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Inverse Unscented Kalman Filter
Himali Singh, Kumar Vijay Mishra∗ and Arpan Chattopadhyay∗

Abstract—Rapid advances in designing cognitive and counter-
adversarial systems have motivated the development of inverse
Bayesian filters. In this setting, a cognitive ‘adversary’ tracks its
target of interest via a stochastic framework such as a Kalman
filter (KF). The target or ‘defender’ then employs another
inverse stochastic filter to infer the forward filter estimates of
the defender computed by the adversary. For linear systems,
the inverse Kalman filter (I-KF) has been recently shown to be
effective in these counter-adversarial applications. In the paper,
contrary to prior works, we focus on non-linear system dynamics
and formulate the inverse unscented KF (I-UKF) to estimate the
defender’s state based on the unscented transform, or equiva-
lently, statistical linearization technique. We then generalize this
framework to unknown systems by proposing reproducing kernel
Hilbert space-based UKF (RKHS-UKF) to learn the system
dynamics and estimate the state based on its observations. Our
theoretical analyses to guarantee the stochastic stability of I-
UKF and RKHS-UKF in the mean-squared sense show that,
provided the forward filters are stable, the inverse filters are also
stable under mild system-level conditions. We show that, despite
being a suboptimal filter, our proposed I-UKF is a conservative
estimator, i.e., I-UKF’s estimated error covariance upper-bounds
its true value. Our numerical experiments for several different
applications demonstrate the estimation performance of the
proposed filters using recursive Cramér-Rao lower bound and
non-credibility index (NCI).

Index Terms—Bayesian filtering, cognitive systems, counter-
adversarial systems, inverse filtering, non-linear processes, un-
scented Kalman filter.

I. INTRODUCTION

Inference and control form an integral part of many dy-
namic systems in various engineering applications, including
navigation [1], guidance [2], and radar target tracking [3].
Often, these applications involve cognitive agents that sense
the environment and, based on the information gathered,
adapt their actions to achieve optimal performance. In military
surveillance, for instance, a cognitive radar [4] adapts its
transmit waveform and receive processing to improve target
detection [5] and tracking [3, 6]. In this context, inverse
cognition has been recently proposed for a defender agent to
detect its cognitive adversarial attacker agent and infer the
information adversary has learned about the defender [7, 8].
This aids in designing counter-adversarial systems to assist or
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desist the adversary [7, 9]. For example, an intelligent target
senses its adversarial radar’s waveform adaptations and de-
signs smart interference to force the latter to change its actions
[10, 11]. In [7], optimal probe signals are designed to estimate
the adversary’s sensor characteristics. In [12], observations of
an automatic sleep-tracking system are estimated for its real-
time fault diagnosis. Similar examples abound in interactive
learning and cyber-physical security [7, 9].

In order to predict the attacker’s future actions, a defender
requires an estimate of the attacker’s inference. In this context,
inverse Bayesian filtering [7] has been proposed to infer the
attacker’s inference at the defender’s end. An attacker employs
a (forward) Bayesian filter to compute a posterior distribu-
tion for the defender’s state given its noisy observations. A
common example is the Kalman filter (KF), which recursively
estimates the state in linear Gaussian state-space models and
is optimal in the minimum mean-squared error sense. The
attacker further cognitively adapts its actions based on this
inference. An inverse Bayesian filter then provides a posterior
distribution for the forward Bayesian filter’s estimate given
noisy measurements of the attacker’s actions.

In this inverse filtering context, [9] proposed inverse hidden
Markov model to estimate the adversary’s observations and
observation likelihood. In [7], inverse filtering was extended to
general linear Gaussian state-space models. Here, the attacker
employed a KF to estimate the defender’s state. Then, an
inverse KF (I-KF) was developed to estimate the attacker’s
estimate of the defender’s state. In practice, counter-adversarial
systems are non-linear. Here, the adversary may also employ
the extended KF (EKF), which extends the standard KF to
the non-linear dynamics using Taylor series expansion. For
this setting, our previous work [13, 14] proposed an inverse
EKF (I-EKF) for the defender. While EKF is a widely used
non-linear filter, it is sensitive to initialization/modeling errors
and performs poorly when the system is considerably non-
linear [15]. In many practical applications, the computation of
the Jacobian matrices required for EKF is also non-trivial. In
inverse cognition, some of these drawbacks may be addressed
through more advanced variants of I-EKF [16].

In spite of its ease of implementation, EKF suffers from
linearization errors in highly non-linear applications [17],
which can be efficiently tackled through derivative-free sigma-
point KFs (SPKFs) [18], which are based on a weighted sum
of function evaluations at a finite number of deterministic
sigma-points. These points aim to approximate the posterior
probability density of a random variable under non-linear
transformation. For example, the unscented KF (UKF) [19]
draws points using the unscented transform and delivers esti-
mates that are exact in mean for monomials up to third-degree;
the covariance computation is exact only for linear functions.
The unscented transform is further equivalent to statistically
linearizing the non-linear functions using specific regression
points such that UKF is a special case of linear regression
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KF [20]. To this end, unlike EKF, the UKF takes into account
the increased uncertainty due to linearization errors, providing
enhanced performance in many applications. Square-root UKF
[21] and Gaussian-sum UKF [22] have also been proposed for,
respectively, enhanced numerical stability and non-Gaussian
models. In this paper, we focus on inverse filtering based on
the unscented transform technique.

A. Prior Art

Conventionally, inverse filtering was limited to non-dynamic
systems for applications such as system identification, fault
detection, image deblurring and signal deconvolution [23, 24].
However, recent cognitive and counter-adversarial systems
applications have motivated the design of inverse stochastic
filters. These types of inverse problems may be traced to
[25] that aimed to find the cost criterion for a given control
policy. An analogous formulation also appears in inverse
reinforcement learning (IRL) where the associated reward
function is learned passively [26]. The inverse cognition agent,
on the other hand, actively probes its adversarial agent and,
hence, can be considered as a generalization of IRL.

The UKF is also related to general approximate Bayesian
inference methods that are encountered in machine learning
literature [27, 28]. In this context, the UKF belongs to the class
of general Gaussian filters that assume a Gaussian posterior
distribution for the underlying state. The assumed posterior’s
mean and covariance are then updated recursively using the
observations. These Gaussian filtering techniques form a sub-
set of assumed density filtering (ADF) [29] or online Bayesian
learning [27], which successively approximates the posterior
distribution. Expectation propagation is an extension of ADF
in which new observations are utilized to iteratively modify
earlier estimates [28]. On the contrary, sequential Monte-Carlo
(MC)-based methods (e.g., particle filter (PF) [15]) do not
assume any posterior form and are also applicable to non-
Gaussian systems. The PF framework has also been used to
realize Bernoulli filters [30] (for randomly switching systems),
possibility PFs [31] (for mismatched models), and probability
hypothesis density (PHD) [32] filters (for high-dimensional
multi-object Bayesian inference). However, in general, MC
approaches are computationally expensive [33].

The inverse stochastic filters developed in [7, 14] assume
perfect system model information on the part of both at-
tacker and defender. However, in many applications, the prior
system model information is not available. In the inverse
cognition scenario, the attacker may lack the defender’s state
evolution information, while the defender may be unaware
of the attacker’s forward filter and adaptation strategy. The
uncertainty in system parameters limits the applicability of the
inverse filters developed so far. Some prior works on (forward)
non-linear filtering have addressed the unknown system case
using kernel-based techniques. While [34] suggested coupling
kernel recursive least squares (KRLS) [35] with EKF to
learn an unknown non-linear measurement model, the state
transition was assumed to be known and linear. A conditional
embedding operator was used to reformulate the KF algorithm
in [36] for non-linear state-transition functions in reproducing
kernel Hilbert space (RKHS), but with linear observations.

In our prior work [16], we adopted an iterative expectation
maximization (EM) for non-linear parameter learning and
developed RKHS-EKF. However, similar to EKF, the RKHS-
EKF’s performance also degrades because of the linearization
of non-linear functions. In this paper, we further develop
RKHS-based UKF for improved performance.

B. Our contributions

Preliminary results of this work appeared in our conference
publication [37], where only inverse UKF (I-UKF) was for-
mulated and proofs of stability guarantees were not included.
Our main contributions in this paper are:
1) Inverse UKF. To address the limitations of I-EKF’s lin-
earization, we consider the unscented transform and develop
I-UKF. Our I-UKF estimates an adversary’s inference, who
also deploys a forward UKF. Similar to the inverse cognition
framework investigated in [7, 9, 14], we assume perfect
system model information, i.e., the attacker’s forward filter is
known to the defender. The inverse filter is formulated using
augmented states to take into account the non-additive process
noise terms in the forward filter’s state estimate evolution. Our
numerical experiments show that I-UKF provides reasonably
accurate estimates even when the defender’s forward UKF
assumption is incorrect. We remark that the I-UKF is different
from the inversion of UKF [38], which estimates the input
based on the output. Clearly, such an inversion of UKF may
not take the same mathematical form because the UKF is
employed on the adversary’s side. Hence, this formulation
is unrelated to our inverse cognition problem. Note that our
proposed I-UKF does not follow trivially from I-KF [7] or
I-EKF [14]; see also Remark 2.
2) Generalizations of I-UKF. In practice, the systems often
involve continuous-time state evolution or are complex-valued
such that suitable continuous-discrete or complex filters are
required. Hence, we generalize our I-UKF theory to obtain
continuous-discrete and complex I-UKFs for inverse filtering
applications. We also consider maximum correntropy criterion
(MCC)-based I-UKF to tackle non-Gaussian noises.
3) RKHS-UKF. When the defender lacks prior knowledge
of the state-transition and observation models, we propose
RKHS-UKF for the defender. Further, it may be employed
by both attacker and defender to infer the defender’s state
and attacker’s state estimate, respectively. While RKHS-UKF
adopts the online approximate EM of RKHS-EKF [16] to
learn the system parameters, the expectations under non-linear
transformations are computed using the unscented transform,
thereby avoiding Jacobian computations. Our numerical ex-
periments show that RKHS-UKF outperforms RKHS-EKF in
terms of estimation accuracy.
4) Stability of I-UKF and RKHS-UKF. In general, stability
and convergence results are difficult to obtain for non-linear
KFs. A bounded non-linearity approach was employed in
[39] to prove EKF’s stability in the exponential mean-squared
boundedness sense, but for bounded initial estimation error.
The unknown matrix approach introduced in [40] for UKF’s
stability relaxed the bound on the initial error by introducing
unknown instrumental matrices to model the linearization er-
rors but the measurements were still linear. Besides providing
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sufficient conditions for error boundedness, this approach also
rigorously justifies enlarging the noise covariance matrices
to stabilize the filter. In this paper, we provide the stability
conditions for I-UKF and RKHS-UKF based on the unknown
matrix approach. In the process, we also obtain hitherto
unreported general stability results for forward UKF. We then
prove that I-UKF’s recursive estimates are conservative, i.e.,
the true error covariance is upper bounded by the I-UKF’s
estimate of the same. We validate the estimation performance
of all inverse filters through extensive numerical experiments
with recursive Cramér-Rao lower bound (RCRLB) [41] and
non-credibility index (NCI) as the performance metrics.

The rest of the paper is organized as follows. The next
section describes the system model for inverse cognition
problem, whereas Section III presents I-UKFs for systems
with prior model information. We address the unknown system
model case through RKHS-UKF in Section IV. We provide
the performance guarantees in Section V and demonstrate the
proposed filters’ performance via numerical experiments in
Section VI. We conclude in Section VII.

Throughout the paper, we reserve boldface lowercase and
uppercase letters for vectors (column vectors) and matrices,
respectively, and {ai}i1≤i≤i2 denotes a set of elements indexed
by an integer i. The notation [a]i is used to denote the i-
th component of vector a and [A]i,j denotes the (i, j)-th
component of matrix A, with [A](i,:) and [A](:,j), respectively,
denoting the i-th row and j-th column of the matrix. Also,
[A](i1:i2,j1:j2) represents the sub-matrix of A consisting of
rows i1 to i2 and columns j1 to j2 while [a]i1:i2 denotes the
corresponding sub-vector. The transpose/Hermitian operation
is (·)T/H ; the l2 norm and norm with respect to matrix A of
a vector are ∥ · ∥2 and ∥ · ∥A, respectively; and the notation
det(A), Tr(A) and ∥A∥, respectively, denote the determinant,
trace and spectral norm of A. For matrices A and B, the
inequality A ⪯ B means that B−A is a positive semidefinite
(p.s.d.) matrix. For a function f : Rn → Rm, ∂f

∂x denotes the
Rm×n Jacobian matrix with Rm×n denoting the set of all
real-valued m × n matrices, while for function f : Rn → R,
it denotes the Rn×1 gradient vector with respect to vector
x. Also, In and 0n×m denote a ‘n × n’ identity matrix
and a ‘n × m’ all zero matrix, respectively. The Gaussian
random variable is represented as x ∼ N (µ,Q) with mean
µ and covariance matrix Q while the covariance of random
variable x is denoted by Cov(x). We denote the Cholesky
decomposition of matrix A as A =

√
A
√
A

T
.

II. SYSTEM MODEL

Consider a discrete-time stochastic dynamical system as
the defender’s state evolution process {xk}k≥0, where xk ∈
Rnx×1 is the defender’s state at the k-th time instant. The
defender’s state, perfectly known to the defender, evolves as

xk+1 = f(xk) +wk, (1)

where process noise wk ∼ N (0nx×1,Q) with covariance
matrix Q ∈ Rnx×nx . At the k-th time instant, the attacker
observes defender’s state as yk ∈ Rny×1 given by

yk = h(xk) + vk, (2)

where vk ∼ N (0ny×1,R) is the attacker’s measurement noise
with covariance matrix R ∈ Rny×ny . The attacker computes
an estimate x̂k of the defender’s state xk given its observations
{yj}1≤j≤k using a (forward) stochastic filter. The attacker
then takes an action whose noisy observation by the defender
is ak ∈ Rna×1 as

ak = g(x̂k) + ϵk, (3)

where ϵk ∼ N (0na×1,Σϵ) is the defender’s measurement
noise with covariance matrix Σϵ ∈ Rna×na . In this context,
the function g(·) represents the combined effect of the at-
tacker’s action strategy and the defender’s observation. For
example, inspired by linear quadratic Gaussian (LQG) control
problems, I-KF [7] selects ak based on a linear relationship
with x̂k, adjusted by its estimated error covariance matrix
Σk. However, we consider a general non-linear observation
as defined in (3). Finally, the defender uses {aj ,xj}1≤j≤k to
compute an estimate ˆ̂xk of the attacker’s estimate x̂k using
the inverse stochastic filter. The noise processes {wk}k≥0,
{vk}k≥1 and {ϵk}k≥1 are mutually independent and iden-
tically distributed across time. To maintain simplicity, we do
not assume time-varying noise covariances, while f(·), h(·),
and g(·) are chosen as appropriate non-linear functions. In
the following, we operate under the assumption that both
the attacker and defender possess perfect knowledge of these
functions and the noise distributions. Later, we examine the
problem without this assumption of perfect system knowledge
in Section IV. Furthermore, the attacker is unaware that
the defender is observing the former. The case when the
attacker deliberately changes its actions to guard against the
defender requires an inverse-inverse reinforcement learning-
based representation of the problem, which has been recently
addressed in [42, 43].

III. INVERSE UKF

The UKF generates a set of ‘2nx+1’ sigma points determin-
istically from the previous state estimate including the previous
estimate itself as one of the sigma points. The sigma points
are then propagated through the non-linear system model, and
the state estimates are obtained as a weighted sum of these
propagated points. In I-UKF, we assume that the attacker is
employing a forward UKF to compute its estimate x̂k with
known state transition (1) and observation (2). The I-UKF then
infers the estimate ˆ̂xk of x̂k using observation (3).

A. Forward UKF

Consider the scaling parameter κ ∈ R controlling the
spread of the forward UKF’s sigma points around the previous
estimate. The sigma points {x̃i}0≤i≤2nx

are generated from
state estimate x̂ and its error covariance matrix Σ as

{x̃i}0≤i≤2nx = Sgen(x̂,Σ)

=


x̂, i = 0,

x̂+
[√

(nx + κ)Σ
]
(:,i)

, i = 1, 2, . . . , nx

x̂−
[√

(nx + κ)Σ
]
(:,i−nx)

, i = nx + 1, nx + 2, . . . , 2nx

,

(4)
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with their weights ωi =

{
κ

nx+κ i = 0
1

2(nx+κ) i = 1, 2, . . . , 2nx
.

Denote the sigma points generated and propagated for the
time update at k-th time instant by {si,k} and {s∗i,k+1|k},
respectively. Similarly, {qi,k+1|k} and {q∗

i,k+1|k} are the
sigma points, respectively, generated and propagated to predict
observation yk+1 as ŷk+1|k. The attacker’s forward UKF
recursions to compute state estimate x̂k+1 and the associated
error covariance matrix estimate Σk+1 are [1]

Time update: {si,k}0≤i≤2nx = Sgen(x̂k,Σk), (5)
s∗i,k+1|k = f(si,k) ∀i = 0, 1, . . . , 2nx,

x̂k+1|k =

2nx∑
i=0

ωis
∗
i,k+1|k, (6)

Σk+1|k =

2nx∑
i=0

ωis
∗
i,k+1|k(s

∗
i,k+1|k)

T − x̂k+1|kx̂
T
k+1|k +Q,

Measurement update: {qi,k+1|k}0≤i≤2nx = Sgen(x̂k+1|k,Σk+1|k),
(7)

q∗
i,k+1|k = h(qi,k+1|k) ∀i = 0, 1, . . . , 2nx,

ŷk+1|k =

2nx∑
i=0

ωiq
∗
i,k+1|k, (8)

Σy
k+1 =

2nx∑
i=0

ωiq
∗
i,k+1|k(q

∗
i,k+1|k)

T − ŷk+1|kŷ
T
k+1|k +R,

Σxy
k+1 =

2nx∑
i=0

ωiqi,k+1|k(q
∗
i,k+1|k)

T − x̂k+1|kŷ
T
k+1|k,

x̂k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k), (9)

Σk+1 = Σk+1|k −Kk+1Σ
y
k+1K

T
k+1, (10)

where gain matrix Kk+1 = Σxy
k+1

(
Σy

k+1

)−1
. The step to

generate the second set of sigma points may be omitted, and
{q∗

i,k+1|k} may be obtained by propagating {s∗i,k+1|k} through
the observation function h(·) to save computational efforts.
However, this may degrade the performance of the classical
UKF because the effect of process noise here is unaccounted
for. On the other hand, pure-propagation UKF [44] generates a
modified sigma-point set with increased covariance only once
without compromising the performance.

B. I-UKF

Under the known forward UKF assumption, substituting (2),
(6), and (8) in (9), yields the inverse filter’s state transition as

x̂k+1 =

2nx∑
i=0

ωi

(
s∗i,k+1|k −Kk+1q

∗
i,k+1|k

)
+Kk+1h(xk+1)

+Kk+1vk+1. (11)

In this state transition, xk+1 is a known exogenous input,
while vk+1 represents the process noise involved. Since the
functions f(·) and h(·) are known, the propagated sigma points
{s∗i,k+1|k} and {q∗

i,k+1|k}, and the gain matrix Kk+1 are
functions of the first set of sigma points {si,k}. These sigma
points, in turn, are obtained deterministically from the previous
state estimate x̂k and covariance matrix Σk using (5). Hence,
I-UKF’s state transition, under the assumption that parameter
κ is known to the defender, is

x̂k+1 = f̃(x̂k,Σk,xk+1,vk+1). (12)

Note that the process noise vk+1 is non-additive because
Kk+1 depends on the previous estimates. Furthermore, Σk

does not depend on the current forward filter’s observation yk

but is evaluated recursively using the previous estimate. We
approximate Σk as Σ∗

k by computing the covariance matrix
using its own previous estimate, i.e. ˆ̂xk, in the same recursive
manner as the forward filter estimates at its estimate x̂k (using
(10) after computing gain matrix Kk+1 from the generated
sigma points). Hence, the inverse filter treats Σk as a known
exogenous input in the state transition (12).

Since the state transition (12) involves non-additive noise
term, we consider an augmented state vector zk =
[x̂T

k ,v
T
k+1]

T of dimension nz = nx + ny for I-UKF for-
mulation such that the state transition (12) becomes x̂k+1 =
f̃(zk,Σk,xk+1). Denote

ẑk = [ˆ̂xT
k ,01×ny ]

T , Σ
z
k =

[
Σk 0nx×ny

0ny×nx R

]
. (13)

Considering the I-UKF’s scaling parameter as κ ∈ R, the
sigma points {sj,k}0≤j≤2nz

are generated from ẑk and Σ
z

k

similar to (4) with weights ωj . I-UKF then computes ˆ̂xk and
its associated error covariance matrix Σk recursively as

Time update:

s∗j,k+1|k = f̃(sj,k,Σ
∗
k,xk+1) ∀j = 0, 1, . . . , 2nz, (14)

ˆ̂xk+1|k =

2nz∑
j=0

ωjs
∗
j,k+1|k, (15)

Σk+1|k =

2nz∑
j=0

ωjs
∗
j,k+1|k(s

∗
j,k+1|k)

T − ˆ̂xk+1|k ˆ̂x
T
k+1|k, (16)

Measurement update:
a∗
j,k+1|k = g(s∗j,k+1|k) ∀j = 0, 1, . . . , 2nz, (17)

âk+1|k =

2nz∑
j=0

ωja
∗
j,k+1|k, (18)

Σ
a
k+1 =

2nz∑
j=0

ωja
∗
j,k+1|k(a

∗
j,k+1|k)

T − âk+1|kâ
T
k+1|k +Σϵ, (19)

Σ
xa
k+1 =

2nz∑
j=0

ωjs
∗
j,k+1|k(a

∗
j,k+1|k)

T − ˆ̂xk+1|kâ
T
k+1|k, (20)

Kk+1 = Σ
xa
k+1

(
Σ

a
k+1

)−1
, (21)

ˆ̂xk+1 = ˆ̂xk+1|k +Kk+1(ak+1 − âk+1|k), (22)

Σk+1 = Σk+1|k −Kk+1Σ
a
k+1K

T
k+1. (23)

Fig. 1 illustrates the I-UKF’s recursions at k-th time step.
These recursions follow from UKF’s non-additive noise for-
mulation [45] with the sigma points generated in higher
(nz = nx+ny) dimensional state space than the nx dimensions
in forward UKF. However, the latter requires a new set for
the measurement update, while I-UKF generates these points
only once. The defender’s assumed observation (3) depends
only on the state estimate x̂k. However, in many applications,
the attacker may also consider the estimated covariance Σk of
x̂k in deciding its actions. In such cases, our proposed I-UKF
can be trivially modified to include Σk in observations (3). In
particular, I-UKF’s state transition (12) depends on forward
UKF’s Σk and hence, we compute the approximation Σ∗

k.
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Fig. 1. An illustration of I-UKF’s recursion at k-th time step. The defender’s
true state at k-th time is xk , which the attacker observes as yk through
observation function h(·) with additive measurement noise vk . Forward
UKF provides estimate x̂k of xk using yk . The defender observes x̂k as
ak through observation function g(·) with additive measurement noise ϵk .
Finally, with ak and xk as inputs, I-UKF computes estimate ˆ̂xk of x̂k .

If observation (3) depends on Σk, I-UKF’s update step (17)
also uses Σ∗

k. As mentioned earlier in Section III-B, I-UKF
computes Σ∗

k using its estimate ˆ̂xk, in the same manner as the
forward UKF computes Σk from its estimate x̂k. In particular,
we obtain Kk+1 (and intermediately, Σk+1|k and Σy

k+1)
while propagating sigma-point sj,k through state transition
(12) (equivalently, (11)). Hence, for each sj,k, we obtain an
estimate Σ̃j,k+1 of forward UKF’s covariance update Σk+1

using (10). We choose the average of these {Σ̃j,k+1}0≤j≤2nz

as the covariance approximation Σ∗
k+1 for the next I-UKF

recursion.

Remark 1 (Unknown κ). In the I-UKF formulation, we
assumed that the parameter κ of the forward UKF is known.
In general, assuming a κ different from the attacker’s actual
κ may increase estimation errors in I-UKF. However, our
numerical experiments in Section VI show that the I-UKF
provides reasonable estimates even when assuming a different
κ from its true value. Further, the I-UKF’s stability (Theo-
rem 2) requires a stable forward UKF and is independent of
the assumed κ. Note that the choice of forward UKF’s κ by
the inverse filter is independent of its own control parameter
κ. Besides UKF, several numerical integration techniques-
based SPKFs have also been developed in the literature.
For example, cubature KF (CKF) [46] and quadrature KF
(QKF) [47, 48] consider, respectively, the cubature and Gauss-
Hermite quadrature rules. Our recent work [49] proposed and
analyzed these formulations for inverse CKF and QKF.

Remark 2 (Differences from I-KF and I-EKF). Unlike I-KF
[7] and I-EKF [14], the forward gain matrix Kk+1 is not
treated as a time-varying parameter of I-UKF’s state transition
(11). In KF, the gain matrix is fully deterministic given the
model parameters and the initial covariance estimate Σ0. In
EKF, it depends on the linearized model functions at the state
estimates. However, the UKF gain matrix is computed from the
covariance matrix estimates obtained as a weighted average
of the generated sigma points, which are explicit functions of
the state estimates. This prevents I-UKF from treating Kk+1

as a parameter of (11).

Remark 3 (Non-Gaussian noise). UKF and hence, I-UKF
assume Gaussian process and measurement noises. Re-

cently, MCC-modified KFs have been developed to handle
non-Gaussian noises [50–52]. Our I-UKF can be trivially
modified based on MCC for non-Gaussian system mod-
els. For instance, forward MCC-UKF proposed in [52]
introduces a scalar lk+1 = Gσ(∥yk+1 − ŷk+1|k∥R̃−1

k+1
)

with Gσ(·) as the Gaussian kernel and computes the
gain matrix as Kk+1 = Σk+1|klk+1H̃

T
k+1(R̃k+1 +

H̃k+1Σk+1|klk+1H̃
T
k+1)

−1. Here, H̃k+1 and R̃k+1, respec-
tively, are the pseudo-measurement matrix and modified co-
variance matrix. The estimated error covariance then be-
comes Σk+1 = (I−Kk+1H̃k+1)Σk+1|k(I−Kk+1H̃k+1)

T +

Kk+1R̃k+1K
T
k+1 while all other state prediction and update

steps remain same as in forward UKF. These modifications
need to be taken into account in the inverse filter’s state
transition equation while formulating the inverse filter. I-
UKF’s gain matrix Kk+1 and covariance estimate Σk+1

are also similarly modified using scalar lk+1 which is the
counterpart of lk+1 for the inverse filter’s dynamics.

C. Continuous-time state evolution

The state-evolution (1) and observations (2) represent
discrete-time processes. In many practical applications, the
defender’s state evolves as a continuous-time process while
the attacker observes the state at discrete-time instants. In such
cases, (forward) continuous-discrete Kalman-Bucy filter [53]
and its non-linear extensions [54–56] are often employed for
efficient state estimation. On the contrary, the inverse filtering
problem still remains a discrete-time problem provided that the
defender observes the attacker’s actions (as ak) and estimates
x̂k at the same discrete-time instants only. Our I-UKF can
handle the continuous-time state evolution case with some
trivial modifications. In particular, the forward continuous-
discrete UKF’s time update numerically integrates a pair of
differential equations [56, eq. (34)] to compute x̂k+1|k and
Σk+1|k using estimates x̂k and Σk as the initial conditions.
The measurement update steps are the same as in the forward
UKF. I-UKF’s state transition is modified to account for these
differences.

Denote the forward continuous-discrete UKF’s time update
(solutions of differential equations) as x̂k+1|k = χ1(x̂k) and
Σk+1|k = χ2(x̂k,Σk). I-UKF’s state transition (11) becomes

x̂k+1 = χ1(x̂1)−
2nx∑
i=0

ωiKk+1q
∗
i,k+1|k +Kk+1h(xk+1)

+Kk+1vk+1. (24)

Here, the propagated points {q∗
i,k+1|k} are again obtained de-

terministically from the predicted state x̂k+1|k and covariance
estimate Σk+1|k, which in turn are functions of x̂k and Σk

via solutions χ1(·) and χ2(·). Hence, (24) simply becomes
x̂k+1 = f̃(x̂k,Σk,xk+1,vk+1) with f̃(·) now denoting the
modified state transition function.

D. Complex-valued systems

In many applications like frequency estimation and neural
network training, the state xk and its observations are not
real but complex-valued such that complex KFs are employed
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[57, 58]. While the simplest complex KFs assume second-
order circularity and only use covariance matrix information,
the recent widely linear filters [57–59] consider general non-
circular cases and enhance their accuracy using the pseudo-
covariance matrix. Our I-UKF can be appropriately modified
to obtain widely linear complex I-UKFs for complex-valued
inverse filtering problems.

Consider the defender’s state xk ∈ Cnx×1 with Σk and
Σp

k denoting its covariance and pseudo-covariance matrices,
respectively. In [57], the forward widely linear complex UKF
defines an augmented state ξk

.
= [xT

k ,x
H
k ]T and its covariance

matrix Σξ
k

.
=

[
Σk Σp

k

(Σp
k)

H ΣH
k

]
. The forward filter recursions to

estimate ξk then follow from the standard UKF with (·)T
replaced by (·)H . Note that the sigma points are then generated
using estimate ξ̂k (of ξk) and Σξ

k which includes pseudo-
covariance Σp

k. While formulating the inverse filter, we need
to consider the forward filter’s augmented state ξk and modify
the state transition (11). Finally, mutatis mutandis, the gen-
eral complex I-UKF’s recursions follow from the augmented
complex UKF of [57] treating the I-UKF’s modified state
transition as the state evolution process and ak as observations.
On the other hand, the (forward) complex UKF proposed in
[59] introduces modified sigma points and state updates using
both innovation and its conjugate. These changes are similarly
accommodated in the inverse filter’s formulation to obtain an
alternative complex I-UKF.

IV. RKHS-UKF

In the previous section, we assumed perfect system in-
formation on both the attacker’s and defender’s sides to
formulate the inverse filter. However, in many applications,
the agent (attacker and/or defender) employing the stochastic
filter may lack information about state evolution, observation,
or both. Here, we develop RKHS-UKF to jointly estimate
the desired state and learn the unknown system model. To
this end, we consider an RKHS-based function approximation
to represent the unknown non-linear functions [60]. From
the representer theorem [61], the optimal approximation of
a function s(·) : Rn → R in the RKHS induced by a kernel
K(·, ·) : Rn×Rn → R takes the form s(·) ≈

∑M
i=1 aiK(x̃i, ·)

where {x̃i}1≤i≤M are the M input training samples or dictio-
nary, and {ai}1≤i≤M are the unknown coefficients to be learnt.
This kernel function approximation has been used widely for
non-linear state-space modeling [62, 63] and recursive least-
squares algorithms with unknown non-linear functions [35, 64,
65]. Being a universal kernel [66], a Gaussian kernel of kernel
width σ > 0 with K(xi,xj) = exp

(
−∥xi−xj∥2

2

σ2

)
is the most

commonly used kernel for function approximation.
Consider a general non-linear system model with both

state transition and observation models unknown to an agent.
Our RKHS-UKF can be trivially simplified if the agent has
perfect prior information about the state evolution, observation
function, and/or noise covariance matrices. In particular, our
RKHS-UKF couples the UKF to obtain state estimates with
an approximate online EM algorithm - a popular choice to
compute maximum likelihood estimates in the presence of
missing data [67] - to learn the unknown system parameters.

Further, the RKHS-UKF can be employed by both attacker
and defender to infer, respectively, the defender’s state (as
a forward filter) and the attacker’s state estimate (as an
inverse filter). The inverse filters developed so far assumed
a specific forward filter employed by the attacker to obtain
their state transition equation. Since RKHS-UKF learns its
state transition based on the available observations itself, we
do not require any prior forward filter information to employ
RKHS-UKF as the defender’s inverse filter.

System models for unknown dynamics: We examine state
transition (1) and observation (2) when the functions f(·) and
h(·), including the noise covariances Q and R, are unknown.
Consider a kernel function K(·, ·) and a dictionary {x̃l}1≤l≤L

of size L. Define Φ(x)
.
= [K(x̃1,x), . . . ,K(x̃L,x)]

T . Using
the kernel function approximation, the unknown state transi-
tion and observation are represented, respectively, as

xk+1 = AΦ(xk) +wk, (25)
yk = BΦ(xk) + vk, (26)

where A ∈ Rnx×L and B ∈ Rny×L are the unknown
coefficient matrices to be learnt. The dictionary {x̃l}1≤l≤L

may be formed using a sliding window [65] or approxi-
mate linear dependency (ALD) [35] criterion. At the k-th
time instant, RKHS-UKF estimates the unknown parameters
Θ = {A,B,Q,R} and current state xk given observations
{yi}1≤i≤k. Note that the system model (1)-(2) and hence,
system parameters Θ are not time-varying.

RKHS-UKF’s approximate online EM to learn the param-
eters Θ closely follows the RKHS-EKF’s parameter learning
steps detailed in [16, Sec. V-A] and, hence, we only summarize
them here. The key difference is that RKHS-EKF linearizes
the non-linear kernel function to approximate the statistics of
a Gaussian random variable under non-linear transformation,
whereas the same approximation is performed by RKHS-UKF
using the unscented transform. The UKF-based recursions then
provide the state estimates using these parameter estimates.

Parameter learning: Consider Yk = {yj}1≤j≤k as
the observations upto time k and Θ̂k−1 = {Âk−1, B̂k−1,
Q̂k−1, R̂k−1} as the current estimate of Θ considering the
previous k − 1 observations. For simplicity, denote the con-
ditional expectation operator E[·|Yk, Θ̂k−1] by Ek[·]. De-
fine the partial sums Sxϕ

k =
∑k

j=1 Ek[xjΦ(xj−1)
T ] and

Sϕ1
k =

∑k
j=1 Ek[Φ(xj−1)Φ(xj−1)

T ]; and approximate them
as Sxϕ

k ≈ Sxϕ
k−1 + Ek[xkΦ(xk−1)

T ] and Sϕ1
k ≈ Sϕ1

k−1 +
Ek[Φ(xk−1)Φ(xk−1)

T ]. In the approximate online EM, the
current observation yk and parameter estimate Θ̂k−1 are
used only to compute the expectations Ek[xkΦ(xk−1)

T ]
and Ek[Φ(xk−1)Φ(xk−1)

T ] and not to update Sxϕ
k−1 and

Sϕ1
k−1. With this approximation, the current observation is

considered only once to update the parameter estimates.
Similarly, we define the sums Syϕ

k =
∑k

j=1 Ek[yjΦ(xj)
T ]

and Sϕ
k =

∑k
j=1 Ek[Φ(xj)Φ(xj)

T ] which are evaluated,
respectively, as Syϕ

k = Syϕ
k−1 + Ek[ykΦ(xk)

T ] and Sϕ
k =

Sϕ
k−1 + Ek[Φ(xk)Φ(xk)

T ]. Further, using (26), we have
Ek[ykΦ(xk)

T ] = B̂kEk[Φ(xk)Φ(xk)
T ] and Ek[yky

T
k ] =

B̂kEk[Φ(xk)Φ(xk)
T ]B̂T

k + R̂k−1. Finally, the approximate
parameter updates are
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Âk = Γa(S
xϕ
k (Sϕ1

k )−1), (27)

Q̂k =

(
1− 1

k

)
Q̂k−1 +

1

k
(Ek[xkx

T
k ]− ÂkEk[Φ(xk−1)x

T
k ]

− Ek[xkΦ(xk−1)
T ]ÂT

k + ÂkEk[Φ(xk−1)Φ(xk−1)
T ]ÂT

k ), (28)

B̂k = Γb(S
yϕ
k (Sϕ

k)
−1), (29)

R̂k =

(
1− 1

k

)
R̂k−1 +

1

k
(Ek[yky

T
k ]− B̂kEk[Φ(xk)y

T
k ]

− Ek[ykΦ(xk)
T ]B̂T

k + B̂kEk[Φ(xk)Φ(xk)
T ]B̂T

k ), (30)

where Γa(·) and Γb(·) denote respectively the projection of the
coefficient matrices estimates to satisfy known bounds. Note
that this projection is optional and used only to analyze the
stability of the proposed RKHS-UKF algorithm in Section V.

To compute the required conditional expectations, we use
the state estimates from the UKF recursions themselves, which
approximate the posterior distribution of the required states
given the observations by a Gaussian density. However, the
expectations involve a non-linear transformation Φ(·). Based
on the unscented transform, we generate the deterministic
sigma points to approximate the statistics of a Gaussian
distribution under non-linear transformation. Further, we need
the statistics of Φ(xk−1) given Yk. Hence, an augmented state
zk = [xT

k xT
k−1]

T is considered in the RKHS-UKF formula-
tion. Using these approximations, the required expectations are
then computed as detailed below.

Recursion: In terms of the augmented state zk, the kernel
approximated system model is

zk = f̃(zk−1) + w̃k−1, (31)

yk = h̃(zk) + vk, (32)

where f̃(zk−1) = [(AΦ(xk−1))
T xT

k−1]
T and

h̃(zk) = BΦ(xk) with process noise w̃k−1 = [wT
k−1 01×nx ]

T

of actual noise covariance matrix Q̃ =
[

Q 0nx×nx
0nx×nx 0nx×nx

]
.

Denote κ as the scaling parameter for RKHS-UKF’s sigma
points. Note that these sigma points are generated in the
augmented state-space with dimension nz = 2nx. At k-th
recursion, we have an estimate ẑk−1 = [x̂T

k−1|k−1 x̂T
k−2|k−1]

T ,
its associated error covariance matrix Σz

k−1 and the parameter
estimate Θ̂k−1 from the previous time step. The current state
and parameter estimates are then obtained using the new
observation yk as summarized below.
1) Prediction: Generate the sigma points {si,k−1}0≤i≤2nz =
Sgen(ẑk−1,Σ

z
k−1) with their corresponding weights

{ωi}0≤i≤2nz
similar to (4). Using A = Âk−1 and

Q̃k−1 =
[

Q̂k−1 0nx×nx
0nx×nx 0nx×nx

]
in (31), propagate {si,k−1}

through f̃(·) to obtain the predicted state and associated
prediction error covariance matrix as

s∗i,k|k−1 = f̃(si,k−1) ∀ i = 0, 1, . . . , 2nz, (33)

ẑk|k−1 =

2nz∑
i=0

ωis
∗
i,k|k−1, (34)

Σz
k|k−1 =

2nz∑
i=0

ωis
∗
i,k|k−1(s

∗
i,k|k−1)

T − ẑk|k−1ẑ
T
k|k−1 + Q̃k−1.

(35)

2) State update: Generate the sigma points {qi,k|k−1}0≤i≤2nz

= Sgen(ẑk|k−1,Σ
z
k|k−1) and propagate through h̃(·) using

B = B̂k−1 and R = R̂k−1 in (32) as

q∗
i,k|k−1 = h̃(qi,k|k−1) ∀ i = 0, 1, . . . , 2nz, (36)

ŷk|k−1 =

2nz∑
i=0

ωiq
∗
i,k|k−1, (37)

Σy
k =

2nz∑
i=0

ωiq
∗
i,k|k−1(q

∗
i,k|k−1)

T − ŷk|k−1ŷ
T
k|k−1 +R, (38)

Σzy
k =

2nz∑
i=0

ωiqi,k|k−1(q
∗
i,k|k−1)

T − ẑk|k−1ŷ
T
k|k−1, (39)

ẑk = ẑk|k−1 +Kk(yk − ŷk|k−1), (40)

Σz
k = Σz

k|k−1 −KkΣ
y
kK

T
k , (41)

where gain matrix Kk = Σzy
k (Σy

k)
−1. Here, ẑk =

[x̂T
k|k x̂T

k−1|k] where x̂k|k is the RKHS-UKF’s estimate of
state xk. These prediction and state updates follow from the
standard UKF recursions to estimate zk with system model
(31) and (32) given parameters Θ̂k−1.
3) Parameters update: Generate sigma points {si,k}0≤i≤2nz

= Sgen(ẑk,Σ
z
k). Denote the two nx-dimensional sub-vectors

of the i-th sigma point, respectively, as s
(1)
i,k = [si,k]1:nx

and
s
(2)
i,k = [si,k]nx+1:2nx corresponding to xk and xk−1 parts of

the augmented state zk. In order to approximate the statistics
of Φ(xk−1) given observations Yk, we propagate the xk−1

part of the sigma points through Φ(·), i.e., s̃(2)i,k = Φ(s
(2)
i,k ).

Similarly, we propagate s
(1)
i,k through Φ(·) to approximate the

statistics of Φ(xk) as s̃
(1)
i,k = Φ(s

(1)
i,k ). Also, by definition

Cov(xk− x̂k|k) ≈ [Σz
k](1:nx,1:nx). With these approximations,

the various expectations are computed as

Ek[xkx
T
k ] = [Σz

k](1:nx,1:nx) + x̂k|kx̂
T
k|k, (42)

Ek[Φ(xk−1)Φ(xk−1)
T ] =

2nz∑
i=0

ωis̃
(2)
i,k(s̃

(2)
i,k)

T , (43)

Ek[xkΦ(xk−1)
T ] =

2nz∑
i=0

ωis
(1)
i,k(s̃

(2)
i,k)

T , (44)

Ek[Φ(xk)Φ(xk)
T ] =

2nz∑
i=0

ωis̃
(1)
i,k(s̃

(1)
i,k)

T . (45)

Using these expectations, the updated parameters estimate Θ̂k

is obtained using (27)-(30).
Finally, the dictionary {x̃l}1≤l≤L is updated using the

current state estimate x̂k|k based on the sliding window [65]
or ALD [35] criterion. Note that in our RKHS-UKF, we need
to generate only two sets of sigma points per recursion, similar
to the standard UKF with a known system model. The sigma
points generated in the parameters update step are the same
as that obtained in the prediction step at the next time instant.
Algorithm 1 describes the initialization of the RKHS-UKF
assuming initial state x0 ∼ N (x̂0,Σ0), while Algorithm 2
summarizes the RKHS-UKF recursions. In the ALD criterion,
the dictionary size increases if the current estimate x̂k|k is
added to the dictionary, while in the sliding window criterion,
the dictionary size changes only during the initial phase when
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the current size L is less than the window length considered.
Algorithms 1 and 2 summarize all the above-mentioned steps.

The usage of the unscented transform implies that the
scaling parameter κ also impacts the parameter learning
in RKHS-UKF. Alternatively, efficient numerical integration
techniques can be employed and RKHS-CKF (RKHS-QKF)
can be trivially obtained from the developed RKHS-UKF.
In [68, 69], UKF has been coupled with neural networks
(NNs) for non-linear system identification with the unknown
weights learned by augmenting them with the state, which
is computationally expensive. In [70], NN is used to model
the non-linear dynamics or uncertainties with the weights
updated online using previous UKF-computed state estimates.
However, in general, the stability of these algorithms can
not be assured [68]. Contrarily, our RKHS-UKF extends the
recursive Bayesian state estimation framework to unknown
systems by including an additional parameter update step using
the expectations from UKF recursion itself. Hence, we are able
to analyze its stochastic stability using the unknown matrix
approach [40] in Section V-B. Such stability guarantees have
not been derived for RKHS-EKF [16] as well.

Remark 4 (Difference from kernel KFs). Kernel-based KFs
(KKFs) have been previously proposed in the literature for
unknown non-linear time series prediction [36, 71, 72]. How-
ever, our RKHS-UKF is fundamentally different from these
KKFs. In [71], the unknown system model is transformed to
an RKHS-based feature space H, wherein it is assumed to be
linear Gaussian such that KF-based filtering recursions are
applicable. The unknown parameters are represented using
an orthonormal basis in H and learned from an exact EM
algorithm. The kernel principal component analysis (PCA)
provides the orthonormal basis. KKFs in [36, 72] consider
conditional distribution embedding of the noisy but linear
observation yk to construct a new state-space model in RKHS.
KF recursions are then applied to estimate the embedded
observation, from which the estimate x̂k is computed. On
the contrary, our RKHS-UKF employs the kernel function
approximation (with a universal Gaussian kernel) to directly
represent the unknown functions in the original state space
without any feature mapping. Furthermore, these KKFs involve
a prior training phase to learn the orthonormal basis and the
embedding operator in [71] and [36, 72], respectively. Hence,
KKFs suffer if the training data does not adequately represent
the test data. On the contrary, our RKHS-UKF learns its
dictionary online (from the computed estimates) based on the
ALD or sliding window criterion.

V. PERFORMANCE ANALYSES

We adopt the unknown matrix approach to derive sufficient
conditions for the stochastic stability of the proposed filters
in the exponential-mean-squared-boundedness sense. Proposed
in [40] for UKF with linear observations, the unknown matrix
approach has been used to derive the stability conditions for
UKF with intermittent observations [73] and consensus-based
UKF [74]. In the following, we derive the stability conditions
for I-UKF and RKHS-UKF considering the general case of

Algorithm 1 RKHS-UKF initialization
Input: x̂0, Σ0, κ
Output: {si,0}0≤i≤2nz

, {ωi}0≤i≤2nz
, Σz

0, L, {x̃l}1≤l≤L,
Â0, B̂0, Q̂0, R̂0, Sxϕ

0 , Sϕ1
0 , Syϕ

0 and Sϕ
0

1: ẑ0 ← [x̂T
0 x̂T

0 ]
T , and Σz

0 ←
[

Σ0 0nx×nx

0nx×nx
Σ0

]
.

2: {si,0, ωi}0≤i≤2nz
← Sgen(ẑ0,Σ

z
0) using (4) and κ.

3: Set L = 1 and x̃1 ← x̂0.
4: Initialize Â0 and B̂0 with arbitrary Rnx×L and Rny×L

matrices, respectively.
5: Initialize Q̂0 and R̂0 with some suitable positive definite

noise covariance matrices.
6: Set Sxϕ

0 = 0nx×L, Sϕ1
0 = 0L×L, Syϕ

0 = 0ny×L and
Sϕ
0 = 0L×L.

return {si,0}0≤i≤2nz
, {ωi}0≤i≤2nz

, Σz
0, L, {x̃l}1≤l≤L,

Â0, B̂0, Q̂0, R̂0, Sxϕ
0 , Sϕ1

0 , Syϕ
0 and Sϕ

0 .

Algorithm 2 RKHS-UKF recursion

Input: {si,k−1, ωi}0≤i≤2nz
, Σz

k−1, Âk−1, B̂k−1, Q̂k−1,
R̂k−1, Sxϕ

k−1, Sϕ1
k−1, Syϕ

k−1, Sϕ
k−1, and yk

Output: x̂k|k, {si,k}0≤i≤2nz , Σz
k, Âk, B̂k, Q̂k, R̂k, Sxϕ

k ,
Sϕ1
k , Syϕ

k , and Sϕ
k

1: Propagate {si,k−1} through f̃(·) and compute ẑk|k−1 and
Σz

k|k−1 using (33)-(35).
2: Generate sigma-points {qi,k|k−1}0≤i≤2nz =

Sgen(ẑk|k−1,Σ
z
k|k−1) using (4) and propagate through

h̃(·) using (36).
3: Compute ẑk and Σz

k using (37)-(41).
4: x̂k|k ← [ẑk]1:nx

.
5: Generate sigma-points {si,k}0≤i≤2nz

= Sgen(ẑk,Σ
z
k)

using (4).
6: Set s(1)i,k = [si,k]1:nx and s

(2)
i,k = [si,k]nx+1:2nx .

7: Compute s̃
(1)
i,k = Φ(s

(1)
i,k ) and s̃

(2)
i,k = Φ(s

(2)
i,k ).

8: Compute Ek[xkx
T
k ], Ek[Φ(xk−1)Φ(xk−1)

T ],
Ek[xkΦ(xk−1)

T ] and Ek[Φ(xk)Φ(xk)
T ] using (42)-(45).

9: Compute Âk, B̂k, Q̂k, and R̂k using (27)-(30).
10: Update dictionary {x̃l}1≤l≤L using the state estimate x̂k|k

based on the sliding window [65] or ALD [35] criterion.
11: if dictionary size increases then

Augment Âk, B̂k, Sxϕ
k , Sϕ1

k , Syϕ
k , and Sϕ

k with suitable
initial values to take into account the updated dictionary
size.
return x̂k|k, {si,k}0≤i≤2nz , Σz

k, Âk, B̂k, Q̂k, R̂k, Sxϕ
k ,

Sϕ1
k , Syϕ

k , and Sϕ
k .

time-varying process and measurement noise covariances Qk,
Rk and Rk instead of Q, R and Σϵ, respectively. Note that,
analogous to the stability literature of KF, Theorems 1, 2 and
4 are sufficient but not necessary conditions for stability.

The SPKFs, including UKF, are local approximation ap-
proaches [15] such that, unlike KF, the gain computation and
covariance update steps are coupled with the state updates.
Therefore, the asymptotic convergence of the filter is not
defined for UKF and I-UKF. Instead, we show that the I-UKF
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provides conservative estimates in Theorem 3.
First, recall the definition of the exponential-mean-squared-

boundedness of a stochastic process.

Definition 1 (Exponential mean-squared boundedness [39]).
A stochastic process {ζk}k≥0 is defined to be exponentially
bounded in mean-squared sense if there are real numbers
η, ν > 0 and 0 < λ < 1 such that E

[
∥ζk∥22

]
≤

ηE
[
∥ζ0∥22

]
λk + ν holds for every k ≥ 0.

A. Inverse UKF

The I-UKF’s estimation error can be shown to be ex-
ponentially bounded if the forward UKF is stable and the
system satisfies some additional assumptions. Particularly, the
I-UKF’s error dynamics can be shown to satisfy the stability
conditions of a generalized UKF. Therefore, we first examine
the stochastic stability of forward UKF.

1) Forward UKF: Consider the forward UKF of Sec-
tion III-A with state-transition (1) and observation (2). De-
note the state prediction, state estimation and measurement
prediction errors by x̃k+1|k

.
= xk+1 − x̂k+1|k, x̃k

.
= xk − x̂k

and ỹk+1
.
= yk+1 − ŷk+1|k, respectively. From (1) and

(6), we have x̃k+1|k = f(xk) + wk −
∑2nx

i=0 ωis
∗
i,k+1|k,

which on substituting s∗i,k+1|k = f(si,k) yields x̃k+1|k =

f(xk) + wk −
∑2nx

i=0 ωif(si,k). Using the first-order Taylor
series expansion of f(·) at x̂k, we have x̃k+1|k ≈ f(x̂k) +

Fk(xk − x̂k) + wk −
∑2nx

i=0 ωi(f(x̂k) + Fk(si,k − x̂k)),
where Fk

.
= ∂f(x)

∂x |x=x̂k
. The sigma points {si,k}0≤i≤2nx

are chosen symmetrically about x̂k. Substituting for si,k in
terms of x̂k and Σk using (5) simplifies the state prediction
error to x̃k+1|k ≈ Fkx̃k +wk. Similar to [40], we introduce
an unknown instrumental diagonal matrix Ux

k ∈ Rnx×nx to
account for the linearization errors as

x̃k+1|k = Ux
kFkx̃k +wk. (46)

Similarly, linearizing h(·) in (2) and introducing unknown
diagonal matrix Uy

k ∈ Rny×ny in (8) yields

ỹk+1 = Uy
k+1Hk+1x̃k+1|k + vk+1, (47)

where Hk+1
.
= ∂h(x)

∂x |x=x̂k+1|k . Using (9), we have x̃k =
x̃k|k−1 − Kkỹk, which when substituted in (46) with (47)
yields the forward UKF’s prediction error dynamics as

x̃k+1|k = Ux
kFk(I−KkU

y
kHk)x̃k|k−1 −Ux

kFkKkvk +wk.
(48)

Denote the true prediction covariance by Pk+1|k =

E
[
x̃k+1|kx̃

T
k+1|k

]
. Define δPk+1|k as the difference

of estimated prediction covariance Σk+1|k and the
true prediction covariance Pk+1|k, while ∆Pk+1|k
is the error in the approximation of the expectation
E
[
Ux

kFk(I−KkU
y
kHk)x̃k|k−1x̃

T
k|k−1(I−KkU

y
kHk)

TFT
kU

x
k

]
by Ux

kFk(I − KkU
y
kHk)Σk|k−1(I − KkU

y
kHk)

TFT
kU

x
k .

Denoting Q̂k = Qk + Ux
kFkKkRkK

T
kF

T
kU

x
k + δPk+1|k +

∆Pk+1|k and using (48) similar to [40, 73], we have

Σk+1|k = Ux
kFk(I−KkU

y
kHk)Σk|k−1(I−KkU

y
kHk)

TFT
k U

x
k

+ Q̂k.

Similarly, we have

Σy
k+1 = Uy

k+1Hk+1Σk+1|kH
T
k+1U

y
k+1 + R̂k+1,

Σxy
k+1 =

{
Σk+1|kU

xy
k+1H

T
k+1U

y
k+1, nx ≥ ny

Σk+1|kH
T
k+1U

y
k+1U

xy
k+1, nx < ny

,

where R̂k+1 = Rk+1 + ∆Py
k+1 + δPy

k+1 with δPy
k+1 and

∆Py
k+1, respectively, accounting for the difference in true and

estimated measurement prediction covariances, and error in the
approximation of the expectation. Also, Uxy

k+1 is the unknown
matrix introduced to account for errors in the estimated cross-
covariance Σxy

k+1.
The error dynamics (48) and the various covariances have

the same form as that for forward EKF given by [14, Sec. V-
B-1]. Hence, [14, Theorem 2] is applicable for forward UKF
stability as well. This is formalized in Theorem 1 below.

Theorem 1 (Stochastic stability of forward UKF). Consider
the forward UKF with the non-linear stochastic system given
by (1) and (2). The forward UKF’s estimation error x̃k is
exponentially bounded in mean-squared sense and bounded
with probability one if the following conditions hold true.
C1. There exist positive real numbers f̄ , h̄, ᾱ, β̄, γ̄, σ, σ̄, q̄,
r̄, q̂ and r̂ such that the following bounds are fulfilled for all
k ≥ 0.

∥Fk∥ ≤ f̄, ∥Hk∥ ≤ h̄, ∥Ux
k∥ ≤ ᾱ, ∥Uy

k∥ ≤ β̄, ∥Uxy
k ∥ ≤ γ̄,

Qk ⪯ q̄I, Rk ⪯ r̄I, q̂I ⪯ Q̂k, r̂I ⪯ R̂k, σI ⪯ Σk|k−1 ⪯ σ̄I.

C2. Ux
k and Fk are non-singular for every k ≥ 0.

C3. The constants satisfy the inequality σ̄γ̄h̄2β̄2 < r̂.

The UKF stability mentioned in [40, Theorem 1] for only
linear measurements requires a lower bound on measurement
noise covariance Rk and also, an upper bound on Q̂k. But Q̂k

is not upper-bounded in Theorem 1. Our nonlinear stability
guarantee requires upper (lower) bounds on noise covariances
Qk (Q̂k) and Rk (R̂k). Both Q̂k and R̂k can be made positive
definite to satisfy the lower bounds and enhance the filter’s
stability by enlarging the noise covariance matrices Qk and
Rk, respectively [40, 75]. For practical systems where we have
a reasonable estimate of the state xk (due to the process’s
constraints), the bounds on unknown matrices Ux

k and Uy
k

can be estimated using functions f(·) and h(·) [76].
2) I-UKF: We now consider the I-UKF of Section III-B

with state-transition (12) and observation (3). Similar to the
forward UKF, we introduce unknown matrices U

x

k and U
a

k to
account for the errors in the linearization of functions f̃(·) and
g(·), respectively, and U

xa

k for the errors in cross-covariance
matrix estimation. Also, Q̂k and R̂k denote the counterparts of
Q̂k and R̂k, respectively, in the I-UKF’s error dynamics. De-
fine F̃k

.
= ∂f̃(x,Σk,xk+1,0)

∂x

∣∣∣
x=ˆ̂xk

and Gk
.
= ∂g(x)

∂x

∣∣∣
x=ˆ̂xk|k−1

.

While approximating Σk by Σ∗
k in I-UKF, we ignore any

possible errors. Assume that the forward gain Kk+1 computed
from ˆ̂xk is approximately same as that computed from x̂k in
forward UKF. Additionally, these approximation errors can be
bounded by positive constants because Σk and Kk+1 can be
proved to be bounded matrices under the I-UKF’s stability
assumptions. The bounds required on various matrices for
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forward UKF’s stability are also satisfied when these matrices
are evaluated by I-UKF at its own estimates, i.e.,

∥∥∥∂f(x)
∂x

∥∥∥ ≤ f̄

and
∥∥∥∂h(x)

∂x

∥∥∥ ≤ h̄ where x can be any sigma point.

Theorem 2 (Stochastic stability of I-UKF). Consider the
attacker’s forward UKF that is stable as per Theorem 1. The
I-UKF’s state estimation error is exponentially bounded in
mean-squared sense and bounded with probability one if the
following assumptions hold true.
C4. There exist positive real numbers ḡ, c̄, d̄, ϵ̄, ĉ, d̂, p and p̄
such that the following bounds are fulfilled for all k ≥ 0.

∥Gk∥ ≤ ḡ, ∥Ua
k∥ ≤ c̄, ∥Uxa

k ∥ ≤ d̄, Rk ⪯ ϵ̄I, ĉI ⪯ Q̂k,

d̂I ⪯ R̂k, pI ⪯ Σk|k−1 ⪯ p̄I.

C5. There exist a real constant y (not necessarily positive)
such that Σy

k ⪰ yI for all k ≥ 0.
C6. The functions f(·) and h(·) have bounded outputs i.e.
∥f(·)∥2 ≤ δf and ∥h(·)∥2 ≤ δh for some real positive
numbers δf and δh.
C7. For all k ≥ 0, F̃k is non-singular and its inverse satisfies
∥F̃−1

k ∥ ≤ ā for some positive real constant ā.
C8. The constants satisfy the inequality p̄d̄ḡ2c̄2 < d̂.

Proof: See Appendix A.
While there are no constraints on the constant y in C5,

Theorem 2 requires an additional lower bound on Σy
k which

was not needed for forward UKF’s stability. Also, y ̸= 0
because (Σy

k)
−1 exists for forward UKF to compute its gain.

Conditions C5 and C6 are necessary to upper-bound the
Jacobian F̃k. The bounds ∥f(·)∥2 ≤ δf and ∥h(·)∥2 ≤ δh
help to bound the magnitude of the propagated sigma points
{s∗i,k+1|k} and {q∗

i,k+1|k}, respectively, generated from a state
estimate, which in turn, upper bounds the various covariance
estimates. Also, the computation of gain matrix Kk involves
(Σy

k)
−1, which can be upper-bounded by assuming a lower

bound on Σy
k as in C5. Note that Theorem 2 assumes bounded

functions f(·) and h(·), but g(·) does not have bounded outputs
in general.

3) Conservative estimator: Recall the definition of a con-
servative estimate pair (x̂,Σ). Note that [77] defines the same
as a consistent estimator.

Definition 2 (Conservative estimate [77]). An unbiased esti-
mate x̂ of random variable x and the corresponding error
covariance estimate Σ are defined to be conservative if
E[(x − x̂)(x − x̂)T ] ⪯ Σ, i.e., the estimated covariance Σ
upper bounds the true error covariance.

Following the statistical linearization technique (SLT) [48]
to linearize (12) and (3) with respect to I-UKF’s augmented
state zk and (forward) estimate x̂k, respectively, we obtain

x̂k+1 = Uz
kF

x
kx̂k +Uz

kF
v
kvk+1, (49)

ak = Ua
kGkx̂k + ϵk, (50)

where Fk = [F
x

k,F
v

k] and Gk are the respective linear pseudo
transition matrices. Also, Uz

k and Ua
k are unknown diagonal

matrices introduced to account for the approximation errors in
SLT. Note that these unknown matrices are different from the

ones introduced in Theorem 2 for the higher-order terms in
the Taylor approximation.

Theorem 3. Consider a conservative initial estimate pair
(ˆ̂x0,Σ0) for the I-UKF. Then for any k ≥ 1, the I-UKF’s
recursive estimate pair (ˆ̂xk,Σk) is also conservative such that
E[(x̂k− ˆ̂xk)(x̂k− ˆ̂xk)

T ] ⪯ Σk, where x̂k is the forward UKF’s
state estimate.

Proof: See Appendix B.
It follows from Theorem 3 and Definition 2 that I-UKF is

a conservative estimator if the initial estimate ˆ̂x0 is unbiased
and initial error covariance estimate Σ0 is chosen sufficiently
large. However, Theorem 3 holds only when the SLT-based
linearized models (49) and (50) well approximate the non-
linear equations (12) and (3), respectively. In particular, if the
unknown matrices Uz

k and Ua
k are not sufficient to account for

the approximation errors, the estimates ˆ̂xk will be in general
biased and hence, not conservative.

B. RKHS-UKF

Consider the following assumptions on the system dynamics
and the RKHS-UKF.
A1. The kernel is a Gaussian kernel with width σ > 0 such
that K(xi,xj) = exp

(
−∥xi−xj∥2

2

σ2

)
.

A2.The actual states xk lie in a compact set X for all k ≥ 0.
For any state x, f(x) ∈ X , i.e., without any process noise,
the state remains within the compact set.
A3. The dictionary {x̃l}1≤l≤L is finite with fixed size.
A4. The true coefficient matrices A and B in (25) and (26)
satisfy ∥A∥ ≤ a and ∥B∥ ≤ b, respectively, for some
constants a and b.

The conditions for a finite dictionary using the ALD crite-
rion are discussed in [35, Theorem 3.1]. A2 is essential for the
Representer theorem to be valid [61], the Gaussian kernel to
approximate non-linear functions with arbitrarily small error
[66] and also, for a finite dictionary under the ALD criterion
[35]. Also, the bound on coefficient matrices A and B in
A4 agrees with functions f(·) and h(·) being bounded which
is needed for the Gaussian kernel to approximate them with
small approximation errors. Under A2, the state transition (1)
is modified to xk+1 = Γ(f(xk) + wk) where Γ(·) denotes
the projection operator onto the set X . Denote the projection
error by ηk such that

xk+1 = f(xk) +wk + ηk. (51)

Note that this projection is considered only for the actual state
evolution. Intuitively, this projection represents the physical
constraints on the state of the process being observed. For
instance, in a radar’s target localization problem, the actual
target location is reasonably upper-bounded by the maximum
unambiguous range and beam pattern (main lobe) of the
radar. The noise wk then represents the modeling uncertainties
that are assumed to be Gaussian to obtain simplified closed-
form solutions [33]. The RKHS-UKF’s state estimates are
not projected onto the set X . However, the RKHS-UKF’s
coefficient matrix estimates Âk and B̂k are projected to satisfy
the bounds of A4. We denote the approximation errors in
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the kernel function approximation of functions f(·) and h(·),
respectively, by δf (·) and δh(·) such that

f(x) = AΦ(x) + δf (x), (52)
h(x) = BΦ(x) + δh(x). (53)

The state prediction error x̃k+1|k, state estimation error x̃k

and measurement prediction error ỹk+1 are as earlier defined
for forward UKF. With ẑk+1|k = [x̂T

k+1|k x̂T
k|k], using (31),

(33) and (34), we have x̂k+1|k =
∑2nz

i=0 ωiÂkΦ([si,k]1:nx
).

Then, substituting (51) and (52), we obtain x̃k+1|k =

AΦ(xk)+δf (xk)+wk+ηk−
∑2nz

i=0 ωiÂkΦ([si,k]1:nx). Now,
linearizing Φ(·) at x̂k|k and introducing unknown diagonal
matrix Uϕ1

k ∈ Rnx×nx similar to (46), we have

x̃k+1|k = (A− Âk)Φ(x̂k|k) +Uϕ1
k A∇Φ(x̂k|k)x̃k|k +wk

+ ηk + δf (xk), (54)

where ∇Φ(x̂k|k)
.
= ∂Φ(x)

∂x |x=x̂k|k . Similarly, linearizing Φ(·)
at x̂k+1|k, introducing unknown diagonal matrix Uϕ2

k+1 ∈
Rny×ny and using (32), (36), (37) and (53), we obtain

ỹk+1 = (B− B̂k)Φ(x̂k+1|k) +Uϕ2
k+1B∇Φ(x̂k+1|k)x̃k+1|k

+ vk+1 + δh(xk+1). (55)

Denote K1
k as the sub-matrix [Kk](1:nx,:) such that (40)

yields x̂k|k = x̂k|k−1 + K1
kỹk and x̃k|k = x̃k|k−1 −K1

kỹk.
Substituting for x̃k|k and ỹk (using (55)) in (54), the RKHS-
UKF’s prediction error dynamics becomes

x̃k+1|k = Uϕ1
k A∇Φ(x̂k|k)(I−K1

kU
ϕ2
k B∇Φ(x̂k|k−1))x̃k|k−1

+wk −Uϕ1
k A∇Φ(x̂k|k)K

1
kvk + (A− Âk)Φ(x̂k|k)

−Uϕ1
k A∇Φ(x̂k|k)K

1
k(B− B̂k−1)Φ(x̂k|k−1) + ηk

+ δf (xk)−Uϕ1
k A∇Φ(x̂k|k)K

1
kδh(xk). (56)

Denote Σk+1|k as the filter’s estimate of E[x̃k+1|kx̃
T
k+1|k]

and Σxy
k+1 as the estimate of E[x̃k+1|kỹ

T
k+1]. These are ap-

propriate sub-matrices of Σz
k+1|k from (35) and Σzy

k+1 from
(39), respectively. Then, following similar steps as for forward
UKF’s stability, we obtain

Σk+1|k = Uϕ1
k A∇Φ(x̂k|k)(I−K1

kU
ϕ2
k B∇Φ(x̂k|k−1))Σk|k−1

× (I−K1
kU

ϕ2
k B∇Φ(x̂k|k−1))

T∇Φ(x̂k|k)
TATUϕ1

k + Q̃k, (57)

Σy
k+1 = Uϕ2

k+1B∇Φ(x̂k+1|k)Σk+1|k∇Φ(x̂k+1|k)
TBTUϕ2

k+1

+ R̃k+1, (58)

Σxy
k+1 = Σk+1|kU

xy
k+1∇Φ(x̂k+1|k)

TBTUϕ2
k+1, (59)

where
Q̃k = Qk+Uϕ1

k A∇Φ(x̂k|k)K
1
kRk(K

1
k)

T∇Φ(x̂k|k)
TATUϕ1

k

+δPk+1|k+∆Pk+1|k and R̃k+1 = Rk+1+δPy
k+1+∆Py

k+1

with δPk+1|k, ∆Pk+1|k, δPy
k+1 and ∆Py

k+1 defined
similarly as for the UKF stability. Here, for simplicity, we
have considered only the nx ≥ ny case, but the results
can be trivially proved to hold for ny ≥ nx as well. Also,
Uxy

k+1 ∈ Rnx×nx is the unknown matrix introduced to account
for errors in cross-covariance estimation. Finally, Theorem 4
provides the stability conditions for RKHS-UKF.

Theorem 4 (Stochastic stability of RKHS-UKF). Consider
the RKHS-UKF for an unknown system model (1) and (2)
with the system satisfying A1-A4. The coefficient matrices

estimates are projected as in (27) and (29) such that the
estimates also satisfy the bounds in A4. The RKHS-UKF’s
estimation error x̃k is exponentially bounded in the mean-
squared sense if the following hold true.
C9. There exist positive real numbers
σ, σ, γ, β, r̃, α, q̃, q, r, ϕ, f and h such that the following
bounds are fulfilled for all k ≥ 0:

σI ⪯ Σk|k−1 ⪯ σI, ∥Uϕ1
k ∥ ≤ α, ∥Uϕ2

k ∥ ≤ β, ∥Uxy
k ∥ ≤ γ,

Qk ⪯ qI, Rk ≤ rI, Q̃k ⪰ q̃I, R̃k ⪰ r̃I, ∥∇Φ(·)∥ ≤ ϕ,

∥δf (·)∥2 ≤ f, ∥δh(·)∥2 ≤ h.

C10. The Jacobian∇Φ(x) at any state x, the actual coefficient
matrix A and Uϕ1

k are non-singular for every k ≥ 0.
C11. The constants satisfy the inequality σγϕ

2
β
2
b
2
< r̃.

Proof: See Appendix C.
Note that for the Gaussian kernel K(·, ·), the Jacobian at

state estimate x̂ is given as ∇Φ(x̂) = 2
σ2

 K(x̃1,x)(x̃1−x̂)T

...
K(x̃L,x)(x̃L−x̂)T

.

Since K(·, ·) is a bounded function, ∥∇Φ(·)∥ ≤ ϕ implies
x̃l − x̂ is bounded where x̂ is any state estimate and x̃l

is a dictionary element obtained from the state estimates
themselves. Hence, this assumption implies our computed
state estimates (more specifically, the difference between these
estimates) lie in a bounded set. However, this set need not be
the same as the compact set X of the true states in A2.

VI. NUMERICAL EXPERIMENTS

We demonstrate the performance of the proposed filters
by comparing the estimation error with RCRLB for differ-
ent example systems. Additionally, we compare the relative
performance of the inverse filters with the corresponding
forward filters. Note that, in general, a non-linear filter’s
performance also depends on the system itself, such that
choosing an appropriate filter involves a trade-off between
accuracy and computational efforts [15]. The same argument
also holds for non-linear inverse filters. RCRLB provides a
lower bound on mean-squared error (MSE) for discrete-time
non-linear filtering as E

[
(xk − x̂k)(xk − x̂k)

T
]
⪰ J−1

k where
Jk = E

[
−∂2 ln p(Y k,Xk)

∂x2
k

]
is the Fisher information matrix

[41]. Here, Xk = {x0,x1, . . . ,xk} is the state vector series
while Y k = {y0,y1, . . . ,yk} are the noisy observations. Also,
p(Y k, Xk) is the joint probability density of pair (Y k, Xk)

and x̂k is an estimate of xk with ∂2(·)
∂x2 denoting the Hessian.

The information matrix Jk is computed recursively as
Jk = D22

k − D21
k (Jk−1 + D11

k )−1D12
k , where D11

k =

E
[
−∂2 ln p(xk|xk−1)

∂x2
k−1

]
, D12

k = E
[
−∂2 ln p(xk|xk−1)

∂xk∂xk−1

]
= (D21

k )T

and D22
k = E

[
−∂2 ln p(xk|xk−1)

∂x2
k

]
+ E

[
−∂2 ln p(yk|xk)

∂x2
k

]
[41].

For the non-linear system given by (1) and (2), the for-
ward information matrices {Jk} recursions are Jk+1 =
HT

k+1R
−1
k+1Hk+1 − Q−1

k Fk(Jk + FT
kQ

−1
k Fk)

−1FT
kQ

−1
k +

Q−1
k , where Fk = ∂f(x)

∂x |x=xk
and Hk = ∂h(x)

∂x |x=xk

[40]. These recursions can be trivially extended to compute
the information matrix Jk for inverse filter’s estimate ˆ̂xk.
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Throughout all experiments, the initial information matrices
J0 and J0 were set to Σ−1

0 and Σ
−1

0 , respectively.
Besides achieving RCRLB, an estimator also needs to

be credible, i.e., its estimated error covariance Σ is statis-
tically close to the actual MSE matrix P. In [78], aver-
aged normalized estimation error squared (ANEES) and non-
credibility indices (NCI) have been proposed as credibility
measures. However, NCI is preferable for comparing differ-
ent estimators because it penalizes optimism and pessimism
to the same degree. An optimistic (pessimistic) estimator’s
Σ is statistically smaller (larger) than P. Define NCI =
(10/M)

∑M
m=1 log10(ϵm/ϵ∗m) where ϵm = x̃T

mΣ−1
m x̃m and

ϵ∗m = x̃T
mP−1

m x̃m with M as the total number of Monte-Carlo
independent runs. Here, x̃m = xm−x̂m is the estimation error
at m-th run for actual state xm and its estimate x̂m. A perfect
NCI is 0 while positive (negative) NCI represents optimism
(pessimism).

A. FM demodulation with I-UKF

Consider the discrete-time non-linear system model of FM
demodulator [79, Sec. 8.2]

xk+1
.
=

[
λk+1

θk+1

]
=

[
exp (−T/β) 0

−β exp (−T/β)−1 1

][
λk
θk

]
+

[
1

−β

]
wk,

with observation yk =
√
2[sin θk, cos θk]

T+vk and ak = λ̂2
k+

ϵk. Here, wk ∼ N (0, 0.01), vk ∼ N (0, I2), ϵk ∼ N (0, 5),
T = 2π/16 and β = 100. Also, λ̂k is the forward filter’s
estimate of λk. For this system, EKF is observed to be more
accurate than UKF in the forward filtering case. Here, we
compare I-UKF’s and I-EKF’s performance. For forward and
inverse UKF, κ and κ both were set to 1, but I-UKF assumed
the forward UKF’s κ to be 2. Other parameters and initial
estimates were as in [14].

Fig. 2 shows the time-averaged root MSE (RMSE), RCRLB
and NCI for state estimation for forward and inverse UKF
and EKF averaged over 500 runs. The RCRLB value for
state estimation is

√
Tr(J−1) with J denoting the associated

information matrix. We also consider inverse filters with a
forward filter that is not the same as the true forward filter. For
instance, IUKF-E in Fig. 2a denotes the I-UKF’s estimation
error which assumes a forward UKF when the true forward
filter is EKF. The other notations in Fig. 2 and also, in
further experiments are similarly defined. From Fig. 2, we
observe that the forward EKF has lower estimation error but
higher NCI than forward UKF. Hence, with correct forward
filter assumption, IUKF-U has a higher error than IEKF-
E. However, IUKF-E outperforms I-EKF even with incorrect
forward filter assumption. On the other hand, incorrect forward
filter assumption degrades I-EKF’s performance, i.e., IEKF-U
has lower estimation accuracy and higher NCI than IEKF-E.
While all filters considered here are optimistic, I-UKF is the
most credible filter. I-UKF also outperforms forward UKF in
terms of credibility because it uses additional true state xk

information. Note that even though I-UKF assumes forward
UKF’s κ to be different from its true value, IUKF-U performs
better than the forward UKF.

Fig. 2. (a) Time-averaged RMSE and RCRLB, and (b) NCI for forward and
inverse UKF for FM demodulator system.

B. Vehicle reentry with I-UKF

Consider a radar tracking a vehicle’s reentry using range
and bearing measurements, widely used to illustrate UKF’s
performance [19, 56]. Here, we consider I-UKF’s performance
under both correct and incorrect forward filter assumptions.
We denote the position of the vehicle at k-th time instant
as [xk]1 and [xk]2, its velocity as [xk]3 and [xk]4, and its
constant aerodynamic parameter as [xk]5. The vehicle’s state
continuous-time evolution follows [ẋk]1 = [xk]3, [ẋk]2 =
[xk]4, [ẋk]3 = dk[xk]3 + gk[xk]1 + w1, [ẋk]4 = dk[xk]4 +
gk[xk]2 + w2, [ẋk]5 = w3, where [ẋk]i is the first-order
partial derivative of [xk]i with respect to time, and w1, w2

and w3 represent process noise. We consider the discretized
version of this system with a time step of 0.1 sec in our
experiment. The quantities dk = βk exp ((ρ0 − ρk)/h0)Vk

and gk = −Gm0ρ
−3
k where βk = β0 exp ([xk]5), Vk =√

[xk]23 + [xk]24 and ρk =
√
[xk]21 + [xk]22 with ρ0, h0, G,

m0 and β0 as constants. The radar’s range and bearing
measurements are [yk]1 =

√
([xk]1 − ρ0)2 + [xk]22 + v1, and

[yk]2 = tan−1
(

[xk]2
[xk]1−ρ0

)
+ v2, where v1 and v2 represent

measurement noises [19].
For the inverse filter, we consider a linear observation

ak = [[x̂k]1, [x̂k]2]
T
+ ϵk, where ϵk ∼ N (0, 3I2). The initial

state was x0 = [6500.4, 349.14,−1.8093,−6.7967, 0.6932]T .
The initial state estimate ˆ̂xk for I-UKF was
set to actual x0 with initial covariance estimate
Σ0 = diag(10−5, 10−5, 10−5, 10−5, 1). For forward UKF, κ
was chosen as 2.5 such that the weight for 0-th sigma point
at x̂k is 1/3, and all other sigma points have equal weights.
Similarly, κ of I-UKF was set to 3.5. Here, we assumed that
the forward UKF’s κ was perfectly known to I-UKF. All
other system parameters and initial estimates were identical
to [19].

Fig. 3 shows the (root) time-averaged error in position
estimation, its RCRLB (also, time-averaged) and NCI for
forward and inverse UKF (IUKF-U), including forward EKF
and IUKF-E which incorrectly assumes the forward filter to
be UKF when the adversary’s actual forward filter is EKF.
Here, the RCRLB is computed as

√
[J−1]1,1 + [J−1]2,2. The

I-UKF’s error are observed to be lower than that of forward
UKF, as is the case with their corresponding RCRLBs. I-
UKF’s NCI is approximately 0 (perfect NCI) while forward
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Fig. 3. (a) Time-averaged estimation error and RCRLB, and (b) NCI for
forward and inverse UKF for vehicle reentry system averaged over 100 runs.

UKF and EKF are pessimistic. Further, incorrect forward
filter assumption (IUKF-E case) does not affect the I-UKF’s
estimation because forward UKF and EKF have similar per-
formances. For the vehicle re-entry example, the I-EKF’s error
and NCI were similar to I-UKF and hence, omitted in Fig. 3.

C. FM demodulation with RKHS-UKF

Recall the FM demodulator system and compare RKHS-
UKF’s estimation accuracy with forward and inverse EKF
(with perfect system model information) and RKHS-EKF
[16] (without any prior information). Similar to [16, VI-C],
the attacker knows its observation function and employs a
simplified RKHS-UKF/EKF. The defender learns both its state
evolution and observation model using the general RKHS-
UKF/EKF as its inverse filter (denoted by I-RKHS-UKF/EKF).
Note that forward RKHS-UKF/EKF and I-RKHS-UKF/EKF
are essentially the same algorithms but employed by different
agents to compute their desired estimates. Considering a
Gaussian kernel, all the parameters of the forward and inverse
RKHS-based filters were the same as in [16, VI-C]. For
RKHS-UKF, κ was set to 5 and 3, respectively, for the forward
and inverse filters.

Fig. 4 shows the time-averaged RMSE and NCI for forward
and inverse EKF, RKHS-EKF, and RKHS-UKF. We omit the
forward and inverse UKF performances, which were observed
to be less accurate than forward and inverse EKF in Sec-
tion VI-A. For I-EKF and I-RKHS-EKF, the true forward
filters are EKF and RKHS-EKF, respectively. On the other
hand, I-RKHS-UKF-1, I-RKHS-UKF-2, and I-RKHS-UKF-3
have RKHS-UKF, EKF, and RKHS-EKF, respectively, as true
forward filters. From Fig. 4a, we observe that both forward
RKHS-EKF and RKHS-UKF have higher errors than forward
EKF because they do not perfectly know the defender’s state
evolution function. On the other hand, both forward RKHS-
EKF and RKHS-UKF are more credible than forward EKF,
but optimistic and pessimistic, respectively. However, forward
RKHS-UKF is more accurate than RKHS-EKF. While all
RKHS-based inverse filters perform better than I-EKF without
any prior system model information, I-RKHS-UKF outper-
forms both I-EKF and I-RKHS-EKF when estimating the same
state, i.e., I-RKHS-UKF-2 and I-RKHS-UKF-3 have lower er-
ror than I-EKF and I-RKHS-EKF, respectively. The improved

Fig. 4. (a) Time-averaged RMSE, and (b) NCI for forward and inverse
RKHS-UKF for FM demodulator system, compared with forward and inverse
EKF and RKHS-EKF.

performance for the RKHS-based inverse filters owes to the
fact that we use a kernel function approximation in RKHS-
based filters instead of the first-order Taylor approximation
as in I-EKF for the non-linear functions. However, RKHS-
EKF linearizes the non-linear kernel function for expectation
computations and thus, introduces linearization errors. RKHS-
UKF, on the other hand, considers the unscented transform
and hence, also outperforms RKHS-EKF. Interestingly, even
though RKHS-UKF is pessimistic, it has a similar NCI for all
cases, including when employed as a forward filter (forward
RKHS-UKF) and hence, is more robust than all other filters.

D. Lorenz system with RKHS-UKF

Consider the 3-dimensional Lorenz system [47]

xk+1 =

[
[xk]1+∆tr1(−[xk]1+[xk]2)

[xk]2+∆t(r2[xk]1−[xk]2−[xk]1[xk]3)
[xk]3+∆t(−r3[xk]3+[xk]1[xk]2)

]
+

[
0
0
0.5

]
wk,

with yk = ∆t
√
([xk]1 − 0.5)2 + [xk]22 + [xk]23 + 0.065vk

and ak = ∆t
√

[x̂k]21 + ([x̂k]2 − 0.5)2 + [x̂k]23 + 0.1ϵk, where
wk, vk, ϵk ∼ N (0,∆t) with parameters ∆t = 0.01, r1 = 10,
r2 = 28 and r3 = 8/3. Here, we compare forward and inverse
UKF (with perfect system model information) with RKHS-
UKF (without any prior information). The considered system
is mathematically interesting because of its three unstable
equilibria [47]. For the attacker’s state estimate, we employ
a forward RKHS-UKF but unlike the FM demodulator appli-
cation, the observation function is not known to the attacker.
For both forward and inverse RKHS-UKF, we chose κ = 3
and Gaussian kernel’s width σ2 = 20. The dictionaries were
constructed using the sliding window criterion with a window
length 15. The initial coefficient matrix estimates (Â0, B̂0)
and noise covariance matrix estimates (Q̂0, R̂0) were set to
appropriate (size) all ones and identity matrices, respectively.
We compare the RKHS-UKF-based forward and inverse filters
with a forward UKF with κ = 1.5 and I-UKF with κ = 2,
respectively. We initialize x0 = [−0.2,−0.3,−0.5]T = ˆ̂x0

and x̂0 = [1.35,−3, 6]T , while all initial covariances were set
to 0.35I.

Fig. 5 shows the time-averaged RMSE and NCI for forward
and inverse RKHS-UKF and UKF, including the incorrect
forward filter assumption case I-UKF-R which assumes a
forward UKF instead of the actual forward RKHS-UKF. The
true forward filters for I-RKHS-UKF and I-RKHS-UKF-U



14

Fig. 5. (a) Time-averaged RMSE, and (b) Time-averaged NCI for forward and
inverse RKHS-UKF for Lorenz system, compared with forward and inverse
UKF, averaged over 50 runs.

are RKHS-UKF and UKF, respectively. Similar to Fig. 4a,
we observe that without perfect system information, forward
RKHS-UKF has a higher estimation error than the forward
UKF. While I-UKF has the same accuracy as its forward
UKF, I-RKHS-UKF (I-RKHS-UKF-U case) could not achieve
the same accuracy by learning the system model on its own.
However, even though forward RKHS-UKF is not accurate,
I-RKHS-UKF is able to learn its state estimate’s evolution
and has the lowest estimation error. Interestingly, I-UKF-R
with incorrect forward filter assumption also shows a lower
error than its forward RKHS-UKF. From Fig. 5b, we observe
that only I-RKHS-UKF has stable performance in terms of
credibility. I-RKHS-UKF-U is slightly optimistic while I-
RKHS-UKF is pessimistic.

VII. SUMMARY

For the inverse cognition problem in counter-adversarial
systems, we developed unscented transform-based inverse non-
linear filters. Our basic I-UKF assumes perfect system infor-
mation. We also suitably modify it for other general scenarios
of non-Gaussian noises, continuous-time state evolution, and
complex-valued systems. Our theoretical guarantees state that,
if the attacker’s forward UKF is stable, then the I-UKF is also
stable under mild conditions. Numerical results suggested that
the inverse filters provide reasonable estimates, even while
incorrectly assuming the form of the forward filter. I-UKF
also outperforms forward UKF because of the perfect actual
state information. When the prior system information is not
available, we proposed RKHS-UKF using the kernel function
approximation and coupling an online approximate EM with
UKF recursions. The RKHS-UKF was shown to provide better
estimates than RKHS-EKF.

APPENDIX A
PROOF OF THEOREM 2

We first obtain stability results for the augmented state
UKF with non-additive process noise (from which I-UKF was
formulated) in Appendix A-A. In Appendix A-B, we provide
some preliminary results, including a bound on Jacobian F̃k of
state transition (11) with respect to x̂k. The I-UKF’s stability
then follows in Appendix A-C while A-D provides detailed
proofs of Claims 1 and 2. We restate a useful lemma for
bounding a stochastic process.

Lemma 1 (Boundedness of stochastic process [39, Lemma
2.1]). Consider a function Vk(ζk) of the stochastic process
ζk and real numbers vmin, vmax, µ > 0, and 0 < λ ≤ 1
such that (a) vmin∥ζk∥22 ≤ Vk(ζk) ≤ vmax∥ζk∥22, and (b)
E [Vk+1(ζk+1)|ζk] − Vk(ζk) ≤ µ − λVk(ζk) for all k ≥ 0.
Then, the stochastic process {ζk}k≥0 is exponentially bounded
in mean-squared sense, i.e., E

[
∥ζk∥22

]
≤ vmax

vmin
E
[
∥ζ0∥22

]
(1 −

λ)k + µ
vmin

∑k−1
i=1 (1 − λ)i for every k ≥ 0. Further, {ζk}k≥0

is also bounded with probability one.

A. Stochastic stability of augmented state UKF

Consider state-evolution (1) with non-additive process noise
as

xk+1 = f(xk,wk). (60)

The non-additive noise term leads us to formulate UKF using
an augmented state zk = [xT

k ,w
T
k ]

T to estimate x̂k as
described in [45]. Linearizing f(·) at ẑk = [x̂T

k ,0]
T , the state

prediction error x̃k+1|k is approximated as x̃k+1|k ≈ Fkx̃k +

Fw
k wk, where Fk

.
= ∂f(x,0)

∂x |x=x̂k
and Fw

k
.
= ∂f(x̂k,w)

∂w |w=0.
Similar to forward UKF, we introduce unknown diagonal ma-
trices Ux

k and Uw
k ∈ Rnx×nx to account for the linearization

errors as

x̃k+1|k = Ux
kFkx̃k +Uw

k F
w
k wk. (61)

Hence, the prediction error dynamics becomes

x̃k+1|k = Ux
kFk(I−KkU

y
kHk)x̃k|k−1 −Ux

kFkKkvk +Uw
k F

w
k wk.

(62)

The covariances Σk+1|k, Σy
k+1 and Σxy

k+1 can be trivially
expressed in the same forms as in forward UKF case, but
with Q̂k = Uw

k F
w
k Qk(U

w
k F

w
k )

T +Ux
kFkKkRkK

T
kF

T
kU

x
k +

δPk+1|k + ∆Pk+1|k. The following lemma extends the for-
ward UKF’s stability results to augmented state UKF.

Lemma 2 (Stochastic stability of augmented state UKF).
Consider the non-linear stochastic system given by (60) and
(2). The augmented-state UKF’s estimation error x̃k is expo-
nentially bounded in mean-squared sense and bounded with
probability one if all the assumptions of Theorem 1 hold
true and additionally, there exists a constant w such that
∥Uw

k F
w
k ∥ ≤ w is fulfilled for all k ≥ 0.

Proof: Similar to forward UKF, the different covariance
matrices are expressed in terms of the unknown matrices as

Σk+1|k = Ux
kFk(I−KkU

y
kHk)Σk|k−1(I−KkU

y
kHk)

TFT
k U

x
k

+ Q̂k,

Σy
k+1 = Uy

k+1Hk+1Σk+1|kH
T
k+1U

y
k+1 + R̂k+1,

Σxy
k+1 =

{
Σk+1|kU

xy
k+1H

T
k+1U

y
k+1, nx ≥ ny

Σk+1|kH
T
k+1U

y
k+1U

xy
k+1, nx < ny

,

where Q̂k = Uw
k F

w
k Qk(U

w
k F

w
k )

T+Ux
kFkKkRkK

T
kF

T
kU

x
k+

δPk+1|k+∆Pk+1|k and all other matrices including unknown
matrices Uy

k+1 and Uxy
k+1 are same as defined for forward

UKF.
Define Vk(x̃k|k−1) = x̃T

k|k−1Σ
−1
k|k−1x̃k|k−1 to apply

Lemma 1. Following similar steps as in proof of [14, Theorem
2], we have
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E
[
Vk+1(x̃k+1|k)|x̃k|k−1

]
= x̃T

k|k−1(U
x
kFk(I−KkU

y
kHk))

T

×Σ−1
k+1|k(U

x
kFk(I−KkU

y
kHk))x̃k|k−1

+ E[wT
k (U

w
k F

w
k )

TΣ−1
k+1|k(U

w
k F

w
k )wk|x̃k|k−1]

+ E[vT
k (U

x
kFkKk)

TΣ−1
k+1|k(U

x
kFkKk)vk|x̃k|k−1]. (63)

Consider the last expectation term of (63). Since,
Σk+1|k ⪰ σI, we have (Uw

k F
w
k )

TΣ−1
k+1|k(U

w
k F

w
k ) ⪯

1
σ (U

w
k F

w
k )

T (Uw
k F

w
k ). With the bound ∥Uw

k F
w
k ∥ ≤ w, it

can be upper bounded as (Uw
k F

w
k )

TΣ−1
k+1|k(U

w
k F

w
k ) ⪯

w2

σ I such that similar to proof of [14, Theorem 2],

we have E
[
wT

k (U
w
k F

w
k )

TΣ−1
k+1|k(U

w
k F

w
k )wk|x̃k|k−1

]
≤

w2

σ E[wT
k wk] ≤ w2

σ q̄nx. With this upper bound, Lemma 2 can
be proved trivially following similar steps as in the proof of
[14, Theorem 2].

B. Preliminaries to the Proof

We state Lemma 3 that we employ in the sequel.

Lemma 3. Bounds on a vector a and a ‘n × m’ matrix A
lead to the following bounds.
(a) If ∥a∥2 ≤ δ, then each component satisfies |[a]i| ≤ δ.
(b) If ∥A∥ ≤ δ, then the i-th row sum

∑m
j=1 |[A]i,j | ≤

√
mδ.

(c) If ∥A∥ ≤ δ, then the i-th row satisfies ∥[A](i,:)∥2 ≤ δ.
(d) If each component satisfies |[A]i,j | ≤ δ, then ∥A∥ ≤√
nmδ.

Proof: In the following, the notation ∥ · ∥∞ denotes the
l∞ norm and the induced maximum row-sum norm for vectors
and matrices, respectively.

For (a), by the equivalence of vector norms, we have
∥a∥∞ ≤ ∥a∥2. But by definition of l∞ norm, ∥a∥∞ =
max|[a]i| and hence, |[a]i| ≤ δ.

For (b), by the equivalence of matrix norms, ∥A∥∞ ≤√
m∥A∥ ≤

√
mδ. But by the definition of ∥A∥∞, it is the

maximum row sum such that for any i-th row of matrix A,
we have the bound

∑m
j=1 |[A]i,j | ≤

√
mδ.

For (c), by the definition of spectral norm, ∥AT ∥ =
max∥x∥2=1∥ATx∥2. However, ∥AT ∥ = ∥A∥ such that with
y = xT , we have ∥A∥ = max∥y∥2=1∥yA∥2, which implies
∥yA∥2 ≤ ∥A∥ for any vector y with ∥y∥2 = 1. Choosing
y as a ‘1 × n’ vector with only i-th component as 1 and all
other components as 0, yA becomes the i-th row of A from
which the result follows trivially.

For (d), by the equivalence of matrix norms, we have
∥A∥ ≤

√
nm∥A∥max where ∥A∥max = maxi,j |[A]i,j |. Hence,

|[A]i,j | ≤ δ leads to ∥A∥ ≤
√
nmδ.

Lemma 4. Under the assumptions of Theorem 2, the Jacobian
∂qi,k+1|k

∂x̂k
of the i-th sigma point generated for measurement

update in the forward UKF with respect to the state estimate
x̂k is bounded as

∥∥∥∂qi,k+1|k
∂x̂k

∥∥∥ ≤ c′ for some positive real
constant c′.

Proof: From (7), we observe that qi,k+1|k is a linear
function of the predicted state x̂k+1|k and the i-th column
of

√
Σk+1|k. In order to bound its Jacobian with respect to

x̂k, we need to bound the Jacobians of x̂k+1|k and
√
Σk+1|k

with respect to x̂k.

We start with x̂k+1|k. Since s∗i,k+1|k = f(si,k), the Jacobian
∂s∗i,k+1|k

∂x̂k
= ∂f(x)

∂x

∣∣∣
x=si,k

for all 0 ≤ i ≤ 2nx, because
∂si,k
∂x̂k

= I from (5). Hence, differentiating (6), we have
∂x̂k+1|k

∂x̂k
=

∑2nx

i=0 ωi
∂f(x)
∂x

∣∣∣
x=si,k

, which on using the upper-

bound on Jacobian Fk from Theorem 1 yields∥∥∥∥∂x̂k+1|k

∂x̂k

∥∥∥∥ ≤ f̄. (64)

The following Claim 1 bounds the derivative of
√
Σk+1|k with

the detailed proof provided in Appendix A-D1.

Claim 1. For any i-th column of
√
Σk+1|k, we have the upper

bound
∥∥∥∥∂[
√

Σk+1|k](:,i)
∂x̂k

∥∥∥∥ ≤ nxδσ for some δσ > 0.

Using Claim 1 and bound (64) in (7), we have∥∥∥∂qi,k+1|k
∂x̂k

∥∥∥ ≤ c′ where c′ = f̄ + nxδσ
√
nx + κ.

Lemma 5. Under the assumptions of Theorem 2, the Jacobian
F̃k

.
= ∂f̃(x,Σk,xk+1,0)

∂x

∣∣∣
x=ˆ̂xk

of state transition equation (11)

satisfies the bound ∥F̃k∥ ≤ cf for some positive real constant
cf .

Proof: Define tk = h(xk+1) + vk+1 −
∑2nx

i=0 ωiq
∗
i,k+1|k

i.e. the difference in the actual observation yk+1 and its predic-
tion. Rearranging (11) and using x̂k+1|k =

∑2nx

i=0 ωis
∗
i,k+1|k,

I-UKF’s state transition becomes x̂k+1 = x̂k+1|k + Kk+1tk
such that its Jacobian with respect to x̂k (state to be estimated
from I-UKF’s state transition) is

F̃k =
∂x̂k+1|k

∂x̂k

∣∣∣∣
vk+1=0

+
∂(Kk+1tk)

∂x̂k

∣∣∣∣
vk+1=0

. (65)

First, consider the second derivative term. The j-th row of
‘nx×nx’ Jacobian ∂(Kk+1tk)

∂x̂k
consists of the first order partial

derivatives of j-th element of ‘nx × 1’ vector Kk+1tk with
respect to the elements of x̂k. This j-th element [Kk+1tk]j =∑ny

m=1[Kk+1]j,m[tk]m, such that the j-th row of the Jacobian
is obtained as[
∂(Kk+1tk)

∂x̂k

]
(j,:)

=

ny∑
m=1

[Kk+1]j,m
∂[tk]m
∂x̂k

+

ny∑
m=1

[tk]m
∂[Kk+1]j,m

∂x̂k
.

(66)

The following Claim 2 upper bounds this j-th row with the
detailed proof provided in Appendix A-D2.

Claim 2. The j-th row of Jacobian of Kk+1tk satisfies∥∥∥∥[∂(Kk+1tk)
∂x̂k

]
(j,:)

∥∥∥∥
2

≤ ct for some ct > 0.

With Claim 2, we can show that
∥∥∥∂(Kk+1tk)

∂x̂k

∥∥∥ ≤ nxct using
Lemma 3(a) followed by Lemma 3(d). Hence, from (65) along
with the bound (64) since x̂k+1|k is independent of the noise
term vk+1, we have ∥F̃k∥ ≤ cf = f̄ + nxct.

C. Proof of the Theorem

Define F̃v
k

.
= ∂f̃(ˆ̂xk,Σk,xk+1,v)

∂v

∣∣∣∣
v=0

and U
v

k as the coun-

terpart of Uw
k for I-UKF dynamics. We will show that under

the assumptions of Theorem 2, the I-UKF’s dynamics satisfies
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the required conditions of Lemma 2. In this regard, we show
that I-UKF’s dynamics satisfies the following conditions for
all k ≥ 0 for some constants cf , cα, cq, cv .
A.C1. ∥F̃k∥ ≤ cf .
A.C2. Qk ⪯ cqI.
A.C3. ∥Ux

k∥ ≤ cα.
A.C4. Ux

k is non-singular for all k ≥ 0.
A.C5. ∥Uv

kF̃
v
k∥ ≤ cv .

All other conditions of Lemma 2 are assumed to hold true
in Theorem 2, such that the I-UKF’s estimation error is
exponentially bounded in mean-squared sense and bounded
with probability one. Also, A.C1 is satisfied by Lemma 5.

For A.C2, the noise vk+1 of state transition (11) has covari-
ance Qk = Rk+1 which is upper-bounded as Rk+1 ⪯ r̄I from
one of the assumptions of Theorem 1. Hence, A.C2 holds true
with cq = r̄.

For A.C3 and A.C4, introducing the unknown matrix U
x

k

and U
v

kF̃
v
k = Kk+1 since the second and higher order deriva-

tives of (11) with respect to the noise term vk+1 are zero, we
have I-UKF’s state prediction error ˆ̃xk+1|k

.
= x̂k+1 − ˆ̂xk+1|k

as
ˆ̃xk+1|k = U

x
kF̃k

ˆ̃xk +Kk+1vk+1, (67)

where ˆ̃xk
.
= x̂k − ˆ̂xk is the I-UKF’s state estimation error.

However, substituting for x̂k+1 using (11) and ˆ̂xk+1|k using
(15), we have

ˆ̃xk+1|k =

2nx∑
i=0

ωis
∗
i,k+1|k −Kk+1

2nx∑
i=0

ωiq
∗
i,k+1|k +Kk+1h(xk+1)

+Kk+1vk+1 −
2nz∑
j=0

ωjs
∗
j,k+1|k. (68)

From
∑2nx

i=0 ωis
∗
i,k+1|k =

∑2nx

i=0 ωif(si,k) using the first-
order Taylor series expansion, we have

∑2nx

i=0 ωis
∗
i,k+1|k =

f(x̂k). Similarly,
∑2nx

i=0 ωiq
∗
i,k+1|k = h(x̂k+1|k) and∑2nz

j=0 ωjs
∗
j,k+1|k = f̃(ˆ̂xk,Σk,xk+1,0). Substituting (11)

for f̃(·) and again using the Taylor series expansion for
the summation terms involving sigma points, we have∑2nz

j=0 ωjs
∗
j,k+1|k = f(ˆ̂xk)−Kk+1h(xk+1|k)+Kk+1h(xk+1),

where xk+1|k = f(ˆ̂xk) under the assumption that the gain
Kk+1 computed from ˆ̂xk is approximately same as that
computed from forward UKF’s x̂k. Hence, (68) simplifies to
ˆ̃xk+1|k = f(x̂k)− f(ˆ̂xk)−Kk+1(h(x̂k+1|k)− h(xk+1|k)) +
Kk+1vk+1. Using the unknown matrices Ux

k and Uy
k intro-

duced in forward UKF for linearizing f(·) and h(·), respec-
tively, at x̂k and x̂k+1|k, we obtain ˆ̃xk+1|k = Ux

kFk
ˆ̃xk −

Kk+1U
y
k+1Hk+1U

x
kFk

ˆ̃xk + Kk+1vk+1. Comparing with
(67), we have U

x

k = (I−Kk+1U
y
k+1Hk+1)U

x
kFkF̃

−1
k since

F̃−1
k is assumed to be non-singular in Theorem 2. With the

bounds assumed on various matrices in Theorem 1 and the
assumption ∥F̃−1

k ∥ ≤ ā from Theorem 2, it is straightforward
to obtain ∥Ux

k∥ ≤ ᾱf̄ ā(1 + k̄β̄h̄) such that A.C3 holds true
with cα = ᾱf̄ ā(1 + k̄β̄h̄). Also, A.C4 holds true, i.e, U

x

k

is non-singular because Ux
k and Fk are non-singular from

the assumptions of Theorem 1, and (I − Kk+1U
y
k+1Hk+1)

can be proved to be invertible under the forward UKF’s

stability conditions as proved intermediately, in the proof of
[14, Theorem 2].

For A.C5, we have U
v

kF̃
v
k = Kk+1 since the second and

higher order derivatives of (11) with respect to vk+1 are zero.
Under Theorem 1’s assumptions, ∥Kk+1∥ ≤ k̄ and A.C5 holds
with cv = k̄.

D. Proofs of Claims 1 and 2

1) Proof of Claim 1: In order to bound the derivative of√
Σk+1|k, we first upper-bound the derivative of Σk+1|k in

Claim 3.

Claim 3. For any (l,m)-th element of Σk+1|k, we have the

upper bound
∥∥∥∂[Σk+1|k]l,m

∂x̂k

∥∥∥
2
≤ 4δf f̄ .

Proof: We have Σk+1|k =
∑2nx

i=0 ωis
∗
i,k+1|k(s

∗
i,k+1|k)

T −
x̂k+1|k(x̂k+1|k)

T +Qk. Its (l,m)-th element is [Σk+1|k]l,m
=

∑2nx

i=0 ωi[s
∗
i,k+1|k]l[s

∗
i,k+1|k]m − [x̂k+1|k]l[x̂k+1|k]m +

[Qk]l,m, which implies

∂[Σk+1|k]l,m

∂x̂k
= −[x̂k+1|k]l

∂[x̂k+1|k]m

∂x̂k
− [x̂k+1|k]m

∂[x̂k+1|k]l

∂x̂k

+

2nx∑
i=0

ωi[s
∗
i,k+1|k]m

∂[s∗i,k+1|k]l

∂x̂k
+

2nx∑
i=0

ωi[s
∗
i,k+1|k]l

∂[s∗i,k+1|k]m

∂x̂k
.

Note that all derivatives here are gradients since [Σk+1|k]l,m
is a scalar. Theorem 2 assumes f(·) has bounded outputs and
hence, the magnitude of each element of s∗i,k+1|k and x̂k+1|k
is also bounded by δf according to Lemma 3(a), which leads
to ∥∥∥∥∂[Σk+1|k]l,m

∂x̂k

∥∥∥∥
2

= δf

∥∥∥∥∂[x̂k+1|k]m

∂x̂k

∥∥∥∥
2

+ δf

∥∥∥∥∂[x̂k+1|k]l

∂x̂k

∥∥∥∥
2

+

2nx∑
i=0

ωiδf

∥∥∥∥∂[s∗i,k+1|k]l

∂x̂k

∥∥∥∥
2

+

2nx∑
i=0

ωiδf

∥∥∥∥∂[s∗i,k+1|k]m

∂x̂k

∥∥∥∥
2

.

However,
∂[s∗i,k+1|k]l

∂x̂k
is the l-th row of Jacobian

∂s∗i,k+1|k
∂x̂k

whose spectral norm is bounded by f̄ since ∥Fk∥ ≤ f̄ (as used
to obtain (64)). Hence, using Lemma 3(c) with the bounds
on the spectral norms

∥∥∥∂s∗i,k+1|k
∂x̂k

∥∥∥ and
∥∥∥∂x̂k+1|k

∂x̂k

∥∥∥, we have∥∥∥∂[Σk+1|k]l,m
∂x̂k

∥∥∥
2
≤ 4δf f̄ .

From the Cholesky decomposition of Σk+1|k, we have
[Σk+1|k]l,m =

∑nx

j=1[
√

Σk+1|k]l,j [
√
Σk+1|k]m,j . However,

Σk+1|k is a symmetric, positive definite matrix (one of the
assumptions of Theorem 1) and hence,

√
Σk+1|k is a lower

triangular matrix with [
√

Σk+1|k]i,j = 0 for j ≥ i such that
[Σk+1|k]l,m =

∑min(l,m)
j=1 [

√
Σk+1|k]l,j [

√
Σk+1|k]m,j where

indices l and m ranges from 1 to nx. Differentiating with
respect to i-th element of x̂k, we have

∂[Σk+1|k]l,m

∂[x̂k]i
=

min(l,m)∑
j=1

[
√

Σk+1|k]l,j
∂[
√

Σk+1|k]m,j

∂[x̂k]i

+

min(l,m)∑
j=1

[
√

Σk+1|k]m,j

∂[
√

Σk+1|k]l,j

∂[x̂k]i
. (69)

Note that here, all the derivatives are scalar. We will bound
each individual term of this equation. We denote ∂[Σk+1|k]l,m

∂[x̂k]i
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by al,m which is the i-th element of ∂[Σk+1|k]l,m
∂x̂k

. Also, denote
the (l, j)-th element [

√
Σk+1|k]l,j by bl,j and its derivative

∂[
√

Σk+1|k]l,j

∂[x̂k]i
by cl,j . We require an upper-bound on cl,j .

Upper-bounds on |al,m| and |bl,j |, and lower bound on
|bi,i|: Using Claim 3 and Lemma 3(a), we have |al,m| ≤ 4δf f̄ .
By the definition of spectral norm and bound Σk+1|k ⪯
σ̄I from one of the assumptions of Theorem 1, we have
∥
√
Σk+1|k∥ ≤

√
σ̄, which again using Lemma 3(c) followed

by Lemma 3(a) gives |bl,j | ≤
√
σ̄.

Also, det(Σk+1|k) ̸= 0 (positive definite matrix) and hence,
det(

√
Σk+1|k) ̸= 0. However, being a lower triangular matrix,

det(
√

Σk+1|k) is the product of its diagonal entries. Hence, no
diagonal entry of

√
Σk+1|k is 0 i.e. bi,i ̸= 0. Next, consider

the bound σI ⪯ Σk+1|k from one of the assumptions of The-
orem 2. Since, σ is a lower bound on eigenvalues of Σk+1|k,
det(Σk+1|k) ≥ σnx such that |det(

√
Σk+1|k)| ≥ σnx/2.

Expressing det(
√
Σk+1|k) as the product of its diagonal

entries bi,i and using the upper-bound on |bi,i| for all but one
diagonal entry, we obtain the lower bound |bi,i| ≥ cb where
cb = σnx/2σ̄(1−nx)/2.

Upper-bounds on |cl,j |: Putting different values of l and m
in (69), we obtain a system of nx(nx + 1)/2 linear equations
with same number of unknowns cl,j since Σk+1|k is symmet-
ric. Consider l = 1 and m = 1 which gives 2b1,1c1,1 = a1,1.
Since, b1,1 ̸= 0, c1,1 = a1,1/2b1,1. With the upper-bound
on |a1,1| and lower-bound on |b1,1|, we have |c1,1| ≤ 4δf f̄

2cb
.

Again, putting l = 2 and m = 1, we have c2,1 =
a1,2−b2,1c1,1

b1,1

which implies |c2,1| ≤ 8cbδf f̄+4δf f̄
√
σ̄

2c2b
. Continuing further in

the same manner for all the equations of the linear system, we
can show that |cl,j | ≤ δσ for all (l, j)-th element of

√
Σk+1|k

where δσ is the maximum of all these upper-bounds i.e. the
magnitude of the partial derivative of any element of

√
Σk+1|k

with respect to any element of x̂k is bounded. Hence, the

magnitude of each element of the Jacobian
∂[
√

Σk+1|k](:,i)
∂x̂k

of
i-th column of

√
Σk+1|k is bounded such that Lemma 3 (d)

yields
∥∥∥∥∂[
√

Σk+1|k](:,i)
∂x̂k

∥∥∥∥ ≤ nxδσ .

2) Proof of Claim 2: Here, we will upper bound the j-th
row in (66) by bounding the magnitude of the terms in the
R.H.S. in the following Claims 4-6.

Claim 4. The m-the element of vector tk satisfies |[tk]m| ≤
2δh.

Proof: Using vk+1 = 0 (F̃k is evaluated at vk+1 = 0),
we have [tk]m = [h(xk+1)]m −

∑2nx

i=0 ωi[q
∗
i,k+1|k]m be-

cause h(xk+1) and {q∗
i,k+1|k}0≤i≤2nx do not depend on the

noise term. Also, [q∗
i,k+1|k]m = [h(qi,k+1|k)]m. Since Theo-

rem 2 assumes h(·) has bounded outputs and
∑2nx

i=0 ωi = 1,
Lemma 3(a) leads to |[tk]m| ≤ 2δh.

Claim 5. The derivative of m-th element of tk is bounded as∥∥∥∂[tk]m
∂x̂k

∥∥∥
2
≤ h̄c′ where the constant c′ is same as defined in

Lemma 4.

Proof: From tk = h(xk+1) + vk+1 −
∑2nx

i=0 ωiq
∗
i,k+1|k,

we obtain the derivative of m-th element as

∂[tk]m
∂x̂k

= −
2nx∑
i=0

ωi

∂[q∗
i,k+1|k]m

∂x̂k
. (70)

But q∗
i,k+1|k = h(qi,k+1|k) such that

∥∥∥∂q∗
i,k+1|k
∂x̂k

∥∥∥ =∥∥∥∥ ∂h(x)
∂x

∣∣∣
x=qi,k+1|k

∂qi,k+1|k
∂x̂k

∥∥∥∥. Using the bound on Jacobian

Hk from one of the assumptions of Theorem 1, we have∥∥∥∂q∗
i,k+1|k
∂x̂k

∥∥∥ ≤ h̄
∥∥∥∂qi,k+1|k

∂x̂k

∥∥∥. Further, with Lemma 4, we have∥∥∥∂q∗
i,k+1|k
∂x̂k

∥∥∥ ≤ h̄c′. Finally, using Lemma 3(c) (
∂[q∗

i,k+1|k]m

∂x̂k
is

the m-th row of
∂q∗

i,k+1|k
∂x̂k

) and (70), we have
∥∥∥∂[tk]m

∂x̂k

∥∥∥
2
≤ h̄c′.

Claim 6. The derivative of (j,m)-th element of Kk+1 satisfies∥∥∥∂[Kk+1]j,m
∂x̂k

∥∥∥
2
≤ ck for some ck > 0.

Proof: The (j,m)-th element of Kk+1 is [Kk+1]j,m =∑ny

a=1

[
Σxy

k+1

]
j,a

[
(Σy

k+1)
−1

]
a,m

which implies

∂[Kk+1]j,m
∂x̂k

=

ny∑
a=1

[
Σxy

k+1

]
j,a

∂
[
(Σy

k+1)
−1

]
a,m

∂x̂k

+

ny∑
a=1

[
(Σy

k+1)
−1]

a,m

∂
[
Σxy

k+1

]
j,a

∂x̂k
. (71)

Again, we will bound the magnitude of each individual term
on R.H.S.

Bound on
[
Σxy

k+1

]
j,a

and its derivative: Under the bounds
on functions f(·) and h(·), we have |[x̂k+1|k]j | ≤ δf and
|[
√

Σk+1|k]j,i| ≤
√
σ̄ (the bound on |bj,i| used to prove

Claim 1 of Lemma 4). It is then straightforward to ob-
tain the bound on the a-th element as |[ŷk+1|k]a| ≤ δh
and the j-th element as |[qi,k+1|k]j | ≤ δf +

√
σ̄(nx + κ)

from (7). Since [Σxy
k+1]j,a =

∑2nx

i=0 ωi[qi,k+1|k]j [q
∗
i,k+1|k]a −

[x̂k+1|k]j [ŷk+1|k]a, we have |[Σxy
k+1]j,a| ≤ δfδh + δh(δf +√

σ̄(nx + κ)). The upper-bound |[q∗
i,k+1|k]a| ≤ δh was used

in proof of Claim 4 as well.
Furthermore, following similar steps as used to bound∥∥∥∂[Σk+1|k]l,m

∂x̂k

∥∥∥
2

in Claim 3 of Lemma 4, we have∥∥∥∂[Σxy
k+1]l,m
∂x̂k

∥∥∥
2
≤ cxy with cxy = h̄c′(δf +

√
σ̄(nx + κ)) +

c′(δf +
√

σ̄(nx + κ)) + δf h̄c
′ + δhf̄ .

Bound on
[
(Σy

k+1)
−1

]
a,m

and its derivative: With
yI ⪯ Σy

k+1 as one of the assumptions of Theorem 2, we
have ∥(Σy

k+1)
−1∥ ≤ 1

|y| . Using Lemma 3(c) followed by
Lemma 3(a) yields |[(Σy

k+1)
−1]a,m| ≤ 1/|y|.

The derivative of (a,m)-th element of
(Σy

k+1)
−1 can be expressed in terms of derivative

of elements of Σy
k+1 as

∂[(Σy
k+1)

−1]a,m

∂x̂k
=∑

c,d−[(Σ
y
k+1)

−1]a,c[(Σ
y
k+1)

−1]d,m
∂[Σy

k+1]c,d
∂x̂k

. Using
similar steps as used to obtain an upper-bound on∥∥∥∂[Σk+1|k]l,m

∂x̂k

∥∥∥
2

in Claim 3 of Lemma 4, we can show

that
∥∥∥∂[Σy

k+1]c,d
∂x̂k

∥∥∥
2
≤ 4δhh̄c

′ such that the bound on

elements of (Σy
k+1)

−1 yields
∥∥∥∥∂[(Σy

k+1)
−1]a,m

∂x̂k

∥∥∥∥
2

≤ n2
x4δhh̄c

′

y2 .

With these bounds on magnitudes of all [Σxy
k+1]j,a and

[(Σy
k+1)

−1]a,m elements along with the bounds on
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their derivatives, (71) gives
∥∥∥∂[Kk+1]j,m

∂x̂k

∥∥∥
2
≤ ck where

ck =
cxyny

|y| +
nyn

2
xcxy

y2 (δfδh + δh(δf +
√

σ̄(nx + κ))).
Now, under the assumptions of Theorem 1, ∥Kk+1∥ ≤ k̄ =

σ̄γ̄h̄β̄/r̂ (as obtained intermediately in proof of [14, Theo-
rem 2]) such that Lemma 3(b) yields

∑ny

m=1 |[Kk+1]j,m| ≤√
nyk̄. Finally, using this bound along with Claims 4-6 in (66),

we have
∥∥∥∥[∂(Kk+1tk)

∂x̂k

]
(j,:)

∥∥∥∥
2

≤ √nyk̄h̄c
′+2nyckδh such that

Claim 2 is satisfied with ct =
√
nyk̄h̄c

′ + 2nyckδh.

APPENDIX B
PROOF OF THEOREM 3

We prove the theorem by the principle of mathematical
induction. Define the prediction and estimation errors as
ˆ̃xk|k−1

.
= x̂k − ˆ̂xk|k−1 and ˆ̃xk

.
= x̂k − ˆ̂xk, respectively.

Assume E[ˆ̃xk
ˆ̃xT
k ] ⪯ Σk. We show that the inequality also

holds for (k+1)-th time step. Substituting (49) in the I-UKF’s
recursions and using the symmetry of the generated sigma
points, we have ˆ̂xk+1|k = Uz

kF
x

k
ˆ̂xk and Σk+1|k =

Uz
kF

x

kΣk(F
x

k)
TUz

k + Uz
kF

v

kRk+1(F
v

k)
TUz

k. Hence,
ˆ̃xk+1|k = Uz

kF
x

k
ˆ̃xk+Uz

kF
v

kvk+1 such that E[ˆ̃xk+1|k
ˆ̃xT
k+1|k] =

Uz
kF

x

kE[ˆ̃xk
ˆ̃xT
k ](F

x

k)
TUz

k + Uz
kF

v

kRk+1(F
v

k)
TUz

k. Since
E[ˆ̃xk

ˆ̃xT
k ] ⪯ Σk, we have E[ˆ̃xk+1|k

ˆ̃xT
k+1|k] ⪯ Σk+1|k.

Similarly, using (50), we have âk+1|k = Ua
k+1Gk+1 ˆ̂xk+1|k

and Σ
a

k+1 = Ua
k+1Gk+1Σk+1|kG

T

k+1U
a
k+1 + Rk+1

with Σ
xa

k+1 = Σk+1|kG
T

k+1U
a
k+1. Again, ˆ̃xk+1 =

(I − Kk+1U
a
k+1Gk+1)ˆ̃xk+1|k − Kk+1ϵk+1, which implies

E[ˆ̃xk+1
ˆ̃xT
k+1] = (I −Kk+1U

a
k+1Gk+1)E[ˆ̃xk+1|k

ˆ̃xT
k+1|k](I −

Kk+1U
a
k+1Gk+1)

T + Kk+1Rk+1K
T

k+1. Finally, using
E[ˆ̃xk+1|k

ˆ̃xT
k+1|k] ⪯ Σk+1|k, we have E[ˆ̃xk+1

ˆ̃xT
k+1] ⪯ Σk+1.

APPENDIX C
PROOF OF THEOREM 4

From Kk+1 = Σzy
k+1(Σ

y
k+1)

−1, the sub-matrix K1
k+1 =

Σxy
k+1(Σ

y
k+1)

−1 such that

K1
k+1 = Σk+1|kU

xy
k+1∇Φ(x̂k+1|k)

TBTUϕ2
k+1

×
(
Uϕ2

k+1B∇Φ(x̂k+1|k)Σk+1|k∇Φ(x̂k+1|k)
TBTUϕ2

k+1 + R̃k+1

)−1

,

and Σk+1 = Σk+1|k −K1
k+1Σ

y
k+1(K

1
k+1)

T yields

Σk+1 = Σk+1|k −Σk+1|kU
xy
k+1∇Φ(x̂k+1|k)

TBTUϕ2
k+1

×
(
Uϕ2

k+1B∇Φ(x̂k+1|k)Σk+1|k∇Φ(x̂k+1|k)
TBTUϕ2

k+1 + R̃k+1

)−1

×Uϕ2
k+1B∇Φ(x̂k+1|k)(U

xy
k+1)

TΣk+1|k.

Define Vk(x̃k|k−1) = x̃T
k|k−1Σ

−1
k|k−1x̃k|k−1. Then, using the

independence of noise terms and zero mean, we have

E[Vk+1(x̃k+1|k)|x̃k|k−1]

= x̃k|k−1(I−K1
kU

ϕ2
k B∇Φ(x̂k|k−1))

T∇Φ(x̂k|k)
TATUϕ1

k Σ−1
k+1|k

×Uϕ1
k A∇Φ(x̂k|k)(I−K1

kU
ϕ2
k B∇Φ(x̂k|k−1))x̃k|k−1

+ E[vT
k (K

1
k)

T∇Φ(x̂k|k)
TATUϕ1

k Σ−1
k+1|kU

ϕ1
k A∇Φ(x̂k|k)

×K1
kvk|x̃k|k−1]

+ E[wT
k Σ

−1
k+1|kwk|x̃k|k−1] + rk + sk + qk + uk + bk

+ E[ηT
k Σ

−1
k+1|kηk|x̃k|k−1] + E[2wT

k Σ
−1
k+1|kηk|x̃k|k−1] (72)

where

rk = δf (xk)−Uϕ1
k A∇Φ(x̂k|k)K

1
kδh(xk))

+ 2x̃k|k−1(I−K1
kU

ϕ2
k B∇Φ(x̂k|k−1))

T∇Φ(x̂k|k)
TATUϕ1

k Σ−1
k+1|k

× ((A− Âk)Φ(x̂k|k)−Uϕ1
k A∇Φ(x̂k|k)K

1
k(B− B̂k−1)Φ(x̂k|k−1),

sk = Φ(x̂k|k)
T (A− Âk)

TΣ−1
k+1|k((A− Âk)Φ(x̂k|k)

− 2Uϕ1
k A∇Φ(x̂k|k)K

1
k(B− B̂k−1)Φ(x̂k|k−1) + 2δf (xk)

− 2Uϕ1
k A∇Φ(x̂k|k)K

1
kδh(xk)),

qk = Φ(x̂k|k−1)
T (B− B̂k−1)

T (K1
k)

T∇Φ(x̂k|k)
TATUϕ1

k Σ−1
k+1|k

× (Uϕ1
k A∇Φ(x̂k|k)K

1
k(B− B̂k−1)Φ(x̂k|k−1)− 2δf (xk)

+ 2Uϕ1
k A∇Φ(x̂k|k)K

1
kδh(xk)),

uk = δf (xk)
TΣ−1

k+1|k(δf (xk)− 2Uϕ1
k A∇Φ(x̂k|k)K

1
kδh(xk)),

bk = δh(xk)
T (K1

k)
T∇Φ(x̂k|k)

TATUϕ1
k Σ−1

k+1|kU
ϕ1
k A∇Φ(x̂k|k)

×K1
kδh(xk).

The proof involves appropriately bounding all the terms
in the E[Vk+1(x̃k+1|k)|x̃k|k−1] expression such that both the
conditions of Lemma 1 are satisfied. Following similar steps
as in proof of [14, Theorem 2], we can show that under the
assumptions of Theorem 4, the following bounds hold.

(Uϕ1
k A∇Φ(x̂k|k)(I−K1

kU
ϕ2
k B∇Φ(x̂k|k−1)))

TΣ−1
k+1|kU

ϕ1
k A

×∇Φ(x̂k|k)(I−K1
kU

ϕ2
k B∇Φ(x̂k|k)) ⪯ (1− λ)Σ−1

k|k−1, (73)

E[wT
k Σ

−1
k+1|kwk|x̃k|k−1] ≤ c1, (74)

E[vT
k (K

1
k)

T∇Φ(x̂k|k)
TATUϕ1

k Σ−1
k+1|kU

ϕ1
k A∇Φ(x̂k|k)

×K1
kvk|x̃k|k−1] ≤ c2, (75)

where 1− λ =
(
1 + q̃

σ(αaϕ(1+kβbϕ)2)

)−1

with k = σγϕβb/r̃

such that 0 < λ < 1, c1 = qnx/σ and c2 = k
2
ϕ
2
α2a2rny/σ.

We will now bound the remaining terms in the right-hand
side of (72).

Claim 7. There exist constants c3, c4, c5, c6 and c7 satisfying
rk ≤ c3, sk ≤ c4, qk ≤ c5, uk ≤ c6 and bk ≤ c7 for all k ≥ 0.

Proof: First, we upper-bound rk. The Gaussian kernel
function K(·, ·) has maximum value 1 such that ∥Φ(·)∥2 ≤√
L. Also, due to the projection of the coefficient matrix

estimates, ∥Âk∥ ≤ a and ∥B̂k∥ ≤ b for all k ≥ 0.
Then, using these bounds along with the Assumption A4 in
Theorem 4, we have ∥(A − Âk)Φ(x̂k|k)∥2 ≤ 2a

√
L and

∥(B− B̂k−1)Φ(x̂k|k−1)∥2 ≤ b
√
L.

Next, we need an upper-bound on ∥x̃k|k−1∥2. Since true
state xk lies in X , we have ∥xk∥2 ≤ ϵ for some ϵ > 0. Also,
x̂k|k−1 =

∑2nz

i=0 ωiÂk−1Φ([si,k−1]1:nx
) as used to obtain

(54) as well. Since Âk−1 and Φ(·) are bounded, we have
∥x̃k|k−1∥2 ≤ ∥xk∥2 +

∑2nz

i=0 ωi∥Âk−1Φ([si,k−1]1:nx
)∥2 ≤

ϵ + a
√
L. With these bounds and other bounds assumed on

various matrices, we obtain the required bound on rk with
c3 = 2(ϵ+a

√
L)(1+kβbϕ)ϕaα(2a

√
L+αaϕk(2b

√
L)+f+

αaϕkh)/σ.
Following similar steps, we can obtain the other bounds

of the claim with c4 = 4a
√
L(a
√
L + 2αaϕkb

√
L + f +

αaϕkh)/σ, c5 = 4bkϕaα
√
L(αaϕkb

√
L + f + αaϕkh)/σ,

c6 = f(f + 2αaϕkh)/σ and c7 = α2a2ϕ
2
k
2
h
2
/σ.
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Claim 8. For the projection error ηk, we
have E[ηT

k Σ
−1
k+1|kηk|x̃k|k−1] ≤ c1 and

E[2wT
k Σ

−1
k+1|kηk|x̃k|k−1] ≤ 2c1 where c1 is as defined

in (74).

Proof: Using the bound on Σk+1|k, we have
ηT
k Σ

−1
k+1|kηk ≤ 1

ση
T
k ηk. Now, by the definition of projection

Γ(·), we have xk+1 = argminx∈X ∥f(xk) +wk − x∥2 which
implies ∥f(xk) + wk − xk+1∥2 ≤ ∥f(xk) + wk − x∥2 for
all x ∈ X . In particular, f(xk) ∈ X and the projection error
ηk = xk+1−(f(xk)+wk) such that ∥−ηk∥2 ≤ ∥wk∥2 which
implies ηT

k ηk ≤ wT
k wk. Hence, ηT

k Σ
−1
k+1|kηk ≤ 1

σw
T
k wk.

Taking expectation and using the upper bound on noise
covariance Qk similar to the proof of (74) (in [14,
Theorem 2]), we get the first bound of the claim.

Now, E[wT
k Σ

−1
k+1|kηk|x̃k|k−1] ≤ 1

σE[w
T
k ηk|x̃k|k−1]

which on using Cauchy-Schwartz inequality yields
E[wT

k Σ
−1
k+1|kηk|x̃k|k−1]

≤ 1
σ

√
E[wT

k wk]
√

E[ηT
k ηk|x̃k|k−1]. Again, using ηT

k ηk ≤
wT

k wk, we have E[wT
k Σ

−1
k+1|kηk|x̃k|k−1] ≤ 1

σE[w
T
k wk] such

that the second bound of the claim can be obtained using
Qk ⪯ qI.

Using the bounds (73)-(75) and Claims 7 and 8, Theorem 4
can be proved using Lemma 1 similar to the proof of [14,
Theorem 2].
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[71] L. Ralaivola and F. d’Alché Buc, “Time series filtering, smoothing
and learning using the kernel Kalman filter,” in Proceedings. IEEE
International Joint Conference on Neural Networks, vol. 3, 2005, pp.
1449–1454.

[72] L. Dang, B. Chen, S. Wang, Y. Gu, and J. C. Prı́ncipe, “Kernel
Kalman filtering with conditional embedding and maximum correntropy
criterion,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 66, no. 11, pp. 4265–4277, 2019.

[73] L. Li and Y. Xia, “Stochastic stability of the unscented Kalman filter
with intermittent observations,” Automatica, vol. 48, no. 5, pp. 978–981,
2012.

[74] W. Li, G. Wei, F. Han, and Y. Liu, “Weighted average consensus-based
unscented Kalman filtering,” IEEE Transactions on Cybernetics, vol. 46,
no. 2, pp. 558–567, 2015.

[75] K. Xiong, H. Zhang, and C. Chan, “Author’s reply to “Comments on
‘Performance evaluation of UKF-based nonlinear filtering”’,” Automat-
ica, vol. 43, no. 3, pp. 569–570, 2007.

[76] M. Boutayeb and D. Aubry, “A strong tracking extended Kalman
observer for nonlinear discrete-time systems,” IEEE Transactions on
Automatic Control, vol. 44, no. 8, pp. 1550–1556, 1999.

[77] G. Battistelli and L. Chisci, “Kullback-Leibler average, consensus on
probability densities, and distributed state estimation with guaranteed
stability,” Automatica, vol. 50, no. 3, pp. 707–718, 2014.

[78] X. R. Li, Z. Zhao, and V. P. Jilkov, “Practical measures and test for
credibility of an estimator,” in Proc. Workshop on Estimation, Tracking,
and Fusion—A Tribute to Yaakov Bar-Shalom. Citeseer, 2001, pp.
481–495.

[79] B. D. Anderson and J. B. Moore, Optimal filtering. Courier Corporation,
2012.


	Introduction
	Prior Art
	Our contributions

	System Model
	Inverse UKF
	Forward UKF
	I-UKF
	Continuous-time state evolution
	Complex-valued systems

	RKHS-UKF
	Performance Analyses
	Inverse UKF
	Forward UKF
	I-UKF
	Conservative estimator

	RKHS-UKF

	Numerical Experiments
	FM demodulation with I-UKF
	Vehicle reentry with I-UKF
	FM demodulation with RKHS-UKF
	Lorenz system with RKHS-UKF

	Summary
	Appendix A: Proof of Theorem 2
	Stochastic stability of augmented state UKF
	Preliminaries to the Proof
	Proof of the Theorem
	Proofs of Claims 1 and 2
	Proof of Claim 1
	Proof of Claim 2


	Appendix B: Proof of Theorem 3
	Appendix C: Proof of Theorem 4
	References

