First let G = F(1) | which
in general is not a Gaussian random field (since Wi(jo) is not assumed Gaussian), and has covariance

(0)
Cw
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where 6;; is the Kronecker delta, and (-, -) is the usual Euclidean inner product. Given the distribution
of G for some ¢ > 1, we define G¥*Y to be a centered Gaussian random field with covariance

ey ) = 0y (L B[o (@) ()] + "),

As the rows of W are assumed i.i.d. and the network is fully connected, the components of
F® ¢ >1 are exchangeable, so in particular identically distributed. Additionally, the covariance
functions of FU*Y obey the same recurrence as the one above, with ng) replaced by FI(Z), and
hence have uncorrelated components. Consequently, paralleling the covariance structure of F ) the
components of the Gaussian weighted network G() are, additionally, made independent.

We now state our results for neural networks that have Lipschitz activation function. Widely
used activation functions such as the RelLU, sigmoid, softmax, and tanh satisfy this assumption.

Theorem 1.2. Let 8" ¢ R™! =: R™ be the n-dimensional sphere, and GO, F®) . §* — R™,
¢=1,...,L be defined as above. Assume o is Lipschitz with constant Lip,. If there is a p > n and
constants BY, ¢ =0,..., L — 1, independent of n1,...,nr_1 such that

(£)\2p Cg)
Blv0)”) < (&

L

>p(B(f>)”/2, (1.3)

then for any v > 0, there is a constant ¢ depending only on (ci,), cl() ),B( ))z 0> M, P, 0(0), ¢ such that

dW(F(L), G(L))

L—1 4
n
< (1 +Lip,)t-1 Z( e (‘“

(1-2)/(6(1—2)+8(n-+0))
o)

L—1
1og<w/nz:1>) T EIW9 oy,

j=t+1
where || - ||op denotes the matriz operator norm with respect to Euclidean distance.

To the best of our knowledge, Theorem 1.2 provides the first result in the literature for bounding
the law of wide random neural networks of any depth and Lipschitz activation functions, to that
of a Gaussian. We emphasize in particular that the stated bounds are at the random field level,
with the metric being the W7 metric under the stronger sup-norm topology; see Section 1.2.1 for
comparisons to prior works.

Remark 1.3. To understand the bound in Theorem 1.2, first note that in terms of the layer widths,

the bound can be small only if
4(n+/,)

Mgy "P &y, (1.4)

so each layer must go to infinity polynomially faster than the next for the bound to go to zero.

For the operator norm terms, if Wi(f) = ne_l/ 2,in(£)

Vershynin (2018, Exercises 4.4.6 and 4.4.7), we have

E|W®op = O(1 + /ngs1/ne).

Note that under the same assumption, (1.3) is satisfied for all p > 2. Thus, assuming ny goes to
infinity fast enough relative to nyy1 so that (1.4) is satisfied for large p, the final bound has rate

_ R
> ()™

Z—f—l )
=

, with ’in(f) sub-Gaussian, then according to
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1
for any € > 0. In the case n =1 and L = 2, the rate of ”1_ 147+e matches that given in the similar
but simpler setting in Barbour et al. (2024, Remark 1.9), which suggests the exponent is linked to
our method, and is most certainly not optimal. (One would hope for the central limit rate of n, -1/ 2,
at least up to log factors.)

Regarding the dependence on the widths tending to infinity, it is known from Hanin (2023) that
asymptotic convergence to a Gaussian process holds as long as the widths all go to infinity, regardless
of relative size. Therefore, our bound’s dependence on the scaling of the widths is sub-optimal and
is applicable in the so-called sequential limit setting (see Section 1.2.1 for more details). The source
of this sub-optimality is an artifact of our proof. Specifically, under a sub-Gaussian assumption
on the entries of W®, the result in Theorem 1.2 actually provides a bound for the Gaussian
approximation for every layer, i.e., for the quantity Zé;:l dyy(FO,GW). Indeed, for sufficiently
wide neural networks, using results by Vershynin (2018, Exercise 4.4.7) as outlined in Remark 1.3,
the bound in Theorem 1.2, with a potentially different constant ¢ having the same dependencies,
applies to all layers simultaneously. For such a bound, polynomial dependence on the next layer is
likely inevitable, as is the case in the classical CLT in high dimensions.

The moment bounds on the weights are used to control the modulus of continuity terms in (1.2).
The operator norm of the weights appear because we are working directly in the sup-norm. The
reliance of the bound on these is likely not optimal, and improvements may be achievable using
our method with better technical manipulations. We emphasize that the question of the optimal
reliance on the widths and moments of the weights is totally open, and our bound is the first and
currently the only available bound at the process level that sheds light on the answer.

We next give a high-level idea behind the proof of Theorem 1.2. Note that, conditional on the ¢-th
layer, layer (¢ + 1) is a sum of ny random fields and a Gaussian:

nyg
F =S w0 (FO) 1609, i =1, e
j=1

Inductively, assuming an appropriate bound on the distributional distance between F ) and GO,
we can bound the error made in the approximation

Fy ZW“ GO+, i=1,... ng

The field on the right-hand side has the same covariance as G*1) | and hence the approxima-
tion bound in Theorem 1.2 follows by recursive application of the Stein’s method approximation
Theorem 4.1 (summarized in Lemma 6.1) to bound dz, combined with Theorem 1.1.

As detailed in Remark 1.5, our next result shows that one gains an improved dependence on the
widths under the assumption that the activation function o is three-times differentiable, and when
smoothing is only performed in the final stage, in contrast to the result of Theorem 1.2, which is
obtained by smoothing at each step of the recursion.

Theorem 1.4. Instantiate the conditions of Theorem 1.2 and assume in addition that the activation
function o has three bounded derivatives. Then, for any ¢ > 0, there is a constant ¢ depending only
on (cgf),cl() ),B(Z))E 0> Dy Ly and 0™ || oo, the supremum of the kth derivative of o, k = 1,2,3, such

that
dy (F®), G0) < eyfr(ng )12 OO0, flog (1/(n 57)),
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where

L—1 3/2 L-1

n .
Br =Y 4L max{1, E[|[W@ 3]} (1.5)

Remark 1.5. Under the same setting as in Remark 1.3, with Cf, a constant depending only on L,
we have

L3 L1 3\ Gare)©
a5 it a0 iz (o £ 8) T
/=1 —

for any € > 0, which will tend to zero as long as n% 1 < ny, demonstrating the improvement on the
width dependence obtained by Theorem 1.4 (specifically, in comparison to (1.4)).

1.2.1. Comparison to related works. Eldan et al. (2021) studied Gaussian random field approxima-
tion bounds for the case of L = 2 with Gaussian weights with three specific choices of activation
functions. They used the Wasserstein-2 distance with respect to LP topology on the sphere. For
polynomial activations they work with p = oo, and for ReLU and tanh they work with p < oo.
Following that work, Klukowski (2022) derived improved bounds in the Wasserstein-2 distance with
respect to L? topology, assuming the rows of the weight matrix are drawn uniformly from the sphere.
We remark that weak convergence with respect to integral norms (such as LP with p < oo) does not
imply weak convergence of finite dimensions, or of other natural statistics such as the maximum.

Basteri and Trevisan (2022) gives rate of convergence of finite dimensional distributions for
general depth fully connected networks and Gaussian weights. The metric is Wasserstein-2 with
respect to Euclidean norm. The bound of Basteri and Trevisan (2022) exhibits multivariate
convergence as long as ny tends to infinity for each £ = 1,..., L — 1, in any order. This phenomenon
is a consequence of a very good relationship between the dimension and the number of terms for
the rate of convergence in the multivariate CLT, stemming from the metric used there, and the
Gaussian assumptions on the weights.

Bordino et al. (2023b) used Stein’s method to derive bounds for univariate distributional
approximation for one-layer neural networks with Gaussian weights in the W;, Kolmogorov and
total variation metrics, and bounds for the error of the approximation of a multivariate output of
the network by a Gaussian, in the Wi metric. Their approach is based on a straight-forward but
laborious application of a Gaussian approximation result for functions of Gaussian random variables
in Vidotto (2020), which is a multivariate refinement of the second-order Poincaré inequality version
of Stein’s method introduced by Chatterjee (2009).

More recently, Favaro et al. (2023b, Theorem 3.13), in a paper posted to arXiv roughly two weeks
after the posting of our draft, prove a rate of convergence in the sup-norm under the assumptions that
(i) the weights W;; are Gaussian, (ii) the activation function ¢ is infinitely smooth with polynomially
bounded derivatives, and (iii) the width of the layers all tend to infinity at the same rate. The
setting in (iii) is called as the simultaneous limit setting in the literature, whereas the setting for
our results in Theorems 1.2 and 1.4 is known as the sequential limit setting; see Lee et al. (2018);
de G. Matthews et al. (2018); Bahri and Hanin (2023) for the applications and differences between
the two settings. While our bound is not informative under the simultaneous limit setting (iii), it
becomes informative under the sequential limit setting, and applies when assuming significantly
much less than (i) and (ii). In particular, condition (ii) renders Favaro et al. (2023b, Theorem 3.13)
inapplicable for the widely used ReLLU activation functions, in contrast to our results. The proof of
Theorem 3.13 of Favaro et al. (2023b) follows from the observation (also used in Basteri and Trevisan
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(2022)) that due to the weights being Gaussian, the distribution of one layer conditional on the
previous one is a Gaussian field, but with a conditional covariance. In transport metrics with respect
to Sobolev topologies, the distance between two Gaussians is determined by a distance between their
covariances, which can be controlled using results of Hanin (2022). While this approach leads to a
remarkable result for the Gaussian weights with infinitely smooth activation functions, the method
of proof does not appear to generalize beyond this specific setting, thereby providing compelling
motivation for our alternative general approach.

1.2.2. Future directions. Obtaining a deeper understanding of the weak convergence of wide random
neural networks to Gaussian (and non-Gaussian) random fields is an active area of research. Here,
we highlight a few interesting directions which can be pursued based on our work.

Rate improvements: There are at least two directions to explore for improving the bounds
of Theorem 1.2 and Theorem 1.4. The first, is in the case of Gaussian weights, is to understand
whether the proof approach in Basteri and Trevisan (2022) for the multivariate setting could be
extended to the random-field level. The second is to develop improved rates (in potentially weaker
topologies, but still at the random field level) by combining our techniques with those in Hanin
(2023). Both directions are intriguing but appear to be non-trivial at the random field level, and we
leave them as future work to investigate.

Heavy-tailed weights: Motivated by constructing priors for Bayesian inference for neural networks,
Neal (1996, Section 2.2) also heuristically examined the limits of single layer neural networks with
the entries of the weight matrices being stable random variables. Recently, several works (Der and
Lee, 2005; Jung et al., 2023; Bordino et al., 2023a; Lee et al., 2023; Fortuin et al., 2022; Favaro et al.,
2023a; Bordino et al., 2023a) showed that the limits of such neural networks (including deep ones)
converge weakly to appropriately defined stable random fields. An interesting question that arises
is whether one can establish quantitative distributional approximation bounds in the heavy-tailed
setting. Our work provides a step in this direction. Indeed, our main result in Theorem 1.1 is
immediately applicable. The remaining challenge will be in establishing a version of Theorem 4.1
for stable random fields. This could potentially be accomplished by extending recent works, for
example, Xu (2019); Arras and Houdré (2019, 2022); Chen et al. (2023), on multivariate stable
approximations to the random field setting.

The rest of the article is organized as follows. Section 2 defines and develops properties of our
smoothing Gaussian process, which are then used in Section 3 to prove our general smoothing result,
Theorem 1.1. Section 4 develops Stein’s method for Gaussian processes, culminating in Theorem 4.1,
which is used to bound dz. Section 5 uses classical quantitative chaining arguments along with heat
kernel bounds to prove Lemma 5.3, which gives an easily applied method for bounding E||F' — F;|| .
Finally, Section 6 uses the theory developed in the previous sections to prove our wide neural
network approximation results, Theorems 1.2 and 1.4.

Acknowledgments. We thank Volker Schlue for discussions regarding certain differential geometric
aspects and Max Fathi for the suggestion to look at the Laplacian for smoothing. This project
originated at the “Stein’s Method: The Golden Anniversary” workshop organized by the Institute
for Mathematical Sciences at the National University of Singapore in June—July, 2022. We thank
the institute for the hospitality and the organizers for putting together the stimulating workshop.
KB was supported in part by National Science Foundation (NSF) grant DMS-2053918.

2  GAUSSIAN SMOOTHING FOR RANDOM FIELDS INDEXED BY THE SPHERE

We begin by constructing our Gaussian smoothing random field, with its covariance defined based
on the powers of Laplacian operators, and specifying its Cameron-Martin space.

10
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2.1 Constructing a covariance and Cameron-Martin space from the Laplacian

To define our smoothing Gaussian random field, we construct a covariance function based on the
Laplacian on the n-sphere 8", which we view as embedded in R"*!,

"= {z e R": ||z]l2 = 1}.
A standard way to define the Laplacian on the sphere is to “lift” functions f : S — R to
f R\ {0} = R by )
f(x) = f@/z]2)

Letting A denote the usual Laplacian on R™*!, we can then define the Laplacian A acting on twice
differential functions on S™ by

Af(x) = Af(2), € 8™
see, for example, Dai and Xu (2013, Corollary 1.4.3). The negative of the Laplacian (—A) is a

positive definite operator on L?(S8™;R) and has an orthonormal basis given by spherical harmonics.
The eigenvalues of (—A) are

Me=k(k+n—1), k=0,1,2,..., (2.1)

and an orthonormal ba51s for the eigenspace associated to Ay is given by a collection of polynomials

%:{gpg),...,@k }Wlth
2k -1 k—2
dy, ::dim%:T(”z_l >; (2.2)

see, for example, Dai and Xu (2013, Corollary 1.1.4). The union Uk>0 ., of the sets of all basis
vectors for the k' eigenspace, gives an orthonormal basis for L?(S™;R). From here, we define the

zonal harmonics J
k . .
=S o @e ). (2.3)
=1

that for n > 2 satisfy

P((n+1)/2)2k+n—1) (1)

Z(z,y) = o (nt1)/2 (n—1) Ck (<1'7 y))? (2.4)

where C,;\, A >0,k > —1 are the Gegenbauer polynomials defined by the three term recurrence, for
€ [-1,1],
2(k+X) kE+2X—1
A A
Cipa (@) = ﬁv@ck (z) — T k1
with initial values C*; = 0 and C} = 1. For n = 1, Zy(x,y) = 7~ cos(k(@ -0 )), where 6,0, are
the polar angles of z,y, i.e., x = (cos(f,),sin(f,)). For our purposes, the key property of Zj is that

I((n+1)/2)
or(n+1)/2

Cp i (x) fork>1

| Zk(x,y)| < Zk(x,z) = dy, (2.5)

see Dai and Xu (2013, Corollary 1.2.7), noting their different normalization at (1.1.1) of the inner

product on the sphere. Thus, for any ¢ > 0, we can define the kernel C*) = (Ci(;-))zj:l on 8" by

. Zy(x
C'() (x,y) = 0ij Z k y (2.6)
E>1

11
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where n, := (n + ¢)/2. Because! A\ < k% and dj, < k", by (2.5) we see that | Zj(z,y)| is O(k" 1)
uniformly, hence the sum (2.6) converges absolutely and uniformly. Since each Zj is continuous and
the sphere is compact, C') is continuous and positive definite due to the decomposition (2.3). We
fix n > 2 and ¢ > 0, and set C = C for the remaining part of this section. With our covariance
kernel in hand, we define our smoothing random field S and its Cameron-Martin space.

Definition 2.1 (The Smoothing Gaussian random field S and its Cameron-Martin space). Let
S be the centered R%valued Gaussian random field indexed by S™ with covariance function C'
given by (2.6). Let e; € RY, for i = 1...,d be the standard basis vectors for R?. The associated
orthonormal decomposition for an h € L?(S™;R%) is given by

d dy,

h = ZeiZZh,@gpg) where h,(fz = /Sn hi(x)w,gj)(x)dx, (2.7)

i=1 k>l j=1

where dzx is the volume measure on the sphere. We define the Cameron-Martin or Reproducing
Kernel Hilbert space H of S to be the subset of L?(S™;RY) defined by

d dy
{h e LA(S™RY) YA ST S (w2 } (2.8)

k>1 =1 j=1

equipped with inner product

<h g H _Z)‘mzzhkzgkz

k>1 =1 j=1

There is the following alternative description of the Cameron-Martin space and inner product.
We define the fractional Laplacian operator (—A)“ for any o > 0 through the orthonormal basis

(—A)awlgj) = )\ggo,(c ), and for h : S® — R? we write (—A)®h for the fractional-Laplacian applied

coordinate-wise.

Proposition 2.2. If h,g € L2(S™;R%) are such that (—A)2™h, (=A)2™g € L*(S";RY), then
h,g € H and
lnb lnL
<h7g>H:<(_A)2 h?(_A)Z g>L2(8n;]Rd)'

Proof. First note that
1 1o,
(A (<A g Z [ ) ao

Thus, by additivity, it suffices to show the result for d = 1. Since (—A)%mh € L*(S"), we can
compute the coefficients in its L*(S™) expansion (2.7) as

/( A)2™ h(z) dx—ZA2 Zh / Yol () dz

>1

— )\2 h(])

'For two functions f, g, by f < g means that there exists absolute constants ¢, C' > 0 such that c|g| < |f| < Clg|.

12
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where the second equality follows from orthonormality. Thus, we have that

lTLL 17’L un
(=A)7"h, (D)2 9) gy = D M th g = (h,g)m.

k>1 j=1
O

To explicitly state the Cameron-Martin change of measure formula for S, we first provide its
Karhunen-Loeve expansion; see Adler and Taylor (2007, Chapter 3).

Theorem 2.3 (Karhunen-Loeve Expansion for the Smoothing Gaussian random field S). There
exists (Z(]i) ck>1,1<j <dgl <i<d) independent centered normal random variables with
Var(Z(])) = A, " such that

Si —Zzzkﬁpk )

k>1 j=1
where the convergence holds in L? and almost surely, uniformly on S™.
With this result, we have the following natural definition.

Definition 2.4 (Paley-Wiener integral). For h € H with L? expansion (2.7), the Paley-Wiener
integral with respect to S is the centered normal random variable with variance (h, h) gy given by

(h,S)n _ZZ)\”‘ZZkZh,(jl,

=1 k>1 7j=1

where the Z,gjz) are as in Theorem 2.3.

We can now formally state the Cameron-Martin change of measure formula for .S, which follows
from an application of a theorem of Kakutani (1948) for absolute continuity of infinite product
measure.

Theorem 2.5 (Cameron-Martin change of measure for the Smoothing Gaussian random field 5).
For any h € H, Z(h + S) has Radon-Nikodym derivative with respect to £(S), given by

d"i,(;(:;)s) = exp{(h, S)n — %(h, h)m}-

2.2 Regularization to the Cameron-Martin space

In the previous section, we provided the Cameron-Martin change of measure formula for our
smoothing Gaussian random field S, but it only applies to functions f € C(S™;R?) that are in the
Cameron-Martin space H defined at (2.8), or, according to Proposition 2.2, that are sufficiently
smooth. Thus, we define the e-regularization of f by

fs(x) = (fe,i(l'))?:l = (e8 Zezze EAk Zf]“(pk . (2.9)

= k>1

The e-regularized f.(x) equals B[ f( éx))], where (Bt(w))@o is a d-dimensional Brownian motion run
on the sphere started from x; see Bakry et al. (2014). The next proposition uses this representation
of f. in terms of the “heat kernel” for Brownian motion, which will be useful to derive smoothness
properties.
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Proposition 2.6. Let

pla,yie) =3 e “kzw )= e 2w y), (2.10)

k>1 k>1

using the definition of Zy, in (2.3). Then for any bounded and measurable f : S* — RY,

fesw) = [ plas)fitu)dy. 2.11)

Proof. Dropping the subscript i, we have by (2.10),(2.5), (2.2), and Fubini’s theorem that

| v fmay =Y [ )z ay

k>1

—Ze EAk ka])wk 7

k>1
which is the same as (2.9). O
We are now in position to derive bounds on |[(—A)* f¢]|.

Proposition 2.7. If f : S — R is bounded and measurable, then for any o > 0, (—A)*f. exists
and (—A)*f. € L*(S8™;R?). Moreover, there is a constant ¢ = c(n,a) depending only on n and o
such that

[(=A) feilloo < || filloos™ZaFM/2,

Proof. By (2.4) each (lifted) Zj(-,y) is infinitely differentiable, with derivatives growing in absolute
value at most polynomially in k. Thus, using (2.10), that A\; < k2, and dominated convergence,
(—A,)*p(z,y;¢) is well-defined and

(A, yie) = 3 e (=A,) Zi(a,y).

k>1

Now, dropping the i subscript, using (2.10) and (2.3), followed by (2.5), (2.2) to find dj, = O(k"!)
and (2.1), so as to apply dominated convergence, we have

a1 s =| [ Canpema ]
<l [ 180 i)y
Sl [ [ e ezt y>\dy

k>1
Il |
Sn

EAk
ZA%€_2Zk(x,y)‘dy
EX
<lflloo D Afe™ 2" dy

k>1
k>1

2
<l flloe Y K2l

k>1

14
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By comparing this sum with
0o
/0 (8/2)(2a+n)/2x2a+n—le—sm2/2dx _ %F(a+n/2),

we find
|(—A)* fe(w)] < ce™ Gt £l

where c is a constant depending only on n and «, as desired. O

Propositions 2.2 and 2.7 imply that f. € H for bounded and measurable f, and also give the
following lemma bounding |(f:, g=) fr|, whose proof is straightforward.

Lemma 2.8. If f,g are bounded and measurable functions S™ — R?, then there is a constant
¢ = ¢(n,t) depending only on n and v such that

[Fergeda] = ({202 fo (=8)2" 02 g | < el Fllocllglloce™ 0,

2.3 Smoothing using S and regularization
We now use the f. regularization given in the last section to define a (e, §)-regularized version of a

test function . The following result is an analog of Barbour et al. (2024, Lemma 1.10).

Theorem 2.9. Let ¢ : C(S™;R?%) — R and, for f: S™ — R? bounded and measurable, define

Cs(f) = E[C(fe +65)],

where f. is the e-reqularization defined at (2.9). If ¢ is bounded or Lipschitz, then (. s is infinitely
differentiable. Moreover, for every k > 0 there is a constant ¢ depending only on k, n and ¢, such
that if ¢ is bounded, then

ID"Cesl < ed®207F M|,

and if ¢ is 1-Lipschitz and h : 8™ — R? is bounded and measurable, then
ID*Ce5(f) = DG s(h)I| < cd™/25~ e M| f — b (2.12)

Proof. The proof is closely related to that of Barbour et al. (2024, Lemma 1.10), where the Cameron-
Martin inner product and e-regularization are simpler. Intuition behind the manipulations below
can be found there.

Firstly, (. s is clearly well-defined if ¢ is bounded. If ¢ is C-Lipschitz, then

1G5 (f) = C(fo)| < COE||S]oo < 00,

where the last inequality is Fernique’s theorem (Fernique, 1970). Moreover, (. ; is measurable since,
from (2.11), f — f. is continuous with respect to sup-norm, as is (f, g) — f + ¢ in product topology.
Thus, (f,s) — ((f: + ds) is measurable with respect to product topology.

We claim that for ¢ bounded, k > 1 and ¢ C(S™R%Y),i=1,...,k, we have

DA (Nlg®, g™ — [c<5s>e%<f> S I D”‘Ifs(f)[g(b)]] , (2.1)
TEPy,2 bET
where

Ve(f) = %<f€aS>H - #(feaf&H-
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In (2.13) Py 2 is the set of all partitions of {1,...,k}, whose blocks have at most 2 elements; b € 7
means that b is a block of m, and we denote its cardinality by |b]. When b = {i} the expression
DI, (f)[g®)] is defined as

DPlw_(f)[g®] = DU(f)lgW] =6 (gD, 5 =67 o)
and when |b| = 2 is given by b = {i1,i2}, then
Dl (f)[g"] = D*W(f)[g™), "] = =5 2(gl"), gl i,

which we note does not depend on f. Compare to Barbour et al. (2024, Equation (2.11)) with
© = 0. Assuming (2.13), the Cameron-Martin Theorem 2.5 implies that

D*¢s(Nlg™, ..., gV =E |:<(f5 +08) S 11 f?'b'\lfa(f)[g(b)]] , (2.14)

TEPy 2 bET
where D2U,(f) = D>U.(f), and

DV.(f)lg] = 6~ g, S),, ~ Normal(0,52(g{", gy ),

and we note that ﬁ|b|1115( f) does not depend on f for |b| € {1,2}. Technically, we are applying
the Cameron-Martin change of measure formula to the joint distribution of the random variables
(<g;) .S — 6t f6> )Z , and (S — 671£.), which follows in a straightforward way from Kakutani’s
theorem and the definition of the Paley-Wiener integral.

By Lemma 2.8, we have

(gl g%2) | < ed]|g"™]| oo ]| [|ooe ™ H), (2.15)

where c is a constant depending only on n,. Thus, if ¢ is bounded, we have

D5 Cs(AlgW. g™l < Uillso D2 TTID*0(Dl™I B [T DDl

TEP,2 bET bemw
[b]=2 [b]=1

and then the definition of lA)k\Ils, (2.15), and Holder’s inequality imply
k .
1D ¢ s(NgWs - g™N| < ed 257 eIl TT 1199 oo
i=1

where ¢ depends on k (through the sum over Py o and the absolute moments up to order k of
standard normal variables) and n,, as desired.

Assume now ( is 1-Lipshitz, and letting f, h € C(S™; R%) and recalling that ﬁ‘bhllg(f)[g(b)] =
DPlw_(h)[g®)], (2.14) implies

DFC.5(Plg™,....g™] = DF¢ s(m)[gY, ..., g™
=E|(C(f +09) = ¢(he +685)) > [[ D" w.(f ]]

TEPy,2 bET

and using that ( is Lipschitz and (2.11), we have

C(fe +08) = C(he +85)| < fe = helloo < I = hllco-
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With this, (2.12) follows in exactly the same way as the bounded case.
To establish (2.13), we use induction. For k = 1, the Cameron-Martin Theorem 2.5 implies

Cos(f+9) — Co(f) = E[C(5S) (€79 — V()]

so by the bounded- or Lipschitz-ness of ¢ and the Cauchy-Schwarz inequality, it is enough to show
that

B[(¥ 0% 1 - Du.()[g])’] = o(llglZ). (2.16)

But
Wl +9) W) = DV()lg) — 530,00}

with DW.(f)[g] ~ Normal(—6=2(f., gc)rr, 6 2(ge, 9:) 1), and so straightforward computing shows

E[(e‘l's(f+g)_\1’€(f) 1 D\Ifg(f)[g])Q}

2
M) 2 g (1 B <fa,5925>H> n <9675.925>H

_ 26—5_2<f5795>H (1 _ <vagE>H + <g€7gs>]'{>7

62 62

which, using Lemma 2.8, is easily seen to be o(||g[|%,), as desired. Compare to Barbour et al. (2024,
(2.12-15)).

Assuming (2.13) holds for k, we want to show it holds for k£ + 1. We write

D¢ s(f+ 9)lg™M,....g®] = DF¢5(f)lg™, . ... g™

=FE [C(55) (e\I'a(f+g) — e\lfs(f)) Z HD‘bl‘I’s(f) [g(b)]} (2.17)
TEPy,2 bET
Bl 3 ([ DMoc(r +9ls®] - [ 00| 29
m€Pg,2 beT bem

Because of (2.16), the term (2.17) is equal to

[cwsww DN EEEAT ] T o(llglle). (2.19)

TrGPk 2 bem

Now working on (2.18), noting that D?*W.(f + g) = D*U.(f) and DV (f + g)[h] = DU(f)[h] +
D*V_(f)[h,g], we find

3 (HD' w.(f +9)lg®] — T[] DPw.(s )

T€P2 beT ber
=> 1II DQ‘l’a(f)[g(”)]{ [T (Pw(nis®1 + D2w.(Nlg®.g1) - T] D\Ifa(f)[g(b)]}
TEPg 2 bET bem bem
b]=2 [b]=1 b|=1
= ¥ TPl X 0l T1 0w0is1} +e(lole)
TE€PL,2 |Z|E7r2 |Z|€7r1 b|7£|a€7r
= = al=1
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where o(||g/|o) is a random variable, say X = X (g) depending on g, such that I [| X 7] Yr _ o([lglls0)
for any p > 2. This is because DW.(f)[¢®)] is Gaussian, and D?>WT_(f)[¢®),g] = O(llgllss), by

Lemma 2.8. Thus, up to a o(||g|lo) term, (2.18) is equal to

E[aas)ew 3 HD2wa<f>[g<b>1{zDmf)[g(b%g] I D%(f)[gw}]. (2.20)

TEPL,2 beT ber b#aem
|b|]=2 lb|=1 la=1
Combining (2.19) and (2.20) completes the induction. O

3 PROOF OF THE WASSERSTEIN BOUND

Armed with Theorem 2.9, we follow the strategy described in Section 1.1 to prove our master
theorem.

Proof of Theorem 1.1. To achieve a bound in the Wasserstein distance, let ¢ : C(S™; R?) be a
Lipschitz function and let (. s be defined as in Theorem 2.9. The triangle inequality yields
[EC(F) — E¢(H)|
< B[Cs(F)] = Bl s ()] + [[EC(F)] = BlCes(F)]| + [[EC(H)] - B¢s(H)).  (3.1)
For the first term of (3.1), we use (2.12) of Theorem 2.9 with & = 2 and the definition (1.1) of

F to find
B[ 5(F)] — B¢ s(H)]| < cd§ 22 d x(F, H).

For the second term, using the definition of (. s and that ¢ is Lipschitz implies
[E[C(F)] = ElCs(F)]| = [E[C(F)] = E[C(F: +69)]| < E||F = Fel|loo + 6 E[|S]|oc,

where S : S” — R¢ is the smoothing Gaussian random field defined at (2.6). Since S has independent
components and, by (2.6) and (2.5), has covariance uniformly bounded in absolute value of order
Cn E,@l k~1=* for some constant ¢,, depending only on n, Fernique’s theorem implies

EHSHOO < Cno \/&7
where ¢, , constant depending only on n and ¢. Thus, we find
IE[S(F)] — El¢s(F)]| < E|F — Frlloo + cn 0V

The same reasoning shows that this same inequality holds with H replacing F. Substituting these
bounds in (3.1) verifies that the desired bound in (1.2) holds. O

4 PROPERTIES OF SOLUTION TO THE STEIN EQUATION

Applications of Theorem 1.1 require bounds on the first three terms of the right-hand side of (1.2).
In this section, we bound the first term for the case when H = G, the approximating Gaussian field.
We handle the second and the third terms in the following section, see Lemma 5.3 in particular.

We start with the following result, which extends the work of Barbour et al. (2023, Section 2)
and provides properties of solutions to infinite-dimensional versions of Stein’s equation. Specifi-
cally, Barbour et al. (2023) worked with Stein’s equations for Gaussian processes indexed by an
interval [0, T], whereas here we work with random fields indexed by a compact measured metric
space.
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Theorem 4.1 (Bounds on solutions of the Stein equation). For a Gaussian random field G €
C(M;RY), define the operator A= Ag acting on ¢ : C(M;RY) — R with

max s [|DRC(9)] < oo,
k=1,2 gEC(M;Rd)

by
AC(f) == E[D*(£)[G,G]] = D),

where f € C(M;RY), and D denotes Frechét derivative. Then for any such C, there exists an n = ¢
satisfying
An(f) = ¢(f) — E[C(G)]. (4.1)

Moreover, in the operator norm, for any k = 1,2, or k > 3 with supgecaira) | DF¢(g)|| < oo, we
have

1
ID* n(AIl <+ sup [ID*¢(g)l, (4.2)
gEC(M;RY)

o

and for any ¢ € F and all f,h € C(M;R?), we have

1D20(5) ~ D*(h) ]| < 51 = bl (43)

Remark 4.2. The operator A defined in Theorem 4.1 plays the role of the left-hand side of the
‘random field’ version

E[D*n(£)|G,G]] = Dn(f)[f] = ¢(f) — BIE(G)] (4.4)

of the finite dimensional Stein equation for a centered Gaussian G' with covariance matrix ¥ = (o)
given by

S oydn(e) — 3 adn(@) = ((a) ~ BC(G),
i, i

where 0; and 0;; denote the first and second partial derivatives respectively in coordinates 7,5 .
With the Stein equation (4.4) and the bounds on its solution provided by Theorem 4.1, the standard
steps of Stein’s method can be implemented. In particular, the integral probability metric bound
to G over some given function class H can be computed by bounding the absolute expectation of
the right-hand side of (4.4) for ¢ € H by taking absolute expectations on the left-hand side, given
in terms of the solution 7. In particular, uniformly bounding |E.An¢(F')| for all solutions n¢, ¢ € F
to (4.4) yields a bound on dz(F,G), the first term on the right-hand side of (1.2). See Lemma 6.1
and its proof for the implementation.

Remark 4.3. The term E[D?((f)[G, G]] implicitly depends on the covariance C of G. As discussed
in Remark 4.2, if G is finite-dimensional, then this term evaluates explicitly to V' £Vn(z), where X
is the covariance matrix of G. When G is a random field indexed by an uncountable set, in general
it is not clear how to write this term solely in terms of C. In applications, the term should be
rewritten in a form that matches the particular application and does not involve an expectation
against GG. Typically, this form involves the covariance structure of G and is most easily found
using some structure of the random field F' to determine the first order term in a Taylor expansion
of ]E[Dn(F )[F H See Section 6 for further details from our application to wide random neural
networks, and also Barbour et al. (2023) for applications that provide additional relevant examples.
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Proof of Theorem 4.1. The result essentially follows from the work of Barbour et al. (2023,
Section 2), building off Barbour (1990) and Kasprzak et al. (2017), in the setting where the index
set of the process f is the interval [0, 7.

Fix ¢ with two bounded derivatives. For f € C(M;R?) define hy : Ry — R by hy(t) =
E[¢(e™'f + V1 — e 2G)], and n = n¢ to be

o) == [ (st~ BLC(G)a.

The integral is well-defined since ¢ has bounded derivative, ||f||o is finite by continuity and
compactness of M, and ||G||~ has finite moments, by Gaussianity and path continuity. That A can
be applied to 7 (meaning it has two bounded derivatives) follows essentially from Barbour (1990),
see also Kasprzak et al. (2017), since dominated convergence implies that if sup, | D¥¢(g)] < oo, we
have the well-defined expressions

D*n(f)lgs- -, g5 = — /0 T E{D*¢(e " f + V1 —e2G)[gy,..., g }dt, (4.5)

from which the bounds in (4.2) easily follow. For (4.3), if { € F applying (4.5) with £ = 2 and
(1.1), that assures elements of F to have a Lipschitz-1 second derivative, imply

|D*n(f)lg, 9] — D*n(h)]g, 4|

< / e EB{|D* (e f+ V1 — e 2G)[g,g] — D*((e"h+ V1 — e72G)[g, g]| }dt
’ 2 o 2

< lgll2 /0 e f — e hodt
1

<5 —h o 2 .
U~ hllollgl

We now show (4.1). We have

¢(f) ~ EIC(G)] = — /O (bt
_ /OOO e E[DC(etf + V1 - e BG)[f]]dt

- [ Bl Vim e Ta Gl

= —Dn(f)[f] - /OOO ﬁ E[D¢(e7tf + /1 — e=2G)[C]] dt,

where the third equality follows by (4.5). Comparing to (4.1), we will have shown the first claim if
we can demonstrate that

67215

E[D*(f)[G,G]] = — /Ooo = E[D¢(e~tf + /1 — e 2G)[G]] dt.

Evaluating (4.5) for k = 2, the left-hand side of the previous display can be expressed as

— / - e E[D*(e7f + V1 - e 2@Q)[G, G']]dt,

0
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where G’ is an independent copy of G. But the integrands are equal since, for fixed ¢ and f and
©(g) = C(e7tf + V1 —e2tg), Barbour et al. (2023, Proof of Proposition 2.1) implies

E[Dp(G)[G]] = E[D*0(G)[E, G,
and

Do(g)[g1] = V1 —e2D((e”" f + V1 — e 2g)[g1],
D*p(9)[g1,92] = (1 — e 2 )D*¢(e™" f + V1 — e 2g)[g1, ga].

Note that here we are using the Karhunen-Loeve expansion which is the part of the argument that
uses the Borel measure v on our metric space (M, d). O

There have been a number of recent works developing Stein’s method for processes, predominantly
in the context of distributional approximation by interval-indexed Gaussian processes, and especially
Brownian motion; though see Gan and Ross (2021) for an exception. Building from the seminal work
of Barbour (1990), Shih (2011) develops Stein’s method in the very general setting of a Gaussian
measure on a separable Banach space. However, the bounds there are too abstract to be evaluated
explicitly in practice. Closely following Shih (2011), the works Coutin and Decreusefond (2013,
2020); Bourguin and Campese (2020) provide more concrete results in the less general setting of a
Gaussian measure on a Hilbert space. However, the associated probability metrics are with respect
to the Hilbert space topology, e.g., L? and Sobolev, which are quite weak and do not see fundamental
natural statistics such as finite dimensional distributions and extrema. The works of Kasprzak
(2020a,b); Dobler and Kasprzak (2021), based on Barbour (1990), are more closely related to our
work, but work only in smooth function metrics like dz. We refer to Barbour et al. (2024, Section
1.1) for additional details and comparisons.

5 CHAINING ARGUMENTS FOR MODULUS OF CONTINUITY

We now present results for bounding the second and third terms in (1.2) that arise from the
smoothing process. We start with a proposition that is useful for obtaining probabilistic bounds on
the modulus of continuity of an R%valued random field on a compact metric space (M, d).

Definition 5.1 (Modulus of Continuity). The modulus of continuity of a function J : M — R? at
level 6 > 0 is defined as w;(6) == sup{||J(z) — J(y)||2 : z,y € M,d(z,y) < 6}.

While the proofs below leverage standard chaining arguments, existing results seem not to provide
the form of the results we require, as those mainly focus on expectation bounds and the case of
d=1.

Define the covering number N'(M,d, ) (or just N'(¢) when (M,d) is clear from context) of
(M,d) at level € > 0 as the smallest cardinality over finite collections of points U C M so that
every point of M is within ¢ of some point of U (i.e., U is an e-net).

Proposition 5.2. Let (M,d) be a compact metric space and let (H(z))zerm be an R¥*-valued random
field with continuous paths and write H = (Hy,...,Hg). Suppose there exist positive constants
co, 8,7 and c¢1 such that for any x,y € M andi=1,...,d, we have

d B
P(|Hi(x) — Hi(y)| > \) < co (xmy) for all X > 0, (5.1)
and for every € > 0 the covering numbers satisfy
N(e) < cre™@. (5.2)
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Then, if a < /2 there is a constant ¢ depending only on diam(M), «, 8, 7, co,c1 such that for all

i=1,...,d and 6 > 0,
0[3—204

A

P (wp,(0) > A) <c (5.3)

and for any 0 < k < v,
Elww(0)*] < cd/? gB=20)/7, (5.4)

Proof. Following Pollard (1984, Chapter VII, Section 2, 9 Chaining Lemma), we can construct
a nested sequence of subsets My C M; C My C --- C M such that every t € M is within
diam(M)2~¢ of a point of M;, and

) ga(i+1)
|IM;| < N(diam(/\/l)2_(’+1)) <e

X 1m. (5.5)

For each z € M, there is a sequence (x;);>1 with z; € M; and lim; ,o z; = z; in particular
M* =, M; is dense in M.
We first show that for all 8 > 0,

P(wi(8) > A) = P(w}(8) > M),

where w}; () = sup{||H(z) — H(y)|l2 : z,y € M*,d(z,y) < 0} is the modulus of continuity
of H : M* — R at level 0, that is, only considering points in M*. The equality holds as
the events are equal. Clearly {w};(6) > A} C {wy(0) > A} since M* C M. For the other
direction, if there are z,y € M with d(x,y) < 0 and ||H(x) — H(y)||2 > A, then letting x;,y; € M;
such that z; — x and y; — vy, then d(z;,y;) — d(z,y) < 0 and continuity of H implies that
|H(x;) — H(yi)|l2 = [|[H(z) — H(y)|]2 > 6 and so there must be some ¢ with d(x;,y;) < 6 and
|H (z:) — H(gs)ll2 > A

To bound wj; (), let & > 0 be fixed and let =,y be arbitrary points in M* satisfying d(x,y) < 6.
Since the M;’s are nested, there exists n such that =,y € M, 1. Further, there are sequences
(z:)™ g, (yi)" such that z;, y; € M;, and d(z;, 2i41)VA(Yi, yi+1) < diam(M)27 L letting 2,11 = =
and y,+1 = y. These sequences can be constructed sequentially, e.g., set z, to be the nearest point
in M,, to =, which must be within diam(M)2™" since M,, is a diam(M )2~ "-net. Given that we
know z;11, we choose x; to be the point in M;; that is closest to x;. Since M; C M, 1, there
must be such a point with distance no greater than diam(AM)27FL,

Denoting the maximum change in H over points in M; that are within diam(M)p by

Di(p) :=sup{||H(v) — H(v)|l2 : u,v € M;, d(u,v) < diam(M)p}.

Set m = |—logy(f/diam(M))], implying in particular that § < diam(M)27™. The triangle
inequality implies that

|H (@) = H@)ll2 < 1H () = Hyn)lz + 3 (1 @i40) = Hzlla + 1H(yien) = H()l2)

i=m
[ee]
< Dy (27™72) +2) D277, (5.6)
i=m
where the 272 in the second inequality follows by the triangle inequality

n

(T, ym) < d(x,y) + Y d(@i, is1) + > AW, yin1) <O+ Y d(wi,zirn) + > d(Yi, yir1)

i=m i=m i=m i=m
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< diam(M)27™ + 2diam(M) Y~ 27 < 3diam(M)27" < diam(M)27 2,

i=m

Noting (5.6), we set \; = (1 — a)a’~™()\/3) for i = m, for some a € (0,1) to be chosen later, and
applying the union bound we have

P(wi(0) > \) < P(Dm(27™%2) > A/3) + ZIP (2771 > ). (5.7)

i=m

Now, again using a union bound, (5.1) and (5.5) yields that

P(Di(p) > A) < > P(|H(u) = H(v)ll2 > ))
u,vEM;
d(u,v)<diam(M)p
i BB
< co|./\/li|2d1am(){:l) i

and so for a constant ¢’ depending on diam(M), «, 3, 7, co, ¢1, using that the first term in (5.7) can
be bounded by a constant depending only on «, 3,y and a times the bound on the first term of the
sum that follows, we have

P(wj;(0) > \) <d(1—a) A" WZ<2ZQ )

Since 2a — 8 < 0, it is possible to choose a such that r := 220‘_5/&7 < 1. So doing, we obtain

a”

0 22a7,8 i
Z( ) =1 =7 =1 —r)a 2 Am (1 — p)22a-Bm

i=m

where we have used that a € (0,1) and is being raised to a positive power, so can be bounded by 1.
Recalling that m = | —logy(#/diam(M)) |, we hence observe that there is a constant ¢ depending
on diam(M), «a, 3, v, co, 1, such that

. 9B—2a
P(wj(0) > \) <c CRE

Now, we proceed to prove (5.4) starting with the case d = 1. Letting ¢ be a constant that may
vary from line to line, but will at most only depend on diam(M), a, 3,7, co, c1, the result easily
follows from (5.3), since under our hypotheses that 0 < k < v we have

E[wr(0)*] = /0 OO]P(wF(Q) > A/F)Leb(d))

[e.9]

gk(B—20) /v
- / P (wr(0) > AYF)Leb(d\) + / P (wr(0) > \/¥)Leb(d))
0 0

k(B—20)/~ (5.8)
< grB-20)/7 | /
€ Joro—zary NITE

0o 66 2c
L Leb(d\)

< épkB—20)/v

)
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as desired.
Now, for general d > 1, it is clear from the definition of the modulus of continuity that

wH () < 3wk 0) (5.9)

Raising both sides of (5.9) to any positive power k > 1, and using that (3, a;)k < dF1 > a¥ for
non-negative a;, we have

d

d k
o< (o) <o 3o
=1

=1

=

Taking expectation on both sides and applying (5.8), we have
9 d
(Blwb0) < B3 0)] < d*t Y B ©) < adt 9620,
i=1

and taking square roots yields the desired inequality. O

Lemma 5.3. Let M = 8" C R™! for some n > 2, with natural geodesic metric d, and H =
(Hy,...,Hy): 8™ = R? be a random field with continuous paths, and H. be the e-reqularization of
H defined at (2.9) for a fired 0 < e < 1. If for alli=1,...,d, for all x,y € 8", some constant ¢,

and some p > n we have )

then there is a constant ¢ depending only on ¢, n, and p, such that

E||H — H.||oo < cvVde2 ™) flog(1/e).

Proof. Using the alternative expression for H. given at (2.11) in Proposition 2.6, for any given 6 > 0
we immediately have

() - i) = |

p(,y:¢) (H(z) — H(y))dy + / Py €) (H(x) — H(y))dy,
y:d(z,y) <6

y:d(z,y)>0

where dy is the volume element on the sphere. It is easy to see that wy () is finite because H is
continuous and the sphere is compact. Hence, we can further bound

HH(a:) — Ha(a:)H2 Swpy(0) + uilégnHH(u) — H(U)H2 /y:d(z7y)>9p(x, y;e)dy
=on®) +enm [ ey

The heat kernel bounds of Nowak et al. (2019, Theorem 1) imply
/ p(z,y;e)dy < e/,
yd(z,y)>0

where ¢, is a constant depending only on n. Hence, we have that

E||H — H.|o < E[wi(0)] + ¢ Elwp(r)]e /). (5.11)
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To bound E[wg(6)] we apply Proposition 5.2, and use Markov’s inequality to find that
E[(Hi(x) — Hi(y))*]
%P '
Therefore (5.1) is satisfied with § = v = 2p and ¢y = ¢, due to our assumption (5.10). To bound

the covering numbers, standard volume arguments (see, for example, Vershynin (2018, Corollary
4.2.13)) imply that for all € € (0,1), we have

P(|Hi(z) — Hi(y)| = A) <

N(8",d,e) < cpe ™,

where ¢, is a constant depending only on n, thus (5.2) is satisfied with o = n. Applying (5.4) of
Proposition 5.2 we find that there exists a constant ¢, whose value from line to line may change, but
depends that only on ¢, n, and p, such that

Elwy(0)] <cvVdo' >

Substituting this inequality in (5.11) and setting 6 = /lelog(1/¢) and I > 5(1 — 7)/2, we conclude
that
E|H — H.|oo < cVdez ™) /log(1/e). O

6 PROOFS FOR WIDE RANDOM NEURAL NETWORK APPROXIMATIONS

We now apply the general results developed in the previous sections to prove Theorems 1.2 and 1.4
on the smooth and Wasserstein distance bounds for wide random neural network. We follow the
strategy based on induction as previously described in Section 1.2. We first present the following
result, obtained by applying Theorem 4.1 at a given, single layer of the network. One key element
driving the result is the use of the classical Stein ‘leave-one-out’ approach, see (6.5).

Lemma 6.1. Let H : M — R™ be a random field with continuous and i.i.d. coordinate processes
Hy,...,H,, and let W : R™ — R"™ be an n X m random matriz that is independent of H and
has centered independent entries having the same variance Var(Wi;) =: ¢y, /m, also satisfying

IE[W;;-] < B(cw/m)?, and o : R — R. Define F : M — R"™ by
F(z) =Wo(H(z)),

and assume F € L2 (M;R™). Let G € C(M;R?) be a centered Gaussian random field with covariance
function

Cij(x,y) := B[Fi(z)F;(y)] = dijcw Blo(Hi(x))o (H1(y))].
Then for any ¢ € F, we have

n3/2
IE[C(F)] - E[C(G)])] < ¢i*B¥* E[||o(Hy)|2,] NG (6.1)

Proof. We apply Theorem 4.1 with the Gaussian random field G and d = n. In particular, we obtain
the bound (6.1) by substituting F' for f in (4.4) and bounding the expectation of its right-hand
side. Our first step is to derive a more useful representation for the second order term. We claim

E[D?(f)[G. G| = B[D*n(f)[Wo(H), Wo(H)]. (6.2)

More generally, if the covariance of a centered Gaussian random field G € C(M;R?) satisfies
Cij(z,y) = 6;; B[Gi(2)Gi(y)] = E[R;i(x)R;(y)] for some centered L*(M;R?) random field R (not
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necessarily assumed Gaussian), then for any bilinear form A with E[A[G,G]] < oo, we have
E[A[G,G]] = E[A[R, R]].

Equality (6.2) is a consequence of the Karhunen-Loeve expansion; see e.g., Adler and Taylor (2007,
Chapter 3), that states that there is an orthonormal basis (3)x>1 of L?(M;R) and independent one
dimensional centered Gaussian random variables (X;)k>1,1<i<d With Var(Xy;) = Ag; > 0 such that
G; = Zk>1 X;ﬂcpk, and the convergence is in L2. Since R is also L?, we can expand R; = Zk>1 Yiiok
with Yy, = [ Ry( x)dz, where dz is the volume measure assomated to M, and the convergence
is in L?. Now, by hnearlty and that Cov(Xy;, X¢;j) = 0ij0keAri, we find

d
- Z Z AkiAlei ki, €kl

i=1 k>1

where e; is the d-dimensional vector with a one in the ™" position, and zero elsewhere.
To show that we obtain the same quantity with R replacing G, it is enough to show Cov(Yy;, Yy;) =
0ij0keAk;- We use Mercer’s theorem, which says that

E[Ri(2)R;(y)] = Cij(x,y) = 6 Y Amiom()em(y),
m>1

where the convergence in the sum is uniform, and we obtain

BV = B| [ o) Ry on(o)enla) dody]
= || Gy, p)er@)eey) drdy = 55 Y At | Pm(@)om(®)n(@)pe(y) da dy

m>1

= 0jj Z AmiOmkOmi = 03j0ke ki,

m>1

as ¢k, k > 1 are orthonormal, thus proving claim (6.2).
Let the pair (W, H) be an independent copy of (W, H). Clearly, the right-hand side of (6.2) is
the same for both pairs and hence

|EC(F) — E¢(G)| = [B[D*n(Wo(H)[Wo(H), Wo(H)| — Dn(Wo(H)[Wo(H)]|,  (63)

via (4.4) and independence. Hence, bounding the right-hand side of (6.3) yields a bound on the
left-hand side of (4.4).
We first write

m

H) = Z XA@ where we set Z ﬁ )ei,

and adopt parallel notation to define V. Because Wij are independent of each other and of W,
centered, and assumed to have common variance ¢,,/m, for the first term in (6.3) we have

E[D*)(Wo(H))[Wo(H),Wo(H)]| = E{D2 (Wo(H))[V;, 17]»]}. (6.4)
7j=1
Working now on the second term of (6.3),

(Wo(H)) := Wo(H) —V; where Vj= ZWZJ H))e;, (6.5)
i=1
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and which is independent of (W;;)I"; and H;. Using that independence to subtract a term with
expectation zero in the second line below, followed by an application of a Taylor type argument, we
have

= ZE{D%«Wa(H))J’)[} 3-]} (6.6)

mo
£ [ B{ 0wt + (1= (Wl 15,V Du((Val)F) V5,V Leblas).
(6.7)

To bound (6.3), we first subtract this expression from (6.4) and, then bound the absolute value.
In particular, we first bound the absolute difference between (6.4) and (6.6), and then the absolute
value of (6.7). For the former, applying the second inequality of (4.2), which gives that the second
derivative of n is Lipschitz, followed by Holder’s inequality, yields that this difference is bounded by

m

B{ D20((Wal)Y) 73,7 - B0 (Wo ) 73,71

1 & ~ 12 1 & 3
<335 ol <3 XE |l s
oo (o) j:l o

Similarly, but more simply, the absolute value of (6.7) is bounded by one-half this same quantity.
To bound (6.8), we use the fact that H; is independent from W;;,i =1,...,n, and again apply
Holder’s inequality, to find that
:| 3/4

J=1

IL] <3 Eliotmie) [HZWzgez

=§§EUO— ) [(Z )]
< ot (25 )
1 /2B3/4 [HU(HI)”g] n’/?
3% i

where we have used that E [Wé] < B(cw/m)?. Hence, we obtain the desired inequality, (6.1). [
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In Section 6.2, Lemma 6.1 is used to derive bounds on the difference between G and F® in the
smooth function metric for general (M, d). For informative bounds in the Wasserstein metric when
M = 8", we apply Theorem 1.1. The following lemma gives some moment bounds that are used
along with Lemma 5.3 to bound the terms E||F — F;||o and E||G — G¢||« appearing in (1.2).

Lemma 6.2. For fizedp € N, assume H € L*”(M;R™) is a random field with identically distributed
coordinate processes, and let W : R™ — R be an 1 x m random matriz that is independent of H
and has centered independent entries satisfying E[ijp] < ¢/mP, for some ¢ > 0. Letting o : R — R
be Lipschitz with constant Lip,, define F : M — R by

F(z) =Wo(H(z)),

and finally, letting Aﬁﬁp) be the set of (ji,...,joap) € {1,...,m}?* where the label of every coordinate
appears at least twice, there is a constant ¢ depending only on p and ¢ such that

mP
(1 ye-esjop) EAGP) =1

< cLip? B[ (Hi(x) — Hi(y))*). (6.10)

; % 2p] 1/(29)
Bl - F)®) < o X TIB| (o) - ot )" (6.9)

Proof. For the first inequality, direct calculation gives

E[(F@) - FO)*] = Y. E{ Wl,ﬂ] E[H (o, (@) —o(Hﬁ(y»)]
(=1

J15--5J2p=1 = /—1
2p 2p

= X eIl e[l (et - otmmn)]
(G1,rjap) AP =1 =1

which follows since W;; are independent and have mean zero. From this (6.9) easily follows by
Holder’s inequality.
As H has identically distributed entries, we see that (6.9) satisfies,

: 1 2p 1/(2p)
mp Z HE|:<U(H]'Z(:E)) _U(ng(y))> :|
(j1,0mrjop) EAZP) =1

v ]E[(a(Hl(x)) - a(Hl(y)))Qp],

< B (ot ~ o).

where the last inequality follows because A,(ﬁ,” )‘ = O(mP), with a constant depending only on p.
The upper bound (6.10) now easily follows, since o is Lipschitz. O

6.1 Wj bounds for wide random neural networks: Proof of Theorem 1.2

Combining the previous results, we can now prove our main theorem for wide random neural
networks.
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Proof of Theorem 1.2. The proof proceeds by induction on £ =2, ..., L for the hypotheses that
there is a constant ¢ (which may change from line to line) depending only on (cq(,}m) cl()m), BmH)EL

n,p and o(0) such that

dy (FO,G0)
S N\ (0= B)/(0=2) 460 +2) - |
(1 4 Liph)! (m+1< m+) log<nm/nfn+1>) I EIWO o,

,_n

m=1 j=m+1
(6.11)
and
E[(G\(z) - GO (9)%] < cLip?Vd(z, )%, i=1,...,ny, (6.12)
and finally
E[|o(G —b)|2.] < e (1 +Lip,)%, i=1,...,ns. (6.13)

We first note that the bias b plays no role in the bound and can be set to zero. The reduction
is obvious for (6.12) and (6.13), since we can write G() = G +p() with G®) a Gaussian process
independent of b), having covariance C¥) (z,y) = CO(z,y) —1,,c®. To see why we can also make
this simplification for (6.11), assume that this inequality holds for F® and G when the biases are
zero. Define F) = F(O) 4+ p() and GO = GO + b®), where the summands are independent. For
any Lipschitz ¢ : C(S§";R"?) — R we have, by independence, that

IE[C(FO)] — BIC(GD)]| = |BIC(FO +50) — (GO + 0] = |[EL(FD) — (G|

where

C(f) = E[C(f + b)),
which is 1-Lipschitz, since
C(F) = C9)| = |B[¢(f +02) = ¢(g + )] | < [If = glloo-

Hence Wasserstein bounds in the case where the biases are non-zero are upper bounded by those in
the zero bias case. Note that eliminating the biases b©) in this manner requires them to be Gaussian,
as otherwise the process G¥) may not be Gaussian.

We now begin the proof of the base case, £ = 2. We first show (6.12), as well as some other
related moment bounds used to show (6.11). We start by applying (6.10) from Lemma 6.2 with

W =w",H = F" and m = ny, to find
E[(F? (2) - FP )] < cLin? B[ (F" (2) - F{" () ].

Applying (6.9) from Lemma 6.2 with W = Wl(?), H(xz) =z and m = ng, and o there equal to the
identity, we obtain

2p ng 2p
Bl(FV@) W) <c > [Ilw—wl<e Y Tl —ul

(F1seerzp) AP £=1 Jueenjzp=11=1
nQ 2p
2
= C(Z’fﬂj - yj!) <dlz —yly” < cd(z,y)®
j=1
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where the last inequality holds as ||z — y||2 < d(z,y). Thus, we have shown
EB[(F?(2) - F ()" < cLipa(e, ). (6.14)

Letting the variance of Fl(Z) (x) — F2(2) (y) be denoted 72, as the first and second moments of
G?) match those of F1(2), we have in particular that GgQ) (x) — ng) (y) ~ N(0,72), and with
cp=2p—1)x(2p—3)...x3x 1, using Jensen’s inequality and (6.14) we obtain

(@) - 6 )] = e
= ¢, (BI(FP (2) - B ()]

"< e B(FP(2) — F? (4))%) < cLip?d(z, y)?. (6.15)

The same inequalities holds for all indices ¢ = 1,...,n9 since the coordinates all have the same
distribution. Thus, we have established (6.12) for ¢ = 2.

Now turning to (6.11), we bound ||F(®) (2)Hoo, |G G(2)||oo, and d]—‘(F(Q) G®) and then
invoke Theorem 1.1. Using (6.14) and (6. 10) in Lemma 5.3 applied to F( /Lip, and G® /Lip,
implies that

max{E[|F® — F?|| ., E|G?® - ¢?)|} < < cLipy/mz 275 /log(1/2). (6.16)

The right-hand side of inequality (2.12) of Theorem 2.9 with k = 2 and d = n2 gives an upper
bound on the amount by which (. s needs to be scaled in order to satisfy the second derivative
condition in (1.1) and be an element of F. Noting that G(!) is continuous with i.i.d. coordinate
processes, we can apply Lemma 6.1 with F' = FO H=GW, n=nyand m =nq to find

E[¢. 5(FP)] = BIC. (G| < ¢6-2e720+0) ()32 ()34 | 3 ”3/2. 6.17
|E[¢s(F@)] - B¢ s(GP)]| < () (BO) B[lo(G] ””m (6.17)

To bound E[HO’(G&U)HEO], since o is Lipschitz, for a fixed y € 8™ and any « € §", we have

(@ (@) — (@1 W))| +10(GM () — 7(0)] + |o(0)]
Lip, (wgem (m) + G )]) + | (0)],

where w 1) (0) denotes the modulus of continuity of Ggl) at level 6; see Definition 5.1. Taking the
1

supremum over x implies
[ < Ling + 1) (wgen () + G )] + o (0)]). (6.18)
Because G (y) = WOy, it is easy to see that
E|o(G)]I%,] < (Lip, + 1) (6.19)

Substituting this upper bound into (6.17) and combining with (6.16) in Theorem 1.1 implies

1

2
dw(F®, G?) < e(Lip, + 1)3/n2 ( 2070 /log(1/e) + 6 + 6~ 25—2<”+L>;i).
ni
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Choosing
4\ 1/6 4\ 1/(B(1—-3)+4(n+e))
§ = 3t (nz> and ¢ = <nQ> ’

we have shown that

nd\ (1=3)/(6(1=3)+8(n+0))
w(F 2, 6%) < oftip, + 1)y 2) log(m/n3).
1
For (6.13), in exactly the same way as (6.18), we have for any y € S,
2 . 2
[0(G1(@))] < (Lipg + 1) (wie () + G (9)] + [0/(0)]). (6.20)

But (6.12) and Proposition 5.2 together imply (scaling by Lip,) that Elw,, @ (m)3] < e(Lip, + 1)3.

1
Because Gg ) is Gaussian, we have that

E[|GP ()] = 2v/2/7 Var(GP ()2,
and, by definition and using (6.19),
Var(GP (y)) = D E[o (G (1))?] + iV < e(Lip, + 1)2.

Thus
2 .
E[|o(G)|]P] < e(Lip, +1)°,

and the base case is established.

For the induction step, assume (6.11), (6.12), and (6.13) for some ¢ > 2; we show these three
conditions are satisfied when ¢ is replaced by ¢+ 1. For (6.12), we have from the definition of the
covariance C(+1) of GUH1) that

EUG$”@»—G%”@»ﬂ:cEKqG@@»—J«#NwDT
< cLip? B[ (61 (@) - 61 ()]
cmﬁ%mw%

where the first inequality uses that ¢ is Lipschitz, and the second step the induction hypothesis. As
GU+1) is Gaussian, we now also have that

EB[(G1 () - G w)™] < cLivZra(z, y)*, (6.21)

thus advancing the induction hypothesis for (6.12).
Now turning to (6.11), we first define an intermediate random field

FED .= whq(q®), (6.22)
where we take G to be independent of W) . By the triangle inequality, we have
dyy (FED, GURD)) C dyy (FED, FERD) 4 g, (BEHD | GUED). (6.23)
By definition, for the first term

dw (FED FEDY = dyy (WO (FO), WO (G1)), (6.24)
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The function C(f) = E[Q(W(Z)a(f))] satisfies

[C() = S| < E[IWOlop] Livg £ — glloc.
and so the independence of W® from F®) and G implies (6.24) is upper bounded as
dw (FED FEDY < E[||WO)|op] Lip,dw (FO, GO). (6.25)

Now working on the second term of (6.23), we apply Theorem 1.1 and bound ||ﬁ(£+1) —E(HD || oos
IGED — G| o, and de(FUD, GE+D). By (6.10) of Lemma 6.2 with W = Wl(f), H=aG®"

and m = ny, we have
E[(FI(HD (z) — F1(€+1)(y))2p} < CLinpE [(Ggf) (z) — Gg@) (y))Qp] < CL1p2pZd(l’,y)2p

where the last inequality holds via the induction hypothesis (6.12). In conjunction with inequal-
ity (6.21) for GU*+Y | Lemma 5.3 (applied after scaling by Lip’) now implies that

max{B[|F) — FED | BIGED — G| L) < eLip g e? 7 Viog(1/e).  (6.26)

Now, Lemma 6.1 with F' = FHD and H = G noting that G is continuous with i.i.d. coordinate
processes, implies

3/2
- n
d (F, 60) < ()2 (BO) B[l )22
3/2 (1 (0) 3/4“%21
: 3¢/ .(0)
<(1+Llp0) (Cw) (B ) \/TTZ’

where we have used the induction hypothesis (6.13) in the final inequality. Applying this inequality
along with (6.26) in Theorem 1.1 yields

dyw (FED GEHDY < (1 + Lip, )3 /me <5 2g=2(nt) jﬂ T \/log(l/a)—i—é), (6.27)
Ty

and choosing

o 2 (M O (k| V0T
Ny Ny

gives

(1=5)/(6(1=3)+8(n+1))

P

4
dw(FEHD, gDy <1 + Lipa)?’e\/%(?) log(ne/ni1)-
l

Using this bound and (6.25) in (6.23), and applying the induction hypothesis (6.11) advances the
induction for (6.11).

Finally, advancing the induction for (6.13), i.e., bounding E [HJ(G(IZH))HS] < ¢ (Lip, + 1)3¢+1),
follows in exactly the same way as for the base case, starting at (6.20). O
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6.2 Improved W; bounds: Proof of Theorem 1.4

This subsection proves Theorem 1.4, showing the rate improvement under the additional assumption
that o has three bounded derivatives. The rate improvement illustrated in Remark 1.5 comes from
the fact that for the induction steps, we work with the smooth metric d, and only smooth at the
final layer, rather than at each layer of the induction in the dyy metric; compare (6.27) and (6.28).

Theorem 6.3. Assume that o has three bounded derivatives, and let the weights satisfy the

moment condition in (1.3). Recalling the definition of B, from (1.5), for any L > 2, there exists a

positive constant ¢, depending only on (c,(f),cl(2 ),B(Z))gzo,n,p, and ||0™ ||, k = 1,2,3, such that

dr(FH),GW) < ey

Proof. The proof follows by an induction similar to that in the proof of Theorem 1.2. For the base
case L = 2, first note we can again set b2 = 0, since if ¢ € F, then straightforward considerations
imply ¢(f) := E[C(f +bP®))] € F. Thus, for G® — b2 and F® = F?) — 52 we have

[EE®)] - E[¢(GP)]] = [ELED)] - E[¢(G?)]],

and so it is enough to bound the right-hand side for generic Z € F. With this simplification, we can
apply Lemma 6.1 with m = ny and n = ny to find
3/2 3/2
<c
where the last inequality follows from (6.19), which states IE[HU(G%D)H‘EO] <ec.

To advance the induction, assume the bound on dxz(F @, G(f)). In exactly the same way as
above, we can assume b(®) = 0. Now, recall that in (6.22), we defined the intermediate random field

FED . g (a0,

dr(F®,GP) < (D)2 (BO) M E[o(G)]1%] "2

w

where G is independent of W® . The triangle inequality, as before, yields
dr (FHD, GERDY)  dp(FEHD | D) 4 g (FEHD GEFD),

and we again define the function Z(f) = E[C(W(K)O'(f))]. We need to argue that up to a con-

stant factor, Z € F. Starting with the first derivative and denoting component-wise (Hadamard)
multiplication by o, we first have

C(f +9) —ECWO(o(f) + ' (f) o g)]| < sup [[ DG (h WE|WE (a(f +9)—a(f) =o' (f) o g)|

< sup |[DC(R WEIW O lopllo”locll9llZ-

Combining the above display with a direct Taylor-like computation, we next have that

((f+g) —C(f)

=K o2 D2<(W(e)(0'(f) + Sto'/(f) 1) g)) [W(f) (O'I(f) o g)7W(€) (O'/(f) o g)]Leb(ds,dt)

+ B[ DCW Do) [WO (o' (£) 2 9)]] + O(llglI%)
=E[DCW o (N)[WO (o' (1) 2 9)]| + O(llgl).
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so that
DC($)lg) = E[DEW o (£) [WO (' (£) 0 9)] |.

Since supy, [[DC(h)[| < 1, it follows that

sup IDCAIN < N0 |0 BIT 0p.

Similar but more onerous computations show
DX(f)lg™, 9?1 = B[DX(W (/) [WO (o () 0 gM), WO (' (£) 0 g)]
+E[D{W o (1) [WO (0" (1) 0 gV 0 g)] .

so that B
sup D)< o B[ I3, |+ o loe B o <

Finally, some straightforward but space-consuming manipulations, using in particular that

1D2¢(R)[g™M, 9] <3[9 oo llgP e D¢ ()],
from Barbour et al. (2023, Lemma 2.4), imply that
|D*(h) — D*((1)]
If = 2l
Hence, using the independence of W® with F© and G we have

dr(F FUD F(”l)) < ¢ max{1, [|W(Z (s o) HdrF (F(Z G“))

<e max{l, ]E[HW(Z) ”gp] }

and the proof now follows as that for Theorem 1.2, mutatis mutandis.

We are now ready to prove Theorem 1.4, using Theorem 1.1. Compared to the proof of Theorem 1.2,

O

the specific choice of the smoothing and regularization terms, € and 9 are different, resulting in the

required rate improvement.

Proof of Theorem 1.J. We apply Theorem 1.1, with F = F(X) and W = GY), and hence with

d = nr. Applying Lemma 5.3, using induction with (6.10) and (6.14), we have that
E|F®) — F Vo < cyag 25 y/log(1/e),
and the same bound also holds for E||G() — G |loo- From Theorem 6.3, we have
dr(FH,GW) <epy.
Putting everything together, we have
(PO, G) < ey (Vi 5,022 1 07D fiog(1/2) +).
Picking ¢ and § as

5= 8—2(n+L)/3(nLﬁ%)l/6 c— (nLﬁ%)l/(gu—g)H(nﬂ))

b

we obtain the desired result.
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