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Abstract
Tabular data prediction has been employed in med-
ical applications such as patient health risk predic-
tion. However, existing methods usually revolve
around the algorithm design while overlooking the
significance of data engineering. Medical tabular
datasets frequently exhibit significant heterogene-
ity across different sources, with limited sample
sizes per source. As such, previous predictors are
often trained on manually curated small datasets
that struggle to generalize across different tabular
datasets during inference. This paper proposes to
scale medical tabular data predictors (MediTab)
to various tabular inputs with varying features. The
method uses a data engine that leverages large lan-
guage models (LLMs) to consolidate tabular sam-
ples to overcome the barrier across tables with dis-
tinct schema. It also aligns out-domain data with
the target task using a “learn, annotate, and refine-
ment” pipeline. The expanded training data then
enables the pre-trained MediTab to infer for ar-
bitrary tabular input in the domain without fine-
tuning, resulting in significant improvements over
supervised baselines: it reaches an average ranking
of 1.57 and 1.00 on 7 patient outcome prediction
datasets and 3 trial outcome prediction datasets, re-
spectively. In addition, MediTab exhibits impres-
sive zero-shot performances: it outperforms super-
vised XGBoost models by 8.9% and 17.2% on av-
erage in two prediction tasks, respectively.

1 Introduction
Tabular data are structured as tables or spreadsheets in a re-
lational database. Each row in the table represents a data
sample, while columns represent various feature variables of
different types, including categorical, numerical, binary, and
textual features. Most previous papers focused on the model
design of tabular predictors, mainly by (1) augmenting fea-
ture interactions via neural networks [Arik and Pfister, 2021],
(2) improving tabular data representation learning by self-
supervised pre-training [Yin et al., 2020; Yoon et al., 2020;
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Figure 1: MediTab vs. existing tabular prediction methods.
Existing methods learn and predict on a per-dataset basis, while
MediTab can use data from the target task and all other tasks to
improve performance.

Bahri et al., 2022], and (3) performing cross-tabular pre-
training for transfer learning [Wang and Sun, 2022b; Zhu
et al., 2023]. Tabular data predictor was also employed in
medicine, such as patient health risk prediction [Wang and
Sun, 2022b; Ma et al., 2023], clinical trial outcome predic-
tion [Fu et al., 2022], modeling Electronic Health Record
(EHR) data [Ma et al., 2020; Gao et al., 2024], and uni-
fying heterogeneous EHRs via text embeddings [Hur et al.,
2022]. Additionally, LLMs can sample synthetic and yet
highly realistic tabular data as well [Borisov et al., 2022;
Theodorou et al., 2023].

Despite these significant advances, it is worth noting that
the data-centric approaches have received comparatively less
attention in prior research. Some prominent examples lie in
the detection and mitigation of label noise [Wang et al., 2020;
Northcutt et al., 2021], but they only address a fraction of
the challenges in medical tabular data prediction. As illus-
trated in Figure 1, there is typically substantial heterogeneity
among different data sources in medical data, and within each
data source, the available sample sizes are small. Harnessing
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multi-source data requires extensive manual effort in terms of
data cleaning and formatting. As such, current medical tab-
ular prediction methods are often built on small handcrafted
datasets and, hence, do not generalize across tabular datasets.

In this paper, we embrace a data-centric perspective to en-
hance the scalability of predictive models tailored for medi-
cal tabular data. Our core aim revolves around training a sin-
gle tabular data predictor to accommodate inputs with diverse
feature sets. Technically, our framework, namely MediTab,
encompasses three key components: data consolidation, en-
richment, and refinement modules:
• Data consolidation and enrichment involves consolidat-

ing tabular samples with varying features and schemas us-
ing natural language descriptions. We also expand the
training data by distilling knowledge from large language
models and incorporating external tabular datasets.

• Data refinement rectifies errors and hallucinations intro-
duced during the consolidation and enrichment stages. It
also aligns a diverse set of tabular samples with the target
task through a distantly supervised pipeline.
As illustrated in Figure 1, MediTab offers the advantages:

• Multi-task learning and prediction: the model can learn
from and make predictions for multiple medical tabular
datasets without requiring modifications or retraining.

• Few-shot and zero-shot learning: the model can quickly
adapt to new prediction tasks using only a small amount of
training data or even make predictions for any new tabular
input when no training data is available.
In Section 2, we provide a detailed description of our ap-

proach. We present the experimental results in Section 3,
where we demonstrate the effectiveness of our method on 7
patient outcome prediction datasets and 3 trial outcome pre-
diction datasets, achieving an average performance ranking
of 1.57 and 1.00, respectively, across tabular prediction base-
lines. Furthermore, our method shows impressive few-shot
and zero-shot performances that are competitive with super-
vised baselines: the zero-shot MediTab outperforms super-
vised XGBoost by 8.9% and 17.2% on average in two pre-
diction tasks, respectively. We discuss related work in Section
4 and conclude our findings in Section 5.

2 Method
2.1 Problem Formulation
We characterize tabular prediction tasks by dataset D and
task T, where a task T = {D1,D2, . . . } consists of multiple
in-domain datasets with varying features and schema but the
same target label. For example, the patient mortality predic-
tion task contains samples from many clinical trials (where
input features differ between trials). For T1, the datasets
from other tasks T2,T3, . . . are considered out-domain since
they differ in prediction objectives. As illustrated by Figure
1, existing methods for tabular prediction fall short in transfer
learning across datasets, as each model learns from a single
dataset D and needs to learn from scratch when encountering
new datasets. On the contrary, MediTab extends the training
data to all available tasks T = {T1,T2, . . . }, demonstrat-
ing its flexibility to encode and predict for arbitrary tabular

samples. After training, it serves all D ∈ T1 without fur-
ther fine-tuning. Our method eliminates the need to keep as
many models as datasets, paving the way for the efficient and
streamlined deployment of tabular prediction models. De-
pending on the use case, the problems that our method can
handle can be classified into the following categories.

Problem 1 (Multi-task learning (MTL)). MTL is a machine
learning technique where a single model is trained to perform
multiple tasks simultaneously. Define f : X 7→ Y as a model
that takes a consolidated tabular sample x as input and pre-
dicts the target label y. The training dataset is formed by
combining all the tabular inputs in D∗ ∈ T. Once trained,
the model f is fixed and can be used to make predictions on
any new samples x ∼ D, ∀D ∈ T.

Problem 2 (Zero-shot/Few-shot learning). The model f is
trained on T = {D1, . . . ,DN}. Then, it makes predictions
for a new dataset DN+1 that has not been included in the
training data. Model f performs zero-shot learning if no la-
bel is available for all samples in DN+1; Model f performs
few-shot learning to predict for DN+1 if a few labeled sam-
ples are available.

2.2 The MediTab Framework
As illustrated in Figure 2, our method consists of:
Step 1: Tabular Data Consolidation. The tabular datasets
D differ in their features, schema, and particularly in their
target objectives if they are from distinct tasks T. The con-
solidation is accomplished by converting each row of the ta-
ble into natural language descriptions that consider the data
schema. This conversion process transforms all tabular data
into text data that share the same semantic space, enabling
them to be utilized in language modeling. Additionally, we
can produce diverse consolidated samples by describing one
sample in multiple different ways, which allows for data aug-
mentation. To prevent hallucinations that may occur during
this transformation, an audit module that utilizes LLMs is em-
ployed to perform self-check and self-correction. Our goal
of patient survival classification is the same for each dataset;
however, we use a diverse number of datasets, so the task is
indeed different.
Step 2: Learn, Annotate, & Audit. Our method can benefit
from out-of-domain datasets T∗ ∈ T through our annotation
and data importance pipeline. Once it is trained on T1, it
is used to produce pseudo labels for samples from all other
tasks, which yields a big but noisy supplementary dataset
T̃1,sup. This dataset is further cleaned by a data audit mod-
ule based on data Shapley scores, leading to a smaller but
cleaner dataset T1,sup.
Step 3: Learning & Deployment. The final prediction
model learns from the combination of the original task 1 data
T1 and the supplementary data T1,sup. The resulting multi-
task model fMTL can be used for all datasets D∗ ∈ T1 with-
out any modifications. Furthermore, the model can predict
on new datasets D ∈ T in a zero-shot manner and perform
few-shot learning for any D ∈ T or D /∈ T. (Note that
the primary purpose of the pseudolabels is to facilitate train-
ing the zero-shot and few-shot models, and are not meant to
improve the performance of the original model.)
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Figure 2: The demonstration of scaling medical tabular data predictors models (MediTab). It encompasses three steps: Step 1 consolidates
tabular datasets using LLM; Step 2 aligns out-domain datasets with the target task; Step 3 facilitates the predictor with cleaned supplementary
data. More details are presented in Section 2.2.

We will elaborate on the technical details of these steps in
the following sections.

2.3 Tabular Data Consolidation & Sanity Check
The primary challenge in scaling medical tabular data pre-
dictors is the scarcity of large datasets with standardized
schemas, as reflected in the sample data below.

age gender height weight . . . mortality
18 f 1.7 60 . . . 0
demo1 demo2 demo3 ae1 ae2 . . . target
25 160 0 0 1 . . . 14

Existing tabular prediction models often struggle on these
datasets due to the vague semantic meanings of the varying
columns and values. Our approach is to transform each row
into natural language sentences that describe the sample us-
ing generative language models like GPT-3.5. Specifically,
we combine the linearization, prompting, and santity check
steps to obtain input data that the language model can use to
generate coherent and meaningful natural language descrip-
tions.
Linearization. A function linearize(c,v) takes the col-
umn names c and the corresponding cell values v from a
row as the input, then linearizes the row to a concatenation
of paired columns and cells {c : v}. Notably, we identify
sparse tabular datasets that have many binary columns. In lin-
earization, we exclude binary columns that have a cell value
of False and only include those with positive values. This
approach has two key benefits. First, it ensures that the lin-
earized output does not exceed the input limit of language
models. Second, it helps in reducing hallucinations arising

from failed negation detection during the generation process
of the LLMs. An ablation on the different types of tabular-to-
text serialization, shown in Table 10 in the Appendix, shows
that audited examples improve performance via augmenta-
tion. We believe that this performance benefit is useful, and
serves to justify our usage of more advanced paraphrasing
and auditing techniques.
Prompting. We combine the linearization with pre-
fix p and suffix s to form the LLM prompt as
(p,linearize(c,v), s). The schema definition is added
to p to provide the context for LLM when describing the
sample. For each column, we provide the type and explana-
tion as {column}({type}): {explanation} (e.g.,
“demo1(numerical): the age of the patient in years.”). The
suffix s represents the instruction that steers LLM to describe
the target sample or generate paraphrases for data augmen-
tation. We describe the specific prompt templates we used
in Appendix C.1 and display some consolidated examples in
Appendix C.2.

The text descriptions x are hence sampled from LLMs by

x ∼ LLM(p,linearize(c,v), s). (1)

The paired inputs and target {x, y} will be the training data
for the tabular prediction model f . We can adjust the suf-
fix s in Eq. 1 to generate multiple paraphrases of the same
sample as a way for instance-level data augmentation. Some
instance-level augmentation examples are available in Ap-
pendix C.3.
Sanity Check via LLM’s Reflection. To reduce low-quality
generated samples, a sanity check function evaluates the fi-



delity of the generated text x to address potential hallucina-
tions or loss of information that occurs during the translation
process {c,v} → x in Eq. 1, particularly for numerical fea-
tures. Specifically, we query LLM with the input template
“What is the {column}? {x}” to check if the an-
swer matches the original values in {c,v}. The descriptions
are corrected by re-prompting the LLM if the answers do not
match. We provide some examples of sanity checks in Ap-
pendix C.4, and the quantitative analysis of this correction is
available in Appendix C.5.

2.4 Data Enrichment & Refinement
Through the consolidation and sanity check process, we are
able to aggregate all tabular samples {x, y} from the target
task T1 and train a prediction model. We can use the dataset
T1 to train a multi-task learning model, denoted as fMTL,
which can be applied to all datasets within the task. Neverthe-
less, there still lacks a route to leverage data from out-domain
tasks T∗ ∼ T , ∀T∗ ∈ T \ {T1} for data enrichment. It is
particularly valuable for low-data applications such as health-
care, where there may only be a few dozen data points for
each dataset. Specifically, we propose to align out-domain
task datasets via a learn, annotate, and audit pipeline for data
enrichment.
Learn and Annotate. We train an initial model fMTL on all
available training data from T1 (we will omit the subscript 1
from now on to avoid clutter). The model fMTL then makes
pseudo labels for a set of external samples that are retrieved
from all other tasks T \ {T}, formulating the noisy supple-
mentary data T̃sup = {(xi, ỹi)}: xi are consolidated textual
description samples and ỹi are noisy labels that are aligned
with the objective format of the target task.
Quality Audit. It is vital to audit the quality of noisy training
data to ensure optimal prediction performance. To this end,
we clean T̃ by estimating the data Shapley values for each in-
stance [Ghorbani and Zou, 2019]. We denote the value func-
tion by V (S), which indicates the performance score evalu-
ated on the target task T of the predictor trained on training
data S. Correspondingly, we have the data Shapley value ϕi

for any sample (xi, ỹi) ∈ T̃ defined by

ϕi = C
∑

S⊆T̃\{i}

V (S
⋃
{i})− V (S)(
n−1
|S|

) , (2)

where the summation is over all subsets of T̃ not with sample
i; n is the number of samples in T̃; | · | implies to the size
of the set; C is an arbitrary constant. Intuitively, ϕi measures
the approximated expected contribution of a data point to the
trained model’s performance. Therefore, a sample with low
ϕ is usually of low quality itself.

Computing the exact data Shapley value with Eq. 2 re-
quires an exponentially large number of computations with
respect to the number of train data sources. Instead, we follow
[Jia et al., 2021; Jia et al., 2019] to use K-Nearest Neighbors
Shapley (KNN-Shapley), which offers an avenue for efficient
data Shapley computation. Moreover, we are able to achieve
a 10× speedup by parallelizing the algorithm, which com-
pletes computing scores for 100K+ samples in minutes. Upon

acquiring Φ = {ϕi}, we execute a representative stratified
sampling corresponding with the distribution of the sample
classes to establish the cleaned supplementary dataset Tsup.
Appendix G explores the Shapley value and pseudolabel dis-
tributions of different supplemental datasets.

2.5 Learning & Deployment
After the quality check step, we obtain the original task
dataset T and the supplementary dataset Tsup and have two
potential options for model training. The first is to combine
both datasets for training, but we have found that this ap-
proach results in suboptimal performance. Instead, we em-
ploy a two-step training approach: (1) pre-train the model
on Tsup, and (2) finetune the model using T. The resulting
model will be deployed to provide predictions for any tabu-
lar samples belonging to the target task. Because the model
trained on the supplementary model has not seen any exam-
ples from the original dataset, it can make zero-shot predic-
tions for the test samples from a new dataset D′ /∈ T or adapt
to a new task T′ via few-shot learning when a few labeled
data are available. Due to the small number of samples in
some datasets, we thought it would be best to use all possi-
ble training samples in the learning phase, without leaking
information in the testing phase. As the label distribution is
highly skewed, it may also bias our model if validation sam-
ples were chosen randomly, and we did not have the expertise
to choose a representative sample. In our case, we chose to
simply train the model for 3 epochs on all of the datasets, and
then perform a single pass of fine-tuning, without significant
hyperparameter optimization, due to the small amount of data
and the good performance that it gives.

3 Experiments
We conduct an extensive evaluation of MediTab’s perfor-
mance in supervised learning (Q1), few-shot learning (Q2),
and zero-shot prediction (Q3). We also compare the differ-
ent training strategies for the final deployment of our method
(Q4).

3.1 Experimental Setting
Datasets: In our experiments, we introduce the following
types of tabular prediction tasks. Patient Outcome Datasets.
This dataset includes the patient records collected separately
from seven oncology clinical trials 1. These datasets each
have their unique schema and contain distinct groups of pa-
tients in different conditions. A CTGAN model [Xu et al.,
2019] was trained on the raw data to generate the synthetic
patient data for the experiments. We train the model to
predict the patient’s morbidity, which is a binary classifica-
tion task. The statistics of the datasets are available in Ta-
ble 1. Clinical Trial Outcome Datasets. We use clinical
trial data from the HINT benchmark [Fu et al., 2022] and
ClinicalTrials.gov 2. The HINT benchmark contains
drug, disease, and eligibility information for 17K clinical tri-
als. The trial database contains 220K clinical trials with in-
formation about the trial setup (such as title, phase, enroll-

1https://data.projectdatasphere.org/projectdatasphere/html/access
2https://clinicaltrials.gov/



Table 1: The statistics of Patient Outcome Prediction Datasets. # is short for the number of. Categorical, Binary, and Numerical show the
number of columns belonging to these types. N/A means no label is available for the target task. We used 20% of the data for testing.

Trial ID Trial Name # Patients Categorical Binary Numerical Positive Ratio Train/Test Split

NCT00041119 Breast Cancer 1 3,871 5 8 2 0.07 3096 / 775
NCT00174655 Breast Cancer 2 994 3 31 15 0.02 795 / 199
NCT00312208 Breast Cancer 3 1,651 5 12 6 0.19 1320 / 331
NCT00079274 Colorectal Cancer 2,968 5 8 3 0.12 2374 / 594
NCT00003299 Lung Cancer 1 587 2 11 4 0.94 469 / 118
NCT00694382 Lung Cancer 2 1,604 1 29 11 0.45 1283 / 321
NCT03041311 Lung Cancer 3 53 2 11 13 0.64 42 / 11

External Patient Database

MIMIC-IV 143,018 4 1 1 N/A
PMC-Patients 167,034 1 1 1 N/A

Table 2: The statistics of the Clinical Trial Outcome Datasets. # is short for the number of. N/A means no label is available for the target task.

Dataset # Trials # Treatments # Conditions # Features Positive Ratio Train/Test Split

TOP Benchmark Phase I 1,787 2,020 1,392 6 0.56 1136 / 575
TOP Benchmark Phase II 6,102 5,610 2,824 6 0.50 4317 / 1504
TOP Benchmark Phase III 4,576 4,727 1,619 6 0.68 3359 / 1048

ClinicalTrials.gov Database

Phase I-IV 223,613 244,617 68,697 9 N/A

ment, conditions, etc.). Both datasets cover phases I, II, and
III trials, but only the HINT benchmark includes the trial out-
come labels in {success, failure}. We have also included the
MIMIC-IV dataset and PMC-Patients dataset as the external
patient database and clinical trial documents as the external
trial outcome prediction dataset. Please refer to Appendix D
for details.
Implementations: For the patient outcome prediction task,
we choose a tree ensemble method (XGBoost) [Chen and
Guestrin, 2016a], Multilayer Perceptron, FT-Transformer
[Gorishniy et al., 2021], TransTab [Wang and Sun, 2022b],
and TabLLM [Hegselmann et al., 2022] as the baselines. For
the trial outcome prediction task, we choose XGBoost, feed-
forward neural network (FFNN) [Tranchevent et al., 2019],
DeepEnroll [Zhang et al., 2020], COMPOSE [Gao et al.,
2020], HINT [Fu et al., 2022], and SPOT [Wang et al.,
2023b] as the baselines. We use PyTrial [Wang et al.,
2023a] to implement most baselines and provide the parame-
ter tuning details of the selected baselines in Appendix E.

We use a pre-trained bidirectional transformer model
named BioBERT [Lee et al., 2020] as the classifier for
MediTab. We utilize GPT-3.5 [Brown et al., 2020] via Ope-
nAI’s API 3 for the data consolidation and enhancement. We
use UnifiedQA-v2-T5 3B [Khashabi et al., 2020] 4 for the
sanity check. The evaluation metrics selected are ROC-AUC
and PR-AUC, with the details in Appendix F. Further abla-
tions on base model choice is shown in Appendix H. All ex-

3Engine gpt-3.5-turbo-0301:
https://platform.openai.com/docs/models/gpt-3-5

4Huggingface: allenai/unifiedqa-v2-t5-large-1363200

periments were run with 2 RTX-3090 GPUs and AMD Ryzen
3970X 32-Core CPU.

3.2 Results on Patient Outcome Prediction and
Trial Outcome Prediction

We report the supervised results for patient outcome predic-
tion: the AUROC and PRAUC on the test sets of all clini-
cal trials, in Table 3. Note that we train a single classifier
for MediTab and predict on all datasets, while the base-
lines need to be trained on each dataset separately. Our find-
ings demonstrate that a single MediTab model achieves the
highest ranking in 5 out of 7 datasets, with an overall rank-
ing of 1.57 across all datasets. Conversely, MLP and FT-
Transformer fail to converge in certain cases due to imbal-
anced target labels (e.g., Lung Cancer 1) or limited avail-
ability of data (e.g., Lung Cancer 3). This highlights the
data-hungry nature of deep learning algorithms and empha-
sizes the importance of augmenting training data through data
consolidation and enrichment. Additionally, we observe that
TabLLM fails in both the single-dataset and multi-dataset set-
tings. We see thatonly the text-template serialization per-
forms poorly in this setting, with multiple datasets not con-
verging. The small amount of data and the clinical-specific
terms may be too niche for the general-purpose TabLLM.
Furthermore, it is not able to generalize across datasets, as
the column names are quite diverse (Table 5).
MediTab also leads to substantial improvements in trial

outcome prediction tasks, as illustrated in Table 4. Notably,
our approach outperforms all other methods in every phase
of the trials. We observe remarkable improvements of 5.9%,
9.5%, and 3.2% over the previous state-of-the-art baselines



Table 3: Test performances on the Patient Outcome Datasets. “-” indicates not converged.

Trial Name Metrics XGBoost MLP FT-Transformer TransTab TabLLM
(Single Dataset)

TabLLM
(Multi-Dataset) MediTab

Breast Cancer 1 AUROC 0.5430 0.6091 0.5564 0.5409 - - 0.6182
PRAUC 0.0796 0.0963 0.0803 0.0923 - - 0.1064

Breast Cancer 2 AUROC 0.6827 0.6269 0.6231 0.6000 - - 0.8397
PRAUC 0.1559 0.1481 0.0520 0.0365 - - 0.1849

Breast Cancer 3 AUROC 0.6489 0.7065 0.6338 0.7100 0.6163 0.6103 0.7529
PRAUC 0.3787 0.4000 0.3145 0.4133 0.3023 0.2977 0.4567

Colorectal Cancer AUROC 0.6704 0.6337 0.5951 0.7096 - - 0.7107
PRAUC 0.2261 0.1828 0.1541 0.2374 - - 0.2402

Lung Cancer 1 AUROC - 0.6023 - 0.6499 - - 0.7246
PRAUC - 0.9555 - 0.9672 - - 0.9707

Lung Cancer 2 AUROC 0.6976 0.5933 0.6093 0.5685 0.6188 0.6279 0.6822
PRAUC 0.6865 0.5662 0.5428 0.4922 0.5619 0.5772 0.6710

Lung Cancer 3 AUROC 0.6976 0.6429 0.5357 0.6786 0.8036 0.6786 0.8928
PRAUC 0.7679 0.8501 0.7250 0.7798 0.8256 0.7338 0.9478

Table 4: Test performances on the Clinical Trial Outcome Datasets.

Trial Data Metrics XGBoost FFNN DeepEnroll COMPOSE HINT SPOT MediTab

Phase I AUROC 0.518 0.550 0.575 0.571 0.576 0.660 0.699
PRAUC 0.513 0.547 0.568 0.564 0.567 0.689 0.726

Phase II AUROC 0.600 0.611 0.625 0.628 0.645 0.630 0.706
PRAUC 0.586 0.604 0.600 0.604 0.629 0.685 0.733

Phase III AUROC 0.667 0.681 0.699 0.700 0.723 0.711 0.734
PRAUC 0.697 0.747 0.777 0.782 0.811 0.856 0.881

in the three phases, respectively. This provides insight into
the benefits of increased data availability and the utilization
of transfer learning in deep learning-based tabular prediction
algorithms.

3.3 Results on Zero-Shot and Few-Shot Learning
We assess the zero-shot prediction capability of MediTab
on two tasks. For the evaluation of the dataset D, we delib-
erately exclude D from the training data during step 2, where
pseudo labels are generated for the external database. When
computing the data Shapley values for out-domain samples
during the quality check process, D is also excluded. Sub-
sequently, we train a model solely on the cleaned supple-
mentary data Tsup and evaluate its performance on the tar-
get dataset D. The results of this evaluation are illustrated
in Figure 3. MediTab exhibits impressive zero-shot perfor-
mances: it wins over supervised XGBoost models in 5 out of
7 datasets in patient outcome prediction and all three datasets
in trial outcome prediction by a significant margin. On aver-
age, MediTab achieves gains of 8.9% and 17.2% improve-
ments in the two tasks, respectively.

The encouraging zero-shot learning result sheds light on
the development of task-specific tabular prediction models
that can offer predictions for new datasets even before the
label collection stage. This becomes particularly invaluable
in scenarios where acquiring training labels is costly. For in-
stance, it enables us to predict the treatment effect of a drug
on a group of patients before conducting clinical trials or col-
lecting any trial records. Consequently, it allows us to make
informed decisions regarding treatment adjustments or trial
discontinuation.
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Figure 3: Zero-shot MediTab is better than a fully supervised
baseline (XGBoost). The evaluation is across 7 patient outcome pre-
diction datasets (left) and 3 trial outcome prediction datasets (right).
The compared baseline XGBoost model is fitted on each dataset, re-
spectively.

We further visualize the few-shot learning results in Fig-
ure 4. We witness consistent performance improvement with
more labeled training samples for both methods. Addition-
ally, for all tested cases, XGBoost is unable to surpass the
zero-shot score of MediTab.

3.4 Results on Ablations on Different Learning
Strategies

Section 2.5 discusses a two-stage training strategy for the fi-
nal learning & deployment stage. Here, we investigate the
different training regimens of our method: single-stage train-
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Figure 5: ROC-AUC Ranking (lower is better) of the variations of
MediTab.

ing (augment), two-stage training (finetune), training on
the original datasets from scratch (scratch), and zero-shot
(zeroshot). We list their rankings in Figure 5 and detailed
performances across datasets in the Appendix (Tables 7 and
8). Results show that finetune generally performs the
best. We conjecture that jointly training on the target task
and supplementary data improves the model’s overall utility,
but it may affect the performance of specific samples in the
target task T. Furthermore, we also identify that zeroshot
reaches comparable performances with scratch.

4 Related Work
Tabular Prediction has traditionally relied on tree ensem-
ble methods [Chen and Guestrin, 2016b; Ke et al., 2017]. In
recent years, the powerful representation learning abilities of
neural networks have motivated the new design of deep learn-
ing algorithms for tabular prediction [Arik and Pfister, 2021;
Kadra et al., 2021; Chen et al., 2023; Bertsimas et al., 2022].
They involve using transformer-based architectures [Huang
et al., 2020; Gorishniy et al., 2021; Wang and Sun, 2022a]
to enhance automatic feature interactions for better prediction
performances. In addition, self-supervised learning (SSL) has
been extended to tabular prediction tasks. This includes ap-
proaches such as generative pretraining objective by masked
cell modeling [Yoon et al., 2020; Arik and Pfister, 2021;
Nam et al., 2023], and discriminative pretraining objective
by self-supervised [Ucar et al., 2021; Somepalli et al., 2022;
Bahri et al., 2022] or supervised contrastive learning [Wang
and Sun, 2022b]. Moreover, transfer learning was also
adapted to tabular prediction, employing prompt learning
based on generative language models [Hegselmann et al.,
2022] and multi-task learning [Levin et al., 2023]. Multi-
task learning and transfer learning were also performed in the
medical domain for EHR-based predictive modeling [Hur et

al., 2023; Hur et al., 2022]. Nonetheless, these approaches
primarily focus on algorithm design, including model archi-
tecture and objective functions, often overlooking the engi-
neering of the underlying data.
Data-Centric AI underscores the importance of data for
building advanced machine learning prediction systems [Zha
et al., 2023]. Notable progress in the domain of tabular data
includes efforts to detect [Wang et al., 2020] and debug the
noises in labels [Kong et al., 2021]; automate feature selec-
tion [Liu et al., 2023]; and streamline feature generation [Su
et al., 2021]. Additionally, LM for finetuning on tabular data
has been proposed by [Dinh et al., 2022], but it uses strict
templates to create the sentence, which limits its expressivity.
These methods were proposed for general tabular data while
not covering the challenges of heterogeneity and limited sam-
ples in medical tabular data. Though there were efforts in en-
hancing medical codes in EHRs with text descriptions [Hur et
al., 2022], there is no further exploration on augmenting med-
ical tabular data that include more diverse features. In con-
trast, we present a data engineering framework designed to
consolidate diverse tabular datasets, by distilling the knowl-
edge from large language models with hallucination detection
and distilling from out-domain datasets with data auditing.
MediTab is hence able to build a versatile prediction model
for the target task.

5 Conclusion

In conclusion, we proposed a novel approach to train univer-
sal tabular data predictors for medical data. While there were
many efforts in developing new algorithms for tabular pre-
diction, the significance of data engineering has raised much
less attention. Specifically, medicine faces challenges in lim-
ited data availability, inconsistent dataset structures, and vary-
ing prediction targets across domains. To address these chal-
lenges, MediTab generates large-scale training data for tab-
ular prediction models by utilizing both in-domain tabular
datasets and a set of out-domain datasets. The key com-
ponent of this approach is a data engine that utilizes large
language models to consolidate tabular samples by express-
ing them in natural language, thereby overcoming schema
differences across tables. Additionally, the out-domain tab-
ular data is aligned with the target task using a learn, an-
notate, and refine pipeline. By leveraging the expanded
training data, MediTab can effectively work on any tabu-
lar dataset within the domain without requiring further fine-
tuning, achieving significant improvements compared to su-
pervised baselines. Moreover, MediTab demonstrates im-
pressive performance even with limited examples (few-shot)
or no examples (zero-shot), remaining competitive with su-
pervised approaches across various tabular datasets. A dis-
cussion on the ethical implications and limitations can be
found in App. A and App. B. Additionally, further ablation
on Data Shapley and Auditing can be found in App. H.
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A Broader Impact

Tabular data, which is commonly used in various fields such
as healthcare, finance, systems monitoring, and more, has re-
ceived less attention compared to other domains like vision,
language, and audio in terms of investigating the generaliz-
ability of its models. Non-deep algorithms, particularly tree-
based methods such as XGBoost and Random Forest, still
dominate the analysis of tabular data but generally be less
flexible in terms of their input features and the target task.
This research paper introduces MediTab, a framework that
creates a universal tabular model in a medical domain by
leveraging knowledge transfer from pre-trained LLMs.
MediTab excels in handling input tables with varying col-

umn numbers and leveraging publicly available unstructured
text in the domain, saving significant time and resources in
data engineering and cleaning. It enables knowledge trans-
fer from models trained on sensitive data and facilitates the
use of zero-shot models that match fully supervised baselines.
While further research is needed to generalize MediTab to
more application domains, it brings the promise of creating
general tabular models comparable to foundational models in
fields like CV and NLP.

We only use the publicly available, open-source, pre-
trained models from Huggingface as our base models and
baselines. This reduces the chance of data contamination and
improves safety and equity regarding access to our methods.
We evaluate across diverse datasets with different groups of
patients to ensure it does not perpetuate bias or disparities,
and all datasets are obtained, with permission, from Project
Data Sphere, Github, and clinicaltrials.gov (for trial outcome
prediction), where anyone can obtain the data for research
purposes. The only private model is ChatGPT, but that is a
current research direction we are looking into to further in-
crease transparency and reproducibility.

Importantly, it should be noted that we did not send any
private patient records, e.g., MIMIC-IV Physionet data, to
OpenAI because we do not augment these samples from the
MIMIC database, similarly for PMC-patients. As shown in
Table 1, there are two types of patient datasets used in the
paper: (1) dataset#1: clinical trial patient data and T (2)
dataset#2: the external patient database. Refer to Figure 2,
dataset#2 is used by MediTab in Step 2: Learn, Annotate, and
Audit, to get the cleaned data Tsup as the enrichment for the
target task dataset#1, where no sample was sent to LLM for
augmentation. Only samples in dataset #1 are consolidated
and augmented by LLM. The model was then pre-trained on
Tsup and fine-tuned on T .

To avoid leaking individual patient records from dataset
#1, we also did not send the raw clinical trial patient records
to OpenAI but made a synthetic version of them. Techni-
cally, we used a KNN-based algorithm to generate tabular
patient samples grounded on the real patient data, referring to
[Beigi et al., 2022]. In the future, we will develop an in-house
LLaMA2 paraphraser to avoid the privacy issue. We expect
the augmentation part can be replaced by local LLMs such as
LLAMA2-70B after instruction tuning, but we will leave it as
future work.



B Limitations
However, the current framework has drawbacks. Data pri-
vacy concerns arise if patient data is handled through an un-
secured server vulnerable to exploitation by malicious third
parties. To ensure safety, proper security procedures must be
followed. If resources permit, training a private model specif-
ically for paraphrasing would yield the safest outcome. An-
other issue is the tendency of language models to generate
hallucinated text. While metrics exist to measure the pres-
ence of original information, measuring the creation of new,
false information remains an open problem in NLP. Although
some hallucinations may aid downstream models in interpret-
ing table data, future research should include sanity checks to
minimize irrelevant hallucinations. Additionally, the explo-
ration of using external, supplemental datasets as vehicles of
knowledge transfer and/or distantly supervised data via data
Shapley is highly interesting and requires more exploration.
Future use cases may even reduce the risk of privacy leaks
by creating datasets from publicly available, open data, that
preserve the performance of models trained on more sensitive
data.

B.1 Future Work
Although we compared our method with state-of-the-art tab-
ular prediction methods including FT-Transformer, TransTab,
and TabLLM, future work should compare to prompting gen-
eralist LLMs for making predictions, such as GPT-4 and
Gemini Pro. Furthermore, almost most patient summaries in
our datasets fit into the context length, improving the context
limit of LLMs to improve our model’s capability of handling
long inputs is also a valuable research direction. Finally, ex-
ploring ways to enhance numerical medical data prediction,
as well as longitudinal data is also valuable for real-world ap-
plications.

C Data Consolidation and Augmentation:
More Details

C.1 Task Prompt Templates
To generate the desired text, we start by generating primitive
sentences that capture the essential information from the orig-
inal row of data. For categorical and numerical features, we
combine the feature name and its corresponding values into
a single sentence. For binary features, we include the fea-
ture name in the primitive sentence only if the value is True
to avoid generating false information. We then use GPT-3.5
to paraphrase these primitive sentences. Furthermore, these
texts are audited and corrected, resulting in a final text that
accurately represents the original data. An illustration of this
process can be found in Figure 6.

The prompt and suffix that we leverage to consolidate a
row are as follows:

Listing 1: prompt for data consolidation

prompt = ’ ’ ’
Here i s t h e schema d e f i n i t i o n o f t h e t a b l e :

{ s c h e m a d e f i n i t i o n }

T h i s i s a sample from t h e t a b l e :

{ l i n e a r i z a t i o n }

P l e a s e d e s c r i b e t h e sample u s i n g n a t u r a l
language .
’ ’ ’

If we want to augment the original samples by paraphras-
ing, we use the prompt as follows:

Listing 2: prompt for instance-level augmentation

prompt = ’ ’ ’
Here i s t h e schema d e f i n i t i o n o f t h e
t a b l e :

{ schema\ d e f i n i t i o n }

T h i s i s a sample from t h e t a b l e :

{ l i n e a r i z a t i o n }

P l e a s e p a r a p h r a s e t h e sample i n 5
d i f f e r e n t ways i n n a t u r a l
language .
’ ’ ’

C.2 Example Consolidations
Here are 7 examples of consolidations as given after the lin-
earization of the samples in the trial datasets (patient details
changed for clarity).

The columns are all quite diverse in terms of semantic
meaning, and we believe that traditional methods like data
imputation or renaming/removing would not apply here, as
we have fundamentally different features. Note that the fea-
tures for each dataset is as follows:

1. Breast Cancer 1: race,
post-menopause, human epidermal
growth factor receptor 2 is positive,
treatment, tumor laterality, estrogen
receptor positive, progesterone
receptor positive, cancer histologic
grade, prior hormonal therapy, prior
chemotherapy, biopsy type, sentinel
node biospy, axillary dissection,
number of positive axillary nodes,
tumor size

2. Breast Cancer 1: age, sex, adverse
effect: nausea, adverse effect:
vomiting, adverse effect: asthenia,
adverse effect: stomatitis, adverse
effect: infection, adverse effect:
pain, adverse effect: diarrhea,
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Figure 6: The paraphrasing pipeline shows an example of a specific patient. The raw tabular data (of varying schema) is converted to
unstructured natural language text by a first LLM and then audited by a secondary LLM with QA. Errors are then used to correct the initial
conversion. Patient features have been changed to preserve anonymity.

adverse effect: skin disorder,
adverse effect: dyspnea, surgery:
mastectomy, surgery: lumpectomy,
surgery: quadrantectomy/segmental,
multifocal tumor, histopathologic
grade, histopathologic type, tumor
size, number of positive axillary
lymph nodes, number of resected
axillary lymph nodes, estrogen
receptor positive, lab test:
hemoglobin, lab test: neutrophils,
lab test: platelets, lab test:
white blood cells, lab test:
asat (sgot), lab test: alkaline
phosphatase, lab test: alat (sgpt),
lab test: total bilirubin, lab test:
creatinine, height, weight, medical
condition: history of tobacco
use, medical condition: essential
hypertension nos, medical condition:
other bilateral destruction/occlusion
of fallopian tubes, medical
condition: obesity, medical
condition: penicillins causing
adverse effects in therapeutic use,
medical condition: asthma nos,
drug: dexamethasone, drug: zofran,
drug: navoban, drug: kytril, drug:
ondansetron, drug: tamoxifen, drug:
tropisetron, drug: betapred, drug:
novaban, drug: maxolon

3. Breast Cancer 3: age, adverse
effect: febrile neutropenia,
adverse effect: infection
(documented clinically), adverse
effect: infection without
neutropenia(specify), adverse
effect: vomiting, adverse effect:
nausea, anti-tumor therapy:

xeloda, anti-tumor therapy:
taxotere, anti-tumor therapy:
arimidex, anti-tumor therapy:
zoladex, anti-tumor therapy:
cyclophosphamide, number of resected
axillary node, numer of positive
axillary node, primary tumor
size, estrogen receptor positive,
progesterone receptor positive,
weight, height

4. Colorectal Cancer: adherence, age,
arms, serious adverse effect, bowel
obstruction, bowel perforation,
histology, ecog performance score,
race, sex, biomarker kras, bmi,
adverse effect: thrombosis, adverse
effect: hypersensitivity, adverse
effect: infarction, adverse effect:
diarrhea

5. Lung Cancer 1: age, ecog
performance status, gender, number
of chemotherapy cycles, treatment
arm, number of metastatic sites,
weight loss larger than 10%, adverse
effects: granulocytes/bands,
adverse effects: wbc, adverse
effects: lymphocytes, adverse
effects: other miscellaneous 1,
adverse effects: platelets, adverse
effects: hemoglobin, adverse
effects: dyspnea, adverse effects:
nausea, adverse effects: other
miscellaneous 2, adverse effects:
other neurologic

6. Lung Cancer 2: historical disease:
deep vein thrombosis, historical
disease: pulmonary embolism,
historical disease: antiandrogen



therapy, historical disease:
cardiac failure chronic, historical
disease: chronic respiratory
failure, historical disease:
venous insufficiency, historical
disease: coronary artery disease,
historical disease: myocardial
infarction, historical disease:
hypertension, historical disease:
peripheral arterial occlusive
disease, medication: dexamethasone,
medication: ondansetron, medication:
heparin, medication: fluorouracil,
medication: ranitidine,
medication: cisplatin, medication:
metoclopramide, medication:
carboplatin, medication: furosemide,
aderse effect: severe malignant
neoplasm progression, aderse effect:
severe neutropenia, aderse effect:
severe thrombocytopenia, aderse
effect: severe anaemia, aderse
effect: severe vomiting, aderse
effect: severe pneumonia, aderse
effect: severe diarrhoea, aderse
effect: severe abdominal pain,
aderse effect: severe sepsis,
aderse effect: severe leukopenia,
age, sex, lab test: hemoglobin,
lab test: leukocytes, lab test:
creatinine clearance, lab test:
creatinine, lab test: platelet,
lab test: bilirubin, lab test:
alanine aminotransferase, lab test:
aspartate aminotransferase, lab test:
neutrophils, lab test: alkaline
phosphatase

7. Lung Cancer 3: age, ecog
performance score, sex, height,
weight, brain metastasis, lactate
dehydrogenase isoenzymes test
abnormal, smoke status, adverse
effect: neutropenia, adverse effect:
anaemia, adverse effect: neutrophil
count decreased, adverse effect:
thrombocytopenia, adverse effect:
platelet count decreased, drug:
dexamethasone, drug: ondansetron,
drug: prednisone, drug: sodium
chloride, lab test: leukocytes
(109̂/l), lab test: hemoglobin (g/l),
lab test: platelets (109̂/l), lab
test: lymphocytes (109̂/l), lab
test: platelets/lymphocytes, lab
test: neutrophils (109̂/l), lab
test: neutrophils/lymphocytes, lab
test: monocytes (109̂/l), lab test:
eosinophils (109̂/l)

Note that the only variables that occur more than once are:
1. 6 occurrences: age
2. 4 occurrences: sex
3. 3 occurrences: weight, estrogen receptor positive, height
4. 2 occurrences: lab test: alkaline phosphatase, lab test:

hemoglobin, lab test: neutrophils, adverse effect: nau-
sea, lab test: creatinine, drug: ondansetron, tumor size,
progesterone receptor positive, adverse effect: diarrhea,
drug: dexamethasone, race, ecog performance score, ad-
verse effect: vomiting

Table 5: Table of number of variables shared between datasets. #
Vars Shared denotes if a variable name occurs in AT LEAST one
other dataset.

Dataset Name # Vars Shared # Vars Total
Breast Cancer 1 4 15
Breast Cancer 2 15 48
Breast Cancer 3 7 18
Colorectal Cancer 5 16
Lung Cancer 1 1 17
Lung Cancer 2 6 41
Lung Cancer 3 7 26

Breast Cancer 1
race White; treatment paclitaxel; tumor
laterality left; cancer histologic
grade Low; biopsy type incisional;
post-menopause ; estrogen receptor
positive ; progesterone receptor positive
; prior hormonal therapy ; number of
positive axillary nodes 0; tumor size 3.0

The patient has been confirmed to be
positive for human epidermal growth factor
receptor 2. She is of White race and
is currently undergoing treatment using
paclitaxel. The tumor is on the patient’s
left side and has a low histologic grade.
The biopsy type used was incisional,
and the patient is post-menopausal.
Additionally, the patient is estrogen
receptor positive, progesterone receptor
positive, and has undergone prior hormonal
therapy. The tumor size is approximately
3.0 units.



Breast Cancer 2

sex Female; histopathologic
grade Moderately differentiated;
histopathologic type Infiltrating
ductal carcinoma; adverse effect:
diarrhea ; surgery: mastectomy ;
multifocal tumor ; estrogen receptor
positive ; medical condition:
history of tobacco use ; drug:
zofran ; drug: tamoxifen ; age
48.0; tumor size 2.5; number of
positive axillary lymph nodes 3.0;
number of resected axillary lymph
nodes 19.0; lab test: hemoglobin
7.59; lab test: neutrophils 3.03;
lab test: platelets 327.65; lab
test: white blood cells 3.78; lab
test: asat (sgot) 30.846; lab test:
alkaline phosphatase 172.385; lab
test: alat (sgpt) 38.0; lab test:
total bilirubin 7.462; lab test:
creatinine 64.9; height 166.0; weight
84.6

The patient, a 48-year-old female,
had moderately differentiated
infiltrating ductal carcinoma and
underwent lumpectomy and mastectomy
surgeries for a multifocal tumor.
She has a medical history of tobacco
use and experienced adverse effects
from penicillins. Her lab tests
indicate a hemoglobin of 7.59,
slightly low neutrophils at 3.03,
high platelets at 327.65, and a
low white blood cell count of 3.78.
She also has elevated asat (sgot)
levels at 30.846, slightly high
alkaline phosphatase at 172.385,
alat (sgpt) at 38.0, total bilirubin
at 7.462, and a creatinine of 64.9.
She also suffered from vomiting and
diarrhea, which were side effects of
her medication, though she was given
zofran to alleviate those symptoms.

Breast Cancer 3

estrogen receptor positive ;
progesterone receptor positive ; age
64.0; number of resected axillary
node 11.0; numer of positive axillary
node 7.0; primary tumor size 3.0;
weight 113.0; height 162.0

The patient, a 64-year-old with
estrogen and progesterone receptor
positive breast cancer, underwent
surgery to remove 11 axillary nodes,
with 7 testing positive. She was
prescribed anti-tumor therapies
including Xeloda, Taxotere, Arimidex,
Zoladex, and Cyclophosphamide.
Unfortunately, she experienced
the adverse effect of febrile
neutropenia.

Colorectal Cancer

arms Oxaliplatin +
5-fluorouracil/Leucovorin +
Cetuximab; histology well
differentiated; race white; sex
female; biomarker kras wild-type;
adherence ; age 45.0; ecog
performance score 1; bmi 24.883

The patient experienced a negative
reaction of blood clotting,
specifically thrombosis, as
well as a harmful effect called
infarction in their arms as a
result of taking Oxaliplatin
+ 5-fluorouracil/Leucovorin +
Cetuximab.

Lung Cancer 1

gender male; treatment arm
paclitaxel, cisplatin,
etoposide,G-CDF; adverse effects:
granulocytes/bands ; adverse effects:
wbc ; adverse effects: lymphocytes ;
adverse effects: platelets ; adverse
effects: dyspnea ; adverse effects:
nausea ; adverse effects: other
miscellaneous 2 ; age 76.0; number
of metastatic sites 1.0; number
of chemotherapy cycles 2.0; ecog
performance status 0.0

A 76-year-old man receiving
paclitaxel, cisplatin, etoposide,
G-CDF for his single metastatic site
experienced a variety of adverse
effects, including dyspnea, nausea,
and other miscellaneous symptoms.
He also had decreased levels of
granulocytes/bands, white blood
cells, lymphocytes, and platelets.

Lung Cancer 2



sex M; aderse effect: severe
malignant neoplasm progression
; aderse effect: severe
neutropenia ; aderse effect:
severe thrombocytopenia ; aderse
effect: severe anaemia ; aderse
effect: severe vomiting ; aderse
effect: severe pneumonia ; aderse
effect: severe diarrhoea ; aderse
effect: severe abdominal pain ;
aderse effect: severe sepsis ;
aderse effect: severe leukopenia
; medication: dexamethasone
; medication: ondansetron ;
medication: heparin ; medication:
ranitidine ; medication: cisplatin
; medication: metoclopramide
; medication: carboplatin ;
medication: furosemide ; age
67; lab test: hemoglobin 134.0;
lab test: leukocytes 4.3; lab
test: creatinine clearance 92.489;
lab test: creatinine 84.0; lab
test: platelet 256.0; lab test:
bilirubin 18.5; lab test: alanine
aminotransferase 36.1; lab test:
aspartate aminotransferase 17.9; lab
test: neutrophils 2.58; lab test:
alkaline phosphatase 556.0

The patient, a 67-year-old male, has
undergone lab tests revealing that
their hemoglobin is 134.0, leukocytes
are 4.3, creatinine clearance is
92.489, creatinine is 84.0, platelet
count is 256.0, bilirubin is 18.5,
alanine aminotransferase is 36.1,
aspartate aminotransferase is 17.9,
neutrophils are 2.58, and alkaline
phosphatase is 556.0. They have
a medical history of antiandrogen
therapy, chronic cardiac failure,
and venous insufficiency. However,
the patient has experienced adverse
effects, including severe malignant
neoplasm progression, neutropenia,
thrombocytopenia, anemia, vomiting,
pneumonia, diarrhea, abdominal
pain, sepsis, and leukopenia, due
to the medications dexamethasone,
ondansetron, heparin, ranitidine,
cisplatin, metoclopramide,
carboplatin, and furosemide.

Lung Cancer 3

sex M; smoke status Former
Smoker; lactate dehydrogenase
isoenzymes test abnormal ; adverse
effect: neutropenia ; adverse
effect: anaemia ; adverse effect:
thrombocytopenia ; drug: ondansetron
; drug: prednisone ; age 0.671;
ecog performance score 1; height
0.805; weight 0.517; lab test:
leukocytes (10ˆ9/l) 4.996; lab test:
hemoglobin (g/l) 108.816; lab test:
platelets (10ˆ9/l) 175.895; lab test:
lymphocytes (10ˆ9/l) 1.039; lab test:
platelets/lymphocytes 176.287; lab
test: neutrophils (10ˆ9/l) 3.367;
lab test: neutrophils/lymphocytes
3.221; lab test: monocytes (10ˆ9/l)
0.509; lab test: eosinophils
(10ˆ9/l) 0.068

The patient’s lab results show a
leukocyte count of 4.996 x 109/L,
hemoglobin level of 108.816 g/L,
platelet count of 175.895 x 109/L,
platelet/lymphocyte ratio of 176.287,
neutrophil count of 3.367 x 109/L,
neutrophil/lymphocyte ratio of 3.221,
and eosinophil count of 0.068 x 109/L.
The patient has experienced adverse
effects of decreased neutrophil
count, platelet count, neutropenia,
anemia, and thrombocytopenia. They
were prescribed ondansetron and
prednisone. The patient is male,
a former smoker, and has an ecog
performance score of 1. They are
0.671 years old and have a height of
0.805 and weight of 0.517.



C.3 Data Augmentation

We show a couple of examples of data augmentation as ob-
tained by paraphrasing 5 times:

1. The patient is White, and
receiving paclitaxel for a left-sided
tumor with Low histologic grade.
An incisional biopsy was performed
on the tumor. The patient is
post-menopausal and has estrogen
and progesterone receptor-positive
cancer. They had prior hormonal
therapy and no positive axillary
nodes. The tumor size is 3.0.
2. A left-sided tumor with Low
histologic grade is being treated
with paclitaxel for a White patient
who had an incisional biopsy. The
patient is post-menopausal and
has estrogen and progesterone
receptor-positive cancer, as well
as prior hormonal therapy. There are
zero positive axillary nodes and the
tumor size is 3.0.
3. For a White patient, paclitaxel
is the treatment for a left-sided
tumor with Low histologic grade.
An incisional biopsy was performed,
and the patient is post-menopausal
with estrogen and progesterone
receptor-positive cancer. They had
prior hormonal therapy, zero positive
axillary nodes, and the tumor size is
3.0.
4. The tumor laterality is left for
a White patient receiving paclitaxel,
with a Low histologic grade. The
biopsy type was incisional, and
the patient is post-menopausal
with estrogen and progesterone
receptor-positive cancer. They
had prior hormonal therapy and no
positive axillary nodes, with a tumor
size of 3.0.
5. An incisional biopsy was
performed on a left-sided, Low
histologic grade tumor for a White
patient receiving paclitaxel. They
are post-menopausal with estrogen
and progesterone receptor-positive
cancer, having had prior hormonal
therapy. There are zero positive
axillary nodes, and the tumor size is
3.0.

1. The patient is a
62-year-old white woman with
well-differentiated histology.
She is taking arms Oxaliplatin,
5-fluorouracil/Leucovorin, and
Cetuximab. She has Kras wild-type
biomarkers and an ECOG performance
score of 1. Her BMI is 24.883 and
she is adhering to her treatment
plan.
2. A white female patient
with well-differentiated
histology is being treated with
a combination of Oxaliplatin,
5-fluorouracil/Leucovorin, and
Cetuximab. She is 62 years old, has
Kras wild-type biomarkers, and an
Ecog performance score of 1. She
is maintaining a BMI of 24.883 and
adhering to her medication.
3. An adherence patient, who is
a 62-year-old white woman, has
well-differentiated histology
and is taking arms Oxaliplatin,
5-fluorouracil/Leucovorin, and
Cetuximab. Her Kras biomarkers
are wild-type and she has an Ecog
performance score of 1. She is
maintaining a BMI of 24.883.
4. The patient is a
well-differentiated white female with
Kras wild-type biomarkers. She is
being treated with arms Oxaliplatin,
5-fluorouracil/Leucovorin, and
Cetuximab and has an ECOG performance
score of 1. She is 62 years old,
adhering to her medication, and has a
BMI of 24.883.
5. A 62-year-old white
woman with good histology
is taking arms Oxaliplatin,
5-fluorouracil/Leucovorin, and
Cetuximab. She has Kras wild-type
biomarkers, an Ecog performance
score of 1, and is adhering to her
medication. Her BMI is 24.883.



C.4 Sanity Check with LLM’s Relection

The generated text must undergo auditing to ensure practical
suitability for downstream tasks and human interpretability.
This is especially critical when dealing with tabular data, as
accurate paraphrasing is essential for maintaining important
information that can significantly impact model performance.
Thus, verifying faithful paraphrasing of the data is of utmost
importance.

To evaluate the fidelity of the paraphrased text, we employ
a cutting-edge Question-Answering model to test the para-
phrased text. For different features, we query the model using
the prompts below.

Listing 3: prompt for sanity check of categorical features

prompt = ’ ’ ’
{ c o n s o l i d a t e d o u t p u t }

What i s t h e v a l u e o f { f e a t u r e n a m e }?
’ ’ ’

Listing 4: prompt for sanity check of binary features

prompt = ’ ’ ’
{ c o n s o l i d a t e d o u t p u t }

I s { f e a t u r e n a m e } p r e s e n t i n t h e above
paragraph ? ( a ) y e s ( b ) no .
’ ’ ’

We then compare the QA model’s answers with the actual
feature values and calculate a normalized edit distance score
(edit distance of longest string) as a measure of the para-
phrase’s accuracy:

D̂ = 1− D

max(l1, l2)
, (3)

where D represents the edit distance of two strings; l1 and l2
are length of two input strings.

If the matching metric is too low, we add it to the list of fea-
tures we wish to preserve. Then, we rerun the paraphrasing
with a secondary prompt as shown here:

Listing 5: prompt for correcting a generated text

prompt = ’ ’ ’
Here i s t h e schema d e f i n i t i o n o f t h e
t a b l e :

{ s c h e m a d e f i n i t i o n }

P l e a s e p a r a p h r a s e t h e f o l l o w i n g i n
n a t u r a l language .

{ p r e v i o u s p a r a p h r a s e } +
{ l i n e a r i z a t i o n o f m i s s e d f e a t u r e s }
’ ’ ’

Examples

In this case, the first paraphrase completely left out the severe
adverse effects.

A male patient, aged 70.0 years,
whose race is white having poorly
differentiated histology and a wild-type
Kras biomarker, is taking Oxaliplatin
and 5-fluorouracil/Leucovorin along with
Cetuximab. His ECOG performance score is
0, and BMI is 27.554.

A male patient who is white and 70 years
old is currently being treated with
Oxaliplatin + 5-fluorouracil/Leucovorin
+ Cetuximab for poorly differentiated
histology with kras wild-type biomarkers.
He has a BMI of 27.554 and a ECOG
performance score of 0. There have been
severe adverse effects of thrombosis,
hypersensitivity, infarction, and
diarrhea, and there is a risk of bowel
perforation.

In this case, the first paraphrase did not preserve the lab
results:

This male patient has a history of
smoking but is now a former smoker.
Unfortunately, he has developed brain
metastasis and an abnormal lactate
dehydrogenase isoenzymes test result.
He experienced neutropenia as a side
effect of treatment. Additionally, he
has a relatively young age, high ecog
performance score, and low height and
weight. His lab tests show elevated
leukocytes and platelets, low lymphocytes
and hemoglobin, and abnormal neutrophils,
monocytes, and eosinophils.

The male patient, who is a former smoker,
has a brain metastasis and abnormal
lactate dehydrogenase isoenzymes test
result. He is 0.429 years old and has
an ecog performance score of 2. With
a height of 0.732 and weight of 0.517,
his lab tests reveal a leukocyte count of
8.371 (10ˆ9/l), hemoglobin level of 109.0
(g/l), platelet count of 337.286 (10ˆ9/l),
lymphocyte level of 0.917 (10ˆ9/l),
platelet to lymphocyte ratio of 815.19,
neutrophil count of 6.923 (10ˆ9/l),
neutrophil to lymphocyte ratio of 6.187,
monocyte count of 0.424 (10ˆ9/l), and
eosinophil count of 0.039 (10ˆ9/l). The
patient experienced adverse effects of
anaemia, decreased neutrophil and platelet
count, and neutropenia, while being
treated with dexamethasone, ondansetron,
prednisone, and sodium chloride.



C.5 Evaluation of Hallucinations Produced in
Consolidation

Table 6: The Mean Normalized Edit Distance (MNED). Higher is
better, the range is [0,1]. For each dataset as calculated on the feature
values retrieved by the QA model vs the actual feature value.

Dataset MNED MNED (After Correction)

Breast Cancer 1 0.7197 0.8421
Breast Cancer 2 0.5007 0.6578
Breast Cancer 3 0.3463 0.7155
Colorectal Cancer 0.5498 0.7244
Lung Cancer 1 0.4287 0.6326
Lung Cancer 2 0.5059 0.6456
Lung Cancer 3 0.3216 0.4218

We show the quantitative analysis of the hallucinations dur-
ing the sanity check in Table 6. We see that the normalized
Edit Distance (Eq. 3) shows that the paraphrasing may not
preserve all of the original values of the row, but that also,
re-paraphrasing does significantly help. However, this is not
as bad as of an issue as it may appear. Since the perfor-
mance with data augmentation is higher than without. Mean
Normalized Edit Distance only measures the character differ-
ences between the strings. Upon manual inspection, there are
many cases where feature values are paraphrased into a sim-
ilar meaning. In other cases, the GPT-3.5 model does fail to
summarize the patient completely. For example, in the Lung
Cancer datasets, there are many lab numerical values that the
generator fails to preserve within a reasonable max length
of generated text, even with multiple tries. Further work is
required to generate better paraphrases as well as improved
metrics.

D External Database
MIMIC-IV. We downloaded the raw MIMIC-IV dataset
[Johnson et al., 2023] and preprocessed it with a standard
opensource data extraction pipeline5. We further extracted
the patients’ age, gender, diagnosis, medications, procedures,
and patient notes to build the EHR patient database as the
external data for MediTab.
PMC-Patients. We used the PMC-Patient dataset [Zhao et al.,
2022] where 167K patient notes from 141K PubMed articles
are provided. Here, we involved the patient’s age, gender, and
the patient notes as the features.
ClinicalTrials.Gov. We obtained a dump from the clinical-
trials.gov database to get all the available clinical trial docu-
ments. We used the trial’s title, study type, number of enroll-
ment, phase, conditions, interventions, and eligibility criteria,
as the features to predict the trial outcome.

E Baseline Models
The baselines for patient outcome prediction datasets:

5MIMIC-IV-Data-Pipeline: https://github.com/healthylaife/
MIMIC-IV-Data-Pipeline

• XGBoost [Chen and Guestrin, 2016b]: This is a tree
ensemble method augmented by gradient-boosting. We
use its official implementation of Python interface 6 in
our experiments. We use ordinal encoding for categor-
ical and binary features and standardize numerical fea-
tures via scikit-learn [Pedregosa et al., 2011]. We
encode textual features, e.g., patient notes, via a pre-
trained BioBERT [Lee et al., 2020] model. The en-
coded embeddings are fed to XGBoost as the input. We
tune the model using the hyperparameters: max depth
in {4, 6, 8}; n estimator in {50, 100, 200}; learning rate
in {0.1, 0.2}; We take early-stopping with patience of 5
rounds.

• Multilayer Perceptron (MLP): This is a simple neural
network built with multiple fully-connected layers. We
use the implementation from the individual outcome
prediction module of PyTrial 7. The model is with 2
dense layers where each layer has 128 hidden units. We
tune the model using the hyperparameters: learning rate
in {1e-4,5e-4,1e-3}; batch size in {32, 64}; We take the
max training epochs of 10; weight decay of 1e-4.

• FT-Transformer [Gorishniy et al., 2021]: This is a
transformer-based tabular prediction model. We use the
implementation from the individual outcome prediction
module of PyTrial. The model is with 2 transformer
modules where each module has 128 hidden units in the
attention layer and 256 hidden units in the feed-forward
layer. We use multi-head attention with 8 heads. We
tune the model using the hyperparameters: learning rate
in {1e-4,5e-4,1e-3}; batch size in {32, 64}; We take the
max training epochs of 10 and weight decay of 1e-4.

• TransTab [Wang and Sun, 2022b]: This is a transformer-
based tabular prediction model that is able to learn from
multiple tabular datasets. Following the transfer learning
setup of this method, we take a two-stage training strat-
egy: first, train it on all datasets in the task, then fine-
tune it on each dataset and report the evaluation perfor-
mances. We use the implementation from the individual
outcome prediction module of PyTrial. The model is
with 2 transformer modules where each module has 128
hidden units in the attention layer and 256 hidden units
in the feed-forward layer. We use multi-head attention
with 8 heads. We tune the model using the hyperpa-
rameters: learning rate in {1e-4,5e-4,1e-3}; batch size
in {32, 64}; We take the max training epochs of 10 and
weight decay of 1e-4.

• TabLLM [Hegselmann et al., 2022]: This is the most
similar baseline to our model, as it also converts tabular
data into natural paraphrases on which text classification
is then performed. However, this model has some major
differences from our work. First, they show that using
GPT to paraphrase the tabular data performs the best,
but do not perform any data-auditing to ensure that all
of the information is preserved. Additionally, they do

6DMLC XGBoost: https://xgboost.readthedocs.io/en/stable/
7pytrial.indiv outcome: https://pytrial.readthedocs.io/

en/latest/pytrial.tasks.indiv outcome.html

https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
https://xgboost.readthedocs.io/en/stable/
https://pytrial.readthedocs.io/en/latest/pytrial.tasks.indiv_outcome.html
https://pytrial.readthedocs.io/en/latest/pytrial.tasks.indiv_outcome.html


not augment their datasets. Finally, since many of their
tasks are general tabular classification datasets, they are
not able to take full advantage of pretraining on multiple
similar datasets (which we have shown performs better
than training from scratch in Table 7 and Table 8). We
use the default training parameters as for the baselines in
the official GitHub from https://github.com/clinicalml/
TabLLM and finetune for steps in {25K, 50K, 100K}.
We primarily experiment with the number of steps as
that is the main difference in their finetuning parameter
choice in their training script.

The baselines for clinical trial outcome prediction
datasets:

• XGBoost [Chen and Guestrin, 2016b]: This is a tree
ensemble method augmented by gradient-boosting. We
follow the setup used in [Fu et al., 2022].

• FFNN [Tranchevent et al., 2019]: It is a feed-forward
neural network, which has 3 fully-connected layers with
the dimensions of dim-of-input-feature, 500, and 100,
and ReLU activations. We follow the setup used in [Fu
et al., 2022].

• DeepEnroll [Zhang et al., 2020]: It was originally aimed
at facilitating patient-trial matching, encompassing a hi-
erarchical embedding network designed to encode dis-
ease ontology. Additionally, an alignment model was
incorporated to capture the interconnections between el-
igibility criteria and disease information. We follow the
setup used in [Fu et al., 2022].

• COMPOSE [Gao et al., 2020]: Initially, its applica-
tion revolved around patient-trial matching, employing
a combination of a convolutional neural network and a
memory network. The convolutional neural network en-
coded eligibility criteria, while the memory network en-
coded diseases. To enhance trial outcome prediction, the
model’s embedding was concatenated with a molecule
embedding using MPNN (Message Passing Neural Net-
work). We follow the setup used in [Fu et al., 2022].

• HINT [Fu et al., 2022]: It integrates several key com-
ponents. Firstly, there is a drug molecule encoder uti-
lizing MPNN (Message Passing Neural Network). Sec-
ondly, a disease ontology encoder based on GRAM is
incorporated. Thirdly, a trial eligibility criteria encoder
leveraging BERT is utilized. Additionally, there is a
drug molecule pharmacokinetic encoder, and a graph
neural network is employed to capture feature interac-
tions. Subsequently, the model feeds the interacted em-
beddings into a prediction model for accurate outcome
predictions. We follow the setup used in [Fu et al.,
2022].

• SPOT [Wang et al., 2023b]: The Sequential Predic-
tive Modeling of Clinical Trial Outcome (SPOT) is an
innovative approach that follows a sequential process.
Initially, it identifies trial topics to cluster the diverse
trial data from multiple sources into relevant trial topics.
Next, it generates trial embeddings and organizes them
based on topic and timestamp, creating structured clin-
ical trial sequences. Treating each trial sequence as an

individual task, SPOT employs a meta-learning strategy,
enabling the model to adapt to new tasks with minimal
updates swiftly. We follow the setup used in [Wang et
al., 2023b].

F Evaluation Metrics
We consider the following performance metrics: (1) AU-
ROC: the area under the Receiver Operating Characteris-
tic curve summarizes the trade-off between the true positive
rate (TPR) and the false positive rate (FPR) with the varying
threshold of FPR. In theory, it is equivalent to calculating the
ranking quality by the model predictions to identify the true
positive samples. However, better AUROC does not neces-
sarily indicate better outputting of well-calibrated probability
predictions. (2) PRAUC: the area under the Precision-Recall
curve summarizes the trade-off between the precision (PPV)
and the recall (TPR) with the varying threshold of recall. It
is equivalent to the average of precision scores calculated for
each recall threshold and is more sensitive to the detection
quality of true positives from the data, e.g., identifying which
trial is going to succeed.

https://github.com/clinicalml/TabLLM
https://github.com/clinicalml/TabLLM
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Figure 7: A plot of the distributions of the data Shapley values as
well as the label ratio of 3 datasets. Note that to simplify the setup,
we use the simple baseline features of the patients and their clinical
discharge notes as the external datasets to obtain Shapley values and
pseudolabels.
We see that in both the PMC-Patients and ClinicalTrial.gov

datasets, there exists a bimodal distribution of Shapley
values, indicating that there exists a subset of data subset that

is more relevant than the rest. The MIMIC distribution is
more unimodal, albeit it is slightly right-tailed. We also see

that the predicted labels generally match the original
distribution’s labels, which indicates that the generated

supplemental dataset does indeed preserve the true label
imbalance.

H Ablation Results

Table 7: Ablations of MediTab with its variants (Retrained). The
evaluation is made on patient outcome prediction datasets.

Trial Name Metrics Augment Finetune Scratch Zero-Shot

Breast Cancer 1
ROC-AUC 0.624 0.617 0.591 0.591
PR-AUC 0.111 0.103 0.094 0.102

Breast Cancer 2 ROC-AUC 0.713 0.841 0.803 0.742
PR-AUC 0.049 0.071 0.060 0.051

Breast Cancer 3 ROC-AUC 0.734 0.741 0.721 0.731
PR-AUC 0.456 0.486 0.437 0.391

Colorectal Cancer ROC-AUC 0.677 0.697 0.705 0.662
PR-AUC 0.236 0.244 0.267 0.207

Lung Cancer 1 ROC-AUC 0.623 0.822 0.699 0.678
PR-AUC 0.963 0.987 0.971 0.969

Lung Cancer 2 ROC-AUC 0.682 0.677 0.711 0.677
PR-AUC 0.673 0.669 0.691 0.671

Lung Cancer 3
ROC-AUC 0.893 0.893 0.893 0.893
PR-AUC 0.948 0.948 0.957 0.938

Table 8: Ablations of MediTab with its variants (Retrained). The
evaluation is made on clinical trial outcome prediction datasets.

Trial Data Metrics Augment Finetune Scratch Zero-Shot

Phase I ROC-AUC 0.706 0.701 0.699 0.657
PR-AUC 0.725 0.722 0.726 0.704

Phase II ROC-AUC 0.718 0.726 0.706 0.689
PR-AUC 0.747 0.743 0.733 0.728

Phase III ROC-AUC 0.724 0.729 0.726 0.734
PR-AUC 0.863 0.876 0.881 0.877



Table 9: Ablations of different base models (BERT, BioBERT,
ClinicalBERT, and TabLLM in terms of downstream performance,
trained from scratch, respectively. The evaluation is made on clini-
cal trial outcome prediction datasets. We see that the model selection
choice is similar for BioBERT and Clinical BERT. TabLLM does not
converge for 4 out of the 7 datasets. We believe this may be due to
the small amount of training data or the domain-specificity, but fur-
ther research should be done to investigate this behavior fully.

Trial Name Metrics BERT ClinicalBERT BioBERT TabLLM

Breast Cancer 1 ROC-AUC 0.588 0.581 0.591 -
PR-AUC 0.097 0.082 0.094 -

Breast Cancer 2 ROC-AUC 0.485 0.724 0.803 -
PR-AUC 0.023 0.026 0.060 -

Breast Cancer 3 ROC-AUC 0.696 0.734 0.721 0.616
PR-AUC 0.392 0.366 0.437 0.302

Colorectal Cancer ROC-AUC 0.613 0.700 0.705 -
PR-AUC 0.233 0.186 0.267 -

Lung Cancer 1 ROC-AUC 0.555 0.479 0.699 -
PR-AUC 0.962 0.949 0.971 -

Lung Cancer 2 ROC-AUC 0.544 0.616 0.711 0.619
PR-AUC 0.483 0.616 0.691 0.562

Lung Cancer 3 ROC-AUC 0.357 0.893 0.893 0.804
PR-AUCAUC 0.695 0.957 0.957 0.826

Table 10: Ablations of pretraining MediTab on different types of
serialization. Simple Text refers to a simple table-to-text like “col-
umn name: column value”. We see that while this simple serializa-
tion works well, we also discovered that augmenting with additional
paraphrased examples indeed improves performance. Furthermore,
we find that audited examples improve performance the most. Our
results shown in the basic Simple Text approach, similar to what’s
demonstrated in TabLLM, were effective. However, we also ob-
served that enhancing this format with paraphrased examples led
to better performance. Furthermore, we find that audited examples
improve performance the most. We believe that this performance
benefit is useful and serves to justify our usage of more advanced
paraphrasing and auditing techniques.

Trial Name Metric Simple Text Praphrase Audited Paraphrase

Breast Cancer 1 ROC-AUC 0.607 0.620 0.617
PR-AUC 0.098 0.107 0.105

Breast Cancer 2 ROC-AUC 0.753 0.753 0.876
PR-AUC 0.083 0.083 0.135

Breast Cancer 3 ROC-AUC 0.760 0.758 0.764
PR-AUC 0.452 0.481 0.476

Colorectal Cancer ROC-AUC 0.695 0.691 0.705
PR-AUC 0.259 0.264 0.256

Lung Cancer 1 ROC-AUC 0.699 0.737 0.717
PR-AUC 0.975 0.979 0.972

Lung Cancer 2 ROC-AUC 0.699 0.697 0.716
PRAUC 0.679 0.680 0.715

Lung Cancer 3 ROC-AUC 0.607 0.893 0.929
PR-AUC 0.697 0.957 0.968

Table 11: Zero-shot performance of Different Shapley Value cutoffs
percentiles. After each percentile was calculated, the full retraining
was performed to obtain the ROC-AUC and PR-AUC. We see that
empirically, using the 50 percentile cutoff performs the best. A small
cutoff allows for too many irrelevant examples, and a high cutoff
may remove too much diversity from the data.

Trial Name Metric 10% 25% 50% 90%

Breast Cancer 1 ROCAUC 0.529 0.495 0.582 0.503
PRAUC 0.086 0.082 0.083 0.080

Breast Cancer 2 ROCAUC 0.608 0.633 0.719 0.668
PRAUC 0.065 0.288 0.168 0.326

Breast Cancer 3 ROCAUC 0.537 0.552 0.719 0.556
PRAUC 0.348 0.338 0.357 0.337

Colorectal Cancer ROCAUC 0.558 0.567 0.636 0.557
PRAUC 0.170 0.191 0.175 0.152

Lung Cancer 1 ROCAUC 0.426 0.384 0.684 0.355
PRAUC 0.925 0.913 0.919 0.915

Lung Cancer 2 ROCAUC 0.499 0.534 0.660 0.496
PRAUC 0.540 0.583 0.597 0.545

Lung Cancer 3 ROCAUC 0.571 0.536 0.857 0.357
PRAUC 0.741 0.735 0.909 0.699

Table 12: Ablation of model output logit Standard Deviations over
all datasets. ”Logit Std (Per Patient) denotes the average standard
deviation of logit outputs over all audited paraphrases of that pa-
tient. Logit Std (Overall) denotes the overall standard deviation of
all model output logits. We see that in most cases, the Per Patient Std
is an order of magnitude smaller than the overall Std. Lung Cancer
3 may be an exception, as it is the smallest dataset size by far.

Trial Name Logit Std (Per Patient) Logit Std (Overall)

Breast Cancer 1 0.0086 0.029
Breast Cancer 2 0.0036 0.012
Breast Cancer 3 0.0330 0.164

Colorectal Cancer 0.0185 0.078
Lung Cancer 1 0.0145 0.079
Lung Cancer 2 0.0488 0.208
Lung Cancer 3 0.1467 0.264
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