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Abstract

While diffusion models have achieved great
success in generating continuous signals
such as images and audio, it remains elusive
for them to learn discrete sequence data like
natural languages. Although recent advances
circumvent this challenge of discreteness by
embedding discrete tokens as continuous sur-
rogates, they still fall short of satisfactory
generation quality. To understand this, we
first dive deep into the denoised training pro-
tocol of diffusion-based sequence generative
models and determine their three severe prob-
lems: (1) failing to learn; (2) lack of scalabil-
ity; and (3) neglecting source conditions. We
argue that these problems can be boiled down
to the pitfall of the not completely eliminated
discreteness in the embedding space, and the
scale of noises is decisive herein. In this
paper, we introduce DINOISER to facilitate
diffusion models for sequence generation by
manipulating noises. We propose to adap-
tively determine the range of sampled noise
scales during training; and encourage the
proposed diffused sequence learner to lever-
age source conditions with amplified noise
scales during inference. Experiments show
that DINOISER enables consistent improve-
ment over the baselines of previous diffu-
sion sequence generative models on several
conditional sequence modeling benchmarks
thanks to both effective training and infer-
ence strategies. Analyses further verify that
DINOISER can make better use of source
conditions to govern its generative process.

1 Introduction

Conditional sequence learning aims at generating
a target sequence from given conditions, which
is one of the important paradigms of natural lan-
guage generation (Sutskever et al., 2014; Wiseman

∗ This work was done during Jiasheng’s internship at
ByteDance Research. † Zaixiang Zheng is the corresponding
author.

et al., 2017; Raffel et al., 2020), including machine
translation (Bahdanau et al., 2014), summariza-
tion (Rush et al., 2015), and paraphrasing (Prakash
et al., 2016). Recent advances in generative mod-
eling introduce diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020b),
which achieve great success in generating contin-
uous signals, including images (Rombach et al.,
2021), video (Ho et al., 2022), and audio (Kong
et al., 2020). With promising characteristics such as
diversity and controllability demonstrated in these
domains, diffusion models also garner growing in-
terest for sequence learning in the research com-
munity (Li et al., 2022), which further gives the
promise to a unified generative modeling paradigm
across different modalities (Bao et al., 2023),

However, the discrete nature of sequence data,
constituted by a number of tokens in order, makes
it non-trivial to apply diffusion models for condi-
tional sequence learning. Typical diffusion models
noise data with Gaussian permutation kernels (Ho
et al., 2020) and learn to recover original data from
their corrupted versions, which is not directly com-
patible with discrete tokens. To remedy this, Dif-
fusionLM (Li et al., 2022) attempted to embed dis-
crete tokens into continuous space and employ dif-
fusion models to the embedding space. Although
this kind of approach unlocks the possibility of
applying diffusion models to discrete data, it still
falls short of competitive performance for various
conditional sequence generation tasks (Fig. 1A).

We argue that embedding discrete tokens into
continuous surrogates does not necessarily elim-
inate discreteness completely. To verify this, we
conduct in-depth preliminary studies and highlight
our findings along with their implications as fol-
lows. (1) On the pitfall of discreteness. Embed-
dings populate only finite clusters (up to the vocab-
ulary size) in the continuous space, which results in
the vastness of low-density regions especially when
the models are learned with small-scale noises. We
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refer to this as the pitfall of discreteness, which
suggests that small noises hinder conditional se-
quence learning, and thus should be avoided during
training. (2) On scalability. It becomes increas-
ingly harder for the diffusion process to eliminate
discreteness when the dimension of the embedding
space gets scaled up, suggesting that to ensure scal-
ability, an adaptable noise schedule is necessitated
yet neglected. (3) On conditional learning. Enlarg-
ing noises in inference can calibrate diffusion mod-
els to take into account more source conditional
information. Please refer to §3 for more details.

Motivated by these findings, we propose DI-
NOISER to improve diffusion models by manip-
ulating noises for conditional sequence learning.
We propose a novel training strategy to eliminate
training on small noise scales to avoid their nega-
tive influences, for which we introduce the noise
scale clipping strategy to adaptively manipulate the
noise scales. For inference, we propose to manipu-
late the model to be exposed to larger noise scales
to encourage trained diffusion models to leverage
source conditions.

We summarize our contributions as well as our
findings as follows:

• By thorough and in-depth preliminary stud-
ies, we shed light on the pitfall of discreteness
along with the critical role of noise scales in
conditional sequence learning with diffusion
models, thereby suggesting meliorated solu-
tions in terms of both training and inference
by manipulating noises.

• We accordingly propose DINOISER to lever-
age large noise scales in both training and
inference. Experiments show that DINOISER

achieves strong performance on a variety of
conditional sequence learning tasks, paving
way for featuring diffusion models for vari-
ous conditional sequence learning tasks. Our
experiments comprehensively include several
machine translation benchmarks (both bilin-
gual and multilingual), as well as text simpli-
fication and paraphrasing, ranging from low-
resource to high-resource scenarios.

• Ablations show that both DINOISER ’s im-
proved training and inference approaches
result in considerable performance gains.
Further analysis verifies that our proposed
posthoc inference strategy, i.e., the condition
enhanced denoiser, can help make better use
of source conditions for accurate predictions.

2 Background

Conditional Sequence Learning. Conditional
sequence learning aims to yield target sequence
y = [y1, y2, . . . , yn] ∈ {0, 1}n×|V| within the vo-
cabulary space V , given source conditions x, which
can be another sequence x = [x1, x2, . . . , xm].
The conventional modeling paradigm (Sutskever
et al., 2014; Vaswani et al., 2017) generates
target tokens in an autoregressive decomposi-
tion p(y|x) =

∏n
i=1 p(yi|y<i,x). Gu et al.

(2018) proposed an alternative way in a fully non-
autoregressive (NAR) manner, where all the to-
kens are predicted in parallel by assuming con-
ditional independence between the target tokens,
i.e., p(y|x) =

∏n
i=1 p(yi|x). Later works alle-

viate this strong assumption by iterative refine-
ment (Lee et al., 2018; Ghazvininejad et al., 2019;
Gu et al., 2019), resulting in improved genera-
tion quality. These iterative refinement approaches
generate target sequences with several cycles, in
each of which the models generate sequence de-
pending on both the source sequence and the in-
termediate prediction of the previous one, i.e.,
p(y|x) =

∏T
t=1 p(y

(t)|y(t−1),x).

Diffusion Probabilistic Models. Given a ran-
dom variable z0 from an underlying data distribu-
tion q(z0), diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020) define a forward diffusion
process {zt}t∈[0,1] perturbed with a Gaussian per-
turbation kernel, starting with z0 and converging to
its corresponding stationary distribution, such that
for any t ∈ [0, 1], the distribution of zt given z0
satisfies q(zt|z0) = N (zt;α(t)z0, σ

2(t)I), or with
Gaussian reparameterization (Kingma and Welling,
2013; Ho et al., 2020),

zt = α(t)z0 + σ(t)ϵt, ϵt ∼ N (0, I), (1)

where σ(t) is a monotonically increasing function,
usually referred to as the noise schedule, satisfying
σ(0) = 0 and σ(1) ≈ 1; and α(t) =

√
1− σ2(t).

The noise schedule σ(t) controls the degree of cor-
ruption at different timestep t. As t gets larger,
the noise scale σ(t) gets larger whereas α(t) gets
smaller, hence the more corrupted data zt from the
original z0. At t = 1, with α(1) ≈ 0 and σ(1) ≈ 1,
zt become pure noises as reaching the stationary
distribution of a standard Gaussian.

Song et al. (2020b) proves that such a Gaussian
diffusion process has the same transition distribu-
tion q(zt|z0) as the stochastic differential equa-



tion (SDE): dz = −1
2β(t)zdt +

√
β(t)dω where

β(t) = −2d logα(t)
dt ; ω denotes the standard Wiener

process. As such, the corresponding generative pro-
cess can be achieved as its time reversal by solving
the following ordinary differential equation (diffu-
sion ODE):

dz =

[
−1

2
β(t)z+

1

2
β(t)

ϵt
σ(t)

]
dt

=

[
−1

2
β(t)z+

β(t)

2σ2(t)
(z− α(t)z0)

]
dt.

(2)

In practice, we can then use a learned model
zθ(zt, t) to estimate z0 and plug into Eqn. 2, which
can be learned by minimizing the discrepancy be-
tween training data and model estimation (Ho et al.,
2020; Song et al., 2020b; Ramesh et al., 2022):

Ldiffusion(z0) = E
t∼U(0,1)
ϵt∼N (0,I)

[
∥zθ(zt, t)− z0∥22

]
.

(3)

Given Eqn. 2 with a trained model zθ(zt, t), we
can use arbitrary ODE solvers to solve this diffu-
sion ODE from t = 1 to t = 0 for sampling data.
An effective and efficient solver to this end is the
DDIM solver (Song et al., 2020a; Lu et al., 2022)
and is widely adopted. It discretizes the ODE into
M + 1 timesteps {ti}Mi=0 decreasing from t0 = 1
to tM ≈ 0. Then, it samples zt0 from the standard
Gaussian distribution and computes {zti}Mi=1 with
M iterations, in each of which zti is predicted from
zti−1 according to

zti = α(ti)zθ(zti−1 , ti−1) + σ(ti)ϵθ(zti−1 , ti−1), (4)

where ϵθ(zti−1 , ti−1) is the predicted noise, which
can be directly induced according to Eqn. 1,

ϵθ(zti−1
, ti−1) =

zti−1
−α(ti−1)zθ(zti−1

,ti−1)

σ(ti−1)
. (5)

After iterations, the last prediction ztM is taken as
the final generated result ẑ0 of the sampling.

Diffusion Models for Conditional Sequence
Learning. The denoising process of diffusion
models matches an iterative refinement pro-
cess (Gong et al., 2022). However, diffusion mod-
els are not directly applicable to sequence learning
tasks since the original diffusion models operate
in continuous space rather than sequences of dis-
crete tokens. DiffusionLM (Li et al., 2022) tackles
this by embedding the discrete tokens into contin-
uous latent space and applying diffusion models

therein. We can then train the models as varia-
tional autoencoders (Kingma and Welling, 2013),
where a diffusion model serves as the prior, from
a latent-variable model perspective, and derive the
corresponding variational lower bound (Wehenkel
and Louppe, 2021; Vahdat et al., 2021):

L(y) = Ez0

[
− log pθ(y|z0)︸ ︷︷ ︸

Lreconstruction

+Ldiffusion(z0)
]
, (6)

where y is the original sequence with z0 as its
embeddings1; Ldiffusion denote the diffusion loss
(Eqn. 3) which now operates on the embedding
space, and Lreconstruction is the newly added recon-
struction term.

To further adapt the model for conditional se-
quence generation, a vanilla approach is to replace
the unconditional model zθ(zt, t) with a condi-
tional model zθ(zt,x, t), where x is the source
condition. Similar to the previous practice of using
diffusion models for conditional generation in vi-
sion (Rombach et al., 2021), the diffusion process
can be kept unchanged, the same as Eqn. 1. And
the length of the target sequences is decided by
predicting the length difference between the source
and the target.

3 The Pitfall of Discreteness: The Noise
Scale Matters

In this section, we dive deep into the current weak-
nesses of diffusion models for conditional sequence
learning and find that the noise scale matters, which
accordingly motivates our proposal for improved
training and inference.

Settings. We begin with the vanilla conditional
diffusion model modified from DiffusionLM (Li
et al., 2022) as described in §2. We follow the
original paper of DiffusionLM to apply the sqrt
schedule (i.e., σ(t) = t0.25) to arrange noise scales
for training and sampling. We use IWSLT14
DE→EN (Cettolo et al., 2012) machine transla-
tion benchmark for evaluation. We also include
CMLM (Ghazvininejad et al., 2019) as a baseline
for comparison, which is a strong conditional se-
quence generative model that generates sequence
by iterative refinement similar to diffusion models
but in discrete tokens space.

1DiffusionLM adds tiny noise to the embeddings to form
z0 (i.e. z0 ∼ N (EMB(y), σ0I)). We empirically find this
unnecessary and letting z0 follow a Dirac distribution makes
training more efficient.



Figure 1: Preliminary study. (A) The validation BLEU of different models on IWSLT14 DE→EN at different
training steps. (B) Diffusion loss of DiffusionLM on the validation set of IWSLT14 DE→EN at different noise
scales and the distribution of noise scale sampled during training. (C) The accuracy of predicting z0 from zt by
finding the nearest neighbor for zt with different noise scales, vocabulary sizes |V|, and dimensions D. (D) An
illustrative example of the distributions of zt of three data points corrupted with different noise scales as in Eqn. 1,
where for small noise scales, a large proportion of the embedding space between modes (associated with tokens)
remains vacant. (E) The tendency of whether the model prediction is more influenced by the source or target side
information when fed with timestep correspond to different noise scales. In addition to the source condition x, we
feed the model with z′t = zt(y

′, t) that is corrupted with a timestep-dependent noise σ(t) from a negative y′, which
is different from the original (positive sample of) target sequence y. We compare the similarity between the model
prediction zθ(z

′
t,x, τ) to the embedding of ground-truth z0(y), and study to what degree the model prediction

is governed by the source condition x (via the embedding of the ground-truth z0(y) as the proxy), or the target
information y′ (via z′t) otherwise.

Observations. Here are our findings.
O1. DiffusionLM still falls short of conditional

sequence learning. Fig. 1(A) shows the vali-
dation performance of the two models at dif-
ferent training steps, in which the performance
of DiffusionLM still lags behind CMLM by
a large margin, even taking many more steps
before convergence. This shows that the per-
formance and training efficiency of the vanilla
diffusion-based sequence learner remain un-
satisfactory.

O2. Diffusion losses at small noise scales are
unexpectedly small. DiffusionLM uniformly
samples timesteps hence the corresponding
noise scales during training. As shown in
Fig. 1(B), we find that the magnitudes of dif-
fusion losses approach almost zero for small
noise scales, indicating that it is quite trivial to
recover the corrupted embeddings under such
circumstances. We conjecture that, combined
with the illustrated example in Fig. 1(D), this
is because there remain highly discrete modes
for the embedding density such that any cor-
rupted embedding is very likely to lie in a

region with a small radius around the original
token embedding. As a consequence, the more
the modes of embeddings separate from each
other the smaller the diffusion loss, which ad-
heres to the following observation.

O3. It becomes increasingly harder for the diffu-
sion process to eliminate discreteness while
the dimension of the embedding space scales
up. Fig. 1(C) shows a surprisingly high ac-
curacy of recovering corrupted embeddings
that can be easily achieved by simply seek-
ing the nearest neighbor when embedding di-
mensions enlarge, even at considerably large
noise scales. This reveals that scaling embed-
ding space leads to more severe discreteness,
namely a curse of dimensionality.

O4. On condition learning: larger noise scales
calibrate diffusion models in taking into ac-
count more source conditional information
during inference. We have seen that recov-
ering embeddings corrupted with small noise
scales is easy (O2), and if modes distribute
separately, even finding the nearest neighbor
is enough (O3). In Fig. 1(C), as the noise scale



Table 1: Illustration of hallucinations of vanilla Diffu-
sionLM on IWSLT14 DE→EN translation task, along
with DINOISER’s predictions, where the vanilla Dif-
fusionLM generates inexplicable expressions that are
irrelevant to the source condition whose meaning dra-
matically differs from the groud-truth target.

Source Mit welchen worten würden sie ban beschreiben?
Reference What are the words you would use to describe ban?

DiffusionLM In which words would you save ban?
DINOISER In which words would you describe ban?

decreases, the prediction accuracy by finding
the nearest neighbor increases and achieves
almost 100% under a threshold, which can be
learned trivially even with little to no source
conditions. This results in the hallucination as
shown in Tab. 1, which is an unexpected con-
sequence for conditional sequence generative
models to yield output loyal to the input condi-
tion. To mitigate this, we quantitatively study
the influence of noise scales on conditional
reliance. As shown in Fig 1(E), we find that
as the noise scales are larger, the model can
predict more faithfully to source conditions.

Concluding remarks. We summarize conclu-
sions from the aforementioned observations along
with suggestions for more plausible diffused condi-
tional sequence learning:
C1. We should not train on too small noise scales

to circumvent the pitfall of discreteness. Both
O2 and O4 show the negative influences of
small noise scales on training that it leads to a
not smooth embedding space with vast regions
of low density between modes associated with
tokens (O2). These regions can inevitably
be sampled during inference2, thereby giving
rise to error accumulation. Besides, it also
impedes conditional learning (O4). To remedy
this, probably a simple way is to eliminate the
chance of training with small noise scales.

C2. We need to determine the noise schedule ac-
cording to the dimensionality of the embed-
ding space. Fitting more complex datasets
usually requires larger embedding dimensions.
O3 indicates the criterion to distinguish large

2Consider that a token α is translated into token A or
a with 50% each. Without extra information, the optimal
prediction for translating α is the center of the embedding of
A and a. This is because minimizing its training objective
(i.e., 1

2
∥zθ − zA(0)∥22 + 1

2
∥zθ − za(0)∥22) results in zθ =

zA(0)+za(0)
2

. The prediction exactly falls in the blank area
that lies between embeddings.

and small noise scales depends on the embed-
dings hence the complexity of the datasets.
However, existing methods employ a fixed
noise schedule for all embedding dimensions,
which lacks scalability. This, therefore, de-
mands a task-specific noise schedule to ac-
commodate diverse datasets.

C3. We could expose the model to larger noise
scales for better source conditions leverage.
O4 suggests that the more corrupted the em-
beddings, the more difficult for the model to
recover, thereby necessitating more reliance
on source conditions. Accordingly, we may
encourage trained diffusion models to care
more about source conditions for free by post-
hoc manipulating the noise to large ones.

4 DINOISER

Provided the observations and postulates we dis-
cussed in §3, we accordingly propose DINOISER, a
simple yet effective method that improves diffusion
models by manipulating noises for conditional
sequence learning. The general principle of DI-
NOISER is to determine the best-suited noise scales
for both training and inference for conditional se-
quence generation. In a nutshell, as for training, we
propose to eliminate the chance of training diffused
sequence learners with small-scale noises so as to
circumvent the aforementioned pitfall of discrete-
ness in embedding space (§4.1). As for sampling,
we propose a new effective sampler to amplify the
impact of source conditions on the model predic-
tion, where timesteps corresponding to large noise
scales are always fed into the model (§4.2). We
now dive deep into the details of DINOISER.

4.1 Noise Scale Clipping: Manipulating
Noises for Counter-Discreteness Training

Recall that C1 and C2 in §3 demonstrate that small
noises can barely help “discrete” embeddings pop-
ulate the entire continuous space, and also under-
mine conditional learning. A simple yet effective
way to mitigate this is to encourage training diffu-
sion models with sufficiently large noise scales. As
such, we propose noise scale clipping, where we
bound the minimum noise scale σmin for training
such that only timesteps satisfying σ(t) ≥ σmin

could be sampled, which is decided adaptively as
the model learn progresses.

To start with, we can eliminate the scaling effect
of α(t) in the forward diffusion process for each



Figure 2: (A) Illustration of the proposed noise scale
clipping. To remedy the pitfall of discreteness, we pro-
pose to ensure a sufficiently large minimum “overlap”
between corrupted embeddings. As shown in this ex-
ample, such a goal of counter-discreteness is achieved
by bounding the standard deviation σ̃(t) of EMB(yi)
by δij the “distance” to its nearest neighbor (i.e., yj).
(B) Comparison between sqrt noise schedule and our
noise schedule σ(t) = t manipulated with the proposed
noise scale clipping.

token embedding by rewriting Eqn. 1 into:

zt[i]

α(t)
= z0 +

σ(t)

α(t)
ϵt ⇒

zt[i]

α(t)
∼ N

(
z0[i],

σ2(t)

1− σ2(t)
I

)
⇒ zt[i]

α(t)
∼ N

(
EMB(yi), σ̃

2(t)I

) (7)

As illustrated in Fig. 2(A), there, intuitively, should
exist a sufficiently large number δ∗ measuring
the minimum “overlap” between the distributions
of two corrupted embeddings under the Gaussian
perturbation kernel with a standard deviation of
σ̃(t) = σ(t)√

1−σ2(t)
. To this end, we let δ2 be the

minimum amount of variation of added noise, de-
fined as the average squared L2-distances between
the embeddings and their nearest neighbor, normal-
ized by the dimension of embeddings (according
to C2 in §3):

(δ∗)2 =
1

|V|

|V|∑
i=1

min
1≤j ̸=i≤|V|

δ2ij

=
1

|V|

|V|∑
i=1

min
1≤j ̸=i≤|V|

1

D
∥EMB(yi)− EMB(yj)∥22.

(8)

We now define the noise scale clipping3 as follows:

3Our goal can be motivated through the lens of op-
timal transport. That it to say, we aim to determine the
minimum cumulative cost δ2 =

∑L
i=1 Tijδ

2
ij , where L is

the sequence length, by finding the optimal transportation
T of moving the perturbed embeddings at timestep t, i.e.
zt[i]
α(t)

∼ N
(

EMB(yi), σ̃
2(t)I

)
, i ∈ V , such that the cor-

rupted embedding zt[i]
α(t)

, if gets noised by a Gaussian deviation

Definition (The noise scale clipping). Let V be the
target vocabulary with corresponding embeddings
in D-dimensional space ∀yi ∈ V : EMB(yi) ∈ RD,
the noise scale clipping is performed so that the
noise scale σ(t) always satisfies:

σ̃2(t) = σ2(t)
1−σ2(t) ≥ (δ∗)2 ⇒ σ2

min

1−σ2
min

= (δ∗)2, (9)

the clipping threshold σmin is whereby derived
when the equality in Eqn. 9 holds, such that

σmin=

(
|V|·D∑|V|

i=1 min
1≤j ̸=i≤|V|

∥EMB(yi)−EMB(yj)∥2
2

+ 1

)− 1
2

, (10)

which is obtained by substituting Eqn. 8 into the
R.H.S of Eqn. 9.

satisfying σ̃(t) >= δ∗, cannot be discriminated from those
originate from different embeddings, otherwise a smaller σ̃(t)
will lead to trivial reconstruction to the original one as a con-
sequence of the pitfall of discreteness (O2 & O3 in §3). As
a result, δ∗ serves as a minimum clipping threshold of noise
scale for effective training of sequence diffusion models.
This can closely relate to the minimum Word Mover Distance,
a Wasserstein metric introduced in Kusner et al. (2015):

δ2 = min
T

L∑
i=1

Tijδ
2
ij , s.t.

∑
j

Tij = di,

where T ∈ RL×L is a (sparse) stochastic matrix, where Tij

denotes how much of a word i travels to word j, subject to the
flow consistency equality

∑
j Tij = di, with di representing

the “amount” of a word i appearing in token embedding space
(we treat di = 1). According to the Eqn. (2) in Kusner et al.
(2015), under mild conditions, the optimal solution T∗ is
for each token i to move all its probability mass to the most
similar token j w.r.t. a certain measure of their embedding
distances, δij = ∥ zt[i]

α(t)
− EMB(yj)∥2:

T∗
ij =

{
di if j = argmin1≤j ̸=i≤L δ2ij

0 otherwise
.

As a result, the final minimum transportation cost becomes:

(δ∗)2 =

L∑
i=1

T∗
ijδ

2
ij =

L∑
i=1

di · (δ2ij)∗ =

L∑
i=1

min
1≤j ̸=i≤L

δ2ij

=
L∑

i=1

min
1≤j ̸=i≤L

[∥∥∥∥zt[i]α(t)
− EMB(yj)

∥∥∥∥
2

]2
A too-small noise scales result in that the nearest neighbors of
the corrupted embeddings are exactly their origins, thus

(δ∗)2 = =
L∑

i=1

∥∥∥∥zt[i]α(t)
− EMB(yi)

∥∥∥∥2

2

=

L∑
i=1

(σ̃(t)ϵi)
2 ,

where ϵi are standard Gaussian noises. The above results
contain no model parameters, indicating that a diffusion model,
which learns to minimize the Wasserstein distance between
prediction and target distribution (Kwon et al., 2022), can
not learn from those mildly perturbed samples. From this
perspective, our noise clipping tries to avoid training on these
unhelpful samples.



Algorithm 1 Training with DINOISER

Input Training dataset D = {(x,y)}.
Output Optimized parameters θ.

1: repeat
2: Sample x,y from the dataset D and embed y

into z0
3: t ∼ U(σ−1(σmin), 1), where σmin is from

Eqn. 10
4: Sample zt with Gaussian reparameterization

(Eqn. 1)
5: Take gradient descent step on

∇θ

[
− log pθ(y|z0) + ∥zθ(zt,x, t)− z0∥22

]
6: until converged

As illustrated in Fig. 2(B), the clipping thresh-
old σmin is estimated adaptively during training,
depending on how properly the model learns the
embeddings up to the minimum pair-wise distances
within the vocabulary. In each training step, we
first estimate the clipping threshold σmin with
Eqn. 10, then sample timesteps among t that satis-
fies σ(t) > σmin. In practice, one can first estimate
the noise scale threshold σmin and then turn it into
the timestep threshold tmin = σ−1(σmin) in gen-
eral. In this work, we select σ(t) = t as the noise
scheduler to simplify this procedure4.

As a result, the updated diffusion loss with an
enlarged minimum timestep threshold (thus an in-
creased minimum noise scale) in the final training
objective (modified from Eqn. 6) now becomes:

L′
diffusion(y) = E

t∼U(tmin,1),ϵt

[
∥zθ(zt,x, t)− z0∥22

]
.

We provide pseudocodes regarding how to manipu-
late noises in training as such in Alg. 1.

4.2 CEDI: Manipulating Noises for
Condition-Enhanced Sampling

Based on C3 in §3, we suppose the model relies
more on the source conditions when the input noise
scale is large. This implies that we may make the
model generate prediction more faithful to source
conditions by feeding timesteps corresponding to
large noise scales to the model. Fig. 3 shows a syn-
thesis experiment similar to Fig. 1(E), wherein the
predictions using a large timestep 0.995 (namely,
a larger noise scale) are closer to the embedding

4This can be done since the effects of different noise sched-
ules are theoretically interchangeable up to different weight
factors under the simplified training objective (Ho et al., 2020)
we adopted (see Appendix C). We also provide empirical
comparisons between different schedules in Tab. 4.

Figure 3: A synthesis experiment where the model is
asked to predict with current timestep τ = t and an alter-
native larger timestep τ = 0.995, respectively. We com-
pare the MSE between the model prediction zθ(z

′
t,x, τ)

to the embedding of ground-truth z0(y) (top) and nega-
tive sample z0(y

′) (bottom) respectively, and study to
which target the model prediction assimilates, the origi-
nal y or the negative one y′, hence should most likely
be governed by the source or the target information.

of the original target y, while more distant to that
of the misleading y′, reiterating that the model re-
lies more on the source condition x when being
exposed to a larger noise due to manipulation in
inference.

Accordingly, we propose a condition-enhanced
denoiser (CEDI) for sampling. CEDI always feeds
a large t to the model zθ to encourage the model
to make use of the source condition. In prac-
tice, we largely follow the framework of DDIM
solver (Song et al., 2020a) but pick two sets of
timesteps. In the first set {ti}Mi=0, timesteps de-
crease uniformly from t0 = 1 to tM ≈ 0 as normal.
As for the other set {τi}Mi=0, τis decrease uniformly
from τ0 = 1 to a large time τM ≫ 05. When
making predictions, we assign timesteps from the
second set to the model. By replacing correspond-
ing timesteps in the framework of DDIM (Eqn. 4
and Eqn. 5) with τi, we generate our predictions by
iteratively computing

ẑti = α(ti)zθ(ẑti−1 ,x, τi−1) + σ(ti)ϵθ(ẑti−1 ,x, τi−1),

where the predicted noise is also updated as

ϵθ(ẑti−1
,x, τi−1) =

ẑti−1
−α(τi−1)zθ(ẑti−1

,x,τi−1)

σ(τi−1)
.

We also demonstrate how CEDI works in Alg. 2.

5 Experiment

We conduct experiments to verify the effectiveness
of the DINOISER and study its characteristics.

5Empirically, we find that τM satisfying σ(τM ) = 0.99
(i.e., τM = 0.99 for σ(t) = t and τM = 0.9606 for Li et al.
(2022)’s sqrt schedule σ(t) = t0.25) generally works well.



Algorithm 2 Sampling with DINOISER

Input Source condition x; number of steps M ; model
parameters θ.
Output Predicted target ŷ.

1: Uniformly discretize [T, 1] into M+1 steps {ti}Mi=0

in descend order (T ≈ 0)
2: Uniformly discretize [T , 1] into M + 1 steps
{τi}Mi=0 in descend order (T ≫ 0)

3: Sample ẑt0 ∼ N (0, I)
4: for i = 1 to M do
5: ẑ0 ← zθ(ẑti−1 ,x, τi−1)

6: ϵ̂← ẑti−1
−α(τi−1)ẑ0

σ(τi−1)

7: ẑti ← α(ti)ẑ0 + σ(ti)ϵ̂
8: end for
9: Map ẑtM to ŷ with the embeddings

5.1 Experimental Setup

Tasks and Datasets. We mainly experiment on
machine translation, a well-established benchmark
task for conditional sequence learning. We con-
sider IWSLT14 DE↔EN (160K pairs), WMT14
EN↔DE (4.0M pairs), and WMT14 EN↔RO

(610K pairs), six translation tasks with variant sizes
of training data. Additionally, we experiment on
two of the datasets introduced by DiffuSeq (Gong
et al., 2022), including Wiki (Jiang et al., 2020) for
text simplification and QQP6 for paraphrasing.
Baselines. We include three groups of base-
lines for machine translation: (1) The autoregres-
sive Transformer (Vaswani et al., 2017); (2) The
CMLM (Ghazvininejad et al., 2019), an iterative-
based non-autoregressive model for conditional se-
quence learning. (3) Previous diffusion-based se-
quence generative models, including the vanilla
design that simply extends the original Diffu-
sionLM (Li et al., 2022) with an additional con-
dition encoder, and the other recently proposed
improved methods CDCD (continuous diffusion
for categorical data, Dieleman et al., 2022), Dif-
fuSeq (Gong et al., 2022), SeqDiffuSeq (Yuan et al.,
2022) and Difformer (Gao et al., 2022). For text
simplification and paraphrasing, we compare our
method with DiffuSeq (Gong et al., 2022).
Metrics. We primarily report SacreBLEU7 (Post,
2018) for machine translation, following

6https://www.kaggle.com/c/
quora-question-pairs

7The signature is nrefs:1|case:mixed|eff:no|
tok:intl|smooth:exp|version:2.3.1 if the
target language is German, and nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.3.1
for others.

CDCD (Dieleman et al., 2022). For text simplifi-
cation and paraphrasing, we follow DiffuSeq to
employ sentence-level BLEU under the tokenizer
of BERT-BASE-UNCASED.

Implementation. All our implementations are
based on Transformer-BASE (Vaswani et al.,
2017) for all datasets except IWSLT14. For
IWSLT14, we use a smaller architecture that has 4
attention heads and 1024-dimensional feedforward
layers. The embedding dimension for the diffusion
model is 16 on IWSLT14 and 64 on the others.
In the implementation of our method, we follow
recent advances and apply self-conditioning tech-
niques (Dieleman et al., 2022; Chen et al., 2022;
Strudel et al., 2022). Besides, following previous
practice in non-autoregressive machine translation,
we train our model both with and without knowl-
edge distillation8 (KD, Kim and Rush, 2016; Zhou
et al., 2020).

During inference, for machine translation, we ap-
ply beam search in the autoregressive Transformer
with beam size 5. Correspondingly, we use length
beam 5 in the non-autoregressive models, except
for CDCD and DiffuSeq since they vary the target
lengths by predicting paddings instead of length
predictions. For text simplification and paraphras-
ing, we report results with various length beams as
length prediction on these tasks is more challeng-
ing and less studied. For all the diffusion-based
methods, we follow previous work (Li et al., 2022;
Gong et al., 2022; Dieleman et al., 2022) and apply
Minimum Bayes-Risk (MBR) decoding (Kumar
and Byrne, 2004). For both DiffusionLM and our
model, we perform sampling with 20 steps.

We implement DiffusionLM and DINOISER

upon fairseq (Ott et al., 2019), and also
train Transformer and CMLM baselines using
fairseq. The training batch size is 128K for
WMT14/WMT16, and 32K for the others. For
more details, please refer to §B.

5.2 Main Results

The results of machine translation and the other
two tasks are in Tab. 2 and Tab. 3, respectively.

8Non-autoregressive sequence learning models typically
struggle with learning multimodal distributions (Gu et al.,
2018). For this reason, a common technique to improve their
performance is to apply knowledge distillation, which simpli-
fies the target distribution by replacing target samples with
predictions from an autoregressive teacher model.

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs


Table 2: Comparison in SacreBLEU on machine translation tasks. “LB”: the size of the length beam search.
“MBR”: the number of candidates for each length beam to apply Minimum Bayes-Risk decoding. “KD”: results
are obtained with knowledge distillation (KD, Kim and Rush, 2016; Zhou et al., 2020). Provided that KD is
common and effective practice in non-autoregressive (NAR) machine translation, though not the focus of this study,
we also provide further experiments with KD for reference. The best NAR results with and without KD are in
bold and the second best ones are underlined. We report 95% confidential interval for our method computed with
compare-mt (Neubig et al., 2019).
†: how CMLM originally selects candidates with different lengths differs from the MBR decoding we used for
diffusion models, and we thus include its results with MBR decoding for fair comparisons. ‡: the results are quoted
from Dieleman et al. (2022). ‡‡: the results are quoted from Gao et al. (2022) while the results of the rest datasets are
missing in the original paper, for which we obtain through their opensource code. Note that the results of DiffuSeq
and SeqDiffuSeq are presented in tokenized BLEU as reported in Gao et al. (2022), and we encourage readers to
check the original papers for more details.

Methods IWSLT14 WMT14 WMT16

DE→EN EN→DE DE→EN EN→DE RO→EN EN→RO

Transformer (Vaswani et al., 2017) (AR, beam = 5) 33.61 28.30 30.55 26.85 33.08 32.86

CMLM (Ghazvininejad et al., 2019) (NAR, LB = 5) 29.41 24.33 28.71 23.22 31.13 31.26
CMLM (Ghazvininejad et al., 2019) (NAR, LB = 5, MBR=1†) 29.32 24.34 28.43 23.09 31.07 30.92

DiffusionLM (Li et al., 2022) (LB = 5, MBR = 1) 26.61 20.29 17.31 15.33 28.61 27.01
DiffusionLM (Li et al., 2022) (LB = 5, MBR = 10) 29.11 22.91 19.69 17.41 30.17 29.39
CDCD (Dieleman et al., 2022) (MBR = 10) - - 25.40‡ 19.70‡ - -
CDCD (Dieleman et al., 2022) (MBR = 100) - - 26.00‡ 20.00‡ - -
Difformer (Gao et al., 2022) (LB ×MBR = 20) 28.01 23.31 25.30 23.80‡‡ 29.37 29.20

DINOISER (LB = 5, MBR = 1) 31.290.67 25.550.65 28.830.92 24.250.86 31.141.13 30.931.12

DINOISER (LB = 5, MBR = 10) 31.610.67 25.700.62 29.050.92 24.260.84 31.221.15 31.081.12

DINOISER (LB = 10, MBR = 5) 31.440.68 26.140.65 29.010.88 24.620.88 31.241.12 31.031.13

DiffuSeq (Gong et al., 2022) (KD, LB×MBR = 10) - - - 15.37‡‡ - 25.45‡‡

SeqDiffuSeq‡‡ (Yuan et al., 2022) (KD, LB×MBR = 10) - - - 17.14‡ - 26.17‡‡

DINOISER (KD, LB = 10, MBR = 5) - - 30.300.94 25.880.95 33.131.20 32.841.16

Overall performance. Our DINOISER demon-
strates effectiveness on all selected conditional se-
quence learning tasks, which we summarize into
the following three aspects:

• DINOISER achieves state-of-the-art results
among diffusion-based models on one of the
representative conditional sequence genera-
tion tasks, i.e., machine translation, where DI-
NOISER outperforms the vanilla design of Dif-
fusionLM, as well as the previous strongest
approaches such as CDCD (Dieleman et al.,
2022) and Difformer (Gao et al., 2022) by a
large margin (Tab. 2). For DiffuSeq and Se-
qDiffuSeq, although their reported tokenized
BLEUs are not strictly comparable to our
SacreBLEU results due to the difference in
tokenizers, our performance is far above them
by over 4 BLEU score and even more if we in-
volve knowledge distillation, which supports
our superiority over them.

• DINOISER demonstrates strong competitive-
ness in conditional sequence learning. It
even surpasses CMLM (Ghazvininejad et al.,
2019) on almost all the experimented ma-
chine translation datasets (Tab. 2). Provided

that CMLM is one of the leading approaches
among NAR sequence learners, the perfor-
mance DINOISER achieves can be considered
quite competitive.

• DINOISER is generic to various conditional
sequence learning tasks. Results on Tab. 3
shows that DINOISER also works well in tasks
other than machine translation, surpassing pre-
viously proposed DiffuSeq.

In addition to the overall performance, DI-
NOISER also demonstrates several nice properties.
We elaborate on them as follows:

Scalability. As shown in Tab. 2, DiffusionLM
seems more challenging to accommodate larger
datasets like WMT14 than smaller ones (e.g.,
IWSLT14). This verifies the curse of scalability
problem discussed in §3. In contrast, DINOISER

surpasses CMLM on almost all large- and small-
scale scenarios, which indicates that DINOISER

indeed greatly improves the scalability of diffusion-
based sequence learners. This advantage of DI-
NOISER could help facilitate further research of
large-scale real-world applications of diffused se-
quence generative models.



Table 3: Sentence-level BLEU of our method and Dif-
fuSeq on Wiki (text simplification) and QQP (paraphras-
ing). “NFE”: number of function evaluations, measur-
ing the total number of forward passes to the model
for each prediction. The results of DiffuSeq are quoted
from Gong et al. (2022).

Methods Steps LB MBR NFE Wiki QQP

DiffuSeq 2000 - 10 20000 36.22 24.13

DINOISER 20 10 1 200 35.361.63 26.071.24

DINOISER 20 20 1 400 36.941.95 25.421.46

DINOISER 20 20 5 2000 36.881.77 25.571.29

Sampling efficiency. Given the sizes of length
beam (LB) and MBR decoding shown in Tab. 2, DI-
NOISER surpasses or closely approaches CMLM
even when MBR=1, while the vanilla DiffusionLM
heavily relies on a large number of candidates for
MBR decoding. Besides, DINOISER necessitates
much fewer NFEs to achieve strong performance,
e.g., only 20 steps, resulting in only 1% to 10%
computational costs and latency compared to previ-
ous works (Gong et al., 2022; Li et al., 2022; Diele-
man et al., 2022). This manifests that DINOISER

is more accurate yet efficient compared to previous
diffusion-based sequence learning models.

5.3 Effect of Noise Scale Clipping for Training
Ablation study on noise clipping. We compare
models trained with different settings in Tab. 4
to study the effect of our training strategy. We
find that the proposed noise scale clipping con-
sistently helps improve the model performance.
Replacing the noise schedule in DINOISER (i.e.,
σ(t) = t) with the sqrt schedule proposed by Li
et al. (2022) has negligible influence on the final
performance. This is expected since we only set
the noise schedule as σ(t) = t for convenience.
The difference is that the improvement by noise
clipping is relatively smaller when using the sqrt
schedule. This is because the noise scale of the
sqrt schedule increases quickly in small timesteps
(Fig. 2B). When t = 0.2, σsqrt(t) ≈ 0.67, which is
close to our initial clipping threshold. This suggests
the success of the sqrt schedule may also be partly
explained as involving more large-scale noises.

On the effect of different noise scale clipping
thresholds. To understand how different noise
clipping thresholds affect the model performance,
we compare our model trained with adaptive noise
threshold and different fixed noise thresholds in
Fig. 4. Results show that the performance degrades
if the clipping threshold is either too small or too
large. Our proposed strategy adaptively finds the

Figure 4: SacreBLEU on IWSLT14 DE→EN with our
models trained with adaptive vs. different fixed noise
clipping thresholds. We sample results with MBR=5
and oracle length. The star marker (⋆) stands for the
clipping threshold of our final checkpoint trained with
adaptive clipping threshold.

balance well. It finds the ideal noise clipping thresh-
old and achieves strong performance.

5.4 Effect of Condition Enhancement for
Sampling

We compare the performance between different
denoisers, i.e., DDIM and the proposed CEDI, in
Tab. 4. In a nutshell, CEDI impressively outper-
forms DDIM, especially for small MBR candidate
sizes. We also notice that DDIM performs partic-
ularly unsatisfactorily when the model is trained
without noise scale clipping. However, for these
models, CEDI can still produce a relatively good
performance (over 20.50 for MBR=1) that even sur-
passes well-designed CDCD (20.00 for MBR=100).
What’s more, we highlight two critical characteris-
tics of CEDI as follows:

CEDI indeed better leverage source conditions
for inference. Recall that we propose the CEDI

with the purpose of encouraging the model to make
better use of source conditions for prediction (§4.2).
To investigate whether the denoiser achieves this,
we apply Layer-wise Relevant Propagation (LRP,
Bach et al., 2015; Voita et al., 2021) to measure the
relative contribution of the source condition to the
model prediction. As shown in Fig. 5(B), we com-
pare the source contribution of our CEDI and the
DDIM solver along the sampling iterations. CEDI

maintains a high source contribution, while the
source contribution of CEDI is unsatisfactory in the
first few steps, which demonstrates that sampling
with our CEDI does leverage the source condition
more. Correspondingly, as shown in Fig. 5(A),
the prediction accuracy of CEDI increases steadily,
while the performance of DDIM fails to improve



Table 4: Ablation Study on WMT14 EN→DE. All the results are in SacreBLEU scores with LB = 5.
Training Settings DDIM (MBR = 1) CEDI (MBR = 1) DDIM (MBR = 10) CEDI (MBR = 10)

Ours [final] 19.23 24.25 22.12 24.26
w/o self-conditioning 20.37 23.03 22.58 23.14
w/o noise scale clipping 7.95 21.16 11.51 21.40
w/o self-conditioning, w/o noise scale clipping 11.30 20.86 14.84 21.47

w/ sqrt noise schedule 20.11 24.13 22.83 24.07
w/ sqrt noise schedule, w/o noise scale clipping 16.68 23.22 20.46 23.40

Figure 5: The difference between CEDI and DDIM
solver over steps. (A) The prediction accuracy at each
step, measured with SacreBLEU. (B) The proportion
of source contribution to the prediction in Layer-wise
Relevant Propagation (LRP) at each step.

at the beginning of the iterations, suggesting cor-
relations between higher source contribution and
higher performance improvement. Among all iter-
ations, the first few steps establish the foundation
for the overall performance. Although DDIM im-
proves its performance in later iterations, it still
falls behind our CEDI. This suggests the effective-
ness of increasing the source contribution, espe-
cially at the beginning of the sampling process.

To further show the strength of CEDI in cap-
turing source conditions, we explore more com-
plex conditional sequence learning scenarios. We
simulate this under two multilingual translation
settings, i.e. many-to-one and one-to-many
translation. In the many-to-one scenario, a
unified model needs to translate source sentences
in multiple different source languages to English
counterparts, requiring the model to handle com-
plicated source conditions. On the other hand,
the one-to-many setting simulates a multi-
conditional scenario, requiring the model to rec-
ognize the target language as another crucial con-
dition to capture the target distribution. To this
end, we construct a dataset by combining four lan-
guage pairs of IWSLT14 translation benchmark,
i.e., EN↔DE, EN↔RO, EN↔NL, and EN↔PT-
BR. In the one-to-many translation, we append
language tokens to the source sequences to incor-

Table 5: Results of multilingual machine translation
({DE,RO,PT-BR,NL}↔EN). “BILINGUAL”: integrated
results of separate models of every language pair.
“MULTILING.”: results from a unified multilingual
model. We employ langdetect (Shuyo, 2010) to
infer the language of generated sequences for comput-
ing the language accuracy.

Settings Methods SacreBLEU (Lang Acc %)
BILINGUAL MULTILING.

many-to-one

{DE,RO,PT-BR,NL}
→EN

CMLM 33.85 35.23
DINOISER (DDIM, MBR=1) 32.40 33.43
DINOISER (DDIM, MBR=10) 33.73 35.48
DINOISER (MBR=1) 34.57 35.26
DINOISER (MBR=10) 34.74 35.66

one-to-many

EN→
{DE,RO,PT-BR,NL}

CMLM 28.10 30.55 (94.73)
DINOISER (DDIM, MBR=1) 27.44 17.95 (89.77)
DINOISER (DDIM, MBR=10) 28.54 18.57 (89.53)
DINOISER (MBR=1) 28.72 30.52 (95.31)
DINOISER (MBR=10) 28.81 30.67 (95.42)

porate the target language as a condition. We also
include a baseline in which the models are trained
separately for each language pair for comparison.

CEDI can handle sequence generation from
complex and multiple conditions. As shown
in Tab. 5, DINOISER works well in multilingual
settings, showing its strong capability in model-
ing conditions, i.e. a complex multimodal con-
dition (source sentences of four languages in
many-to-one), and multiple conditions (source
sentence in English as well as the identity of target
languages). Particularly, CEDI shows huge ad-
vantages over DDIM in the multilingual setting of
one-to-many translation. In this case, the lan-
guage accuracy of DDIM is much lower than that
of CEDI, suggesting DDIM has trouble capturing
the given condition, namely the language identity
in this one-to-many scenario. In contrast, DI-
NOISER augmented with CEDI yields satisfactory
predictions with high language accuracy, exhibit-
ing superiority in working with multiple conditions.
This is also consistent with our findings from the
qualitative examples as shown in Tab. 6, where
DDIM may fail to capture the language condition
and generate non-sense articles shared across lan-
guages, while the full DINOISER produces fluent
and satisfactory results.



Table 6: A quanlitative example for one-to-many translation. The source contains both the English sentence to be
translated and the target language. We compare generation results of CMLM, DINOISER but sampling with DDIM
instead of CEDI, and the complete DINOISER.

Source (target language: ro) something as dramatic as our identity has now become a matter of choice, as this slide is meant to indicate.

Reference ceva atât de important ca identitatea noastră a devenit acum o problemă de alegere, s, i această tranzit,ie are rolul de a arăta ast

CMLM ceva la fel de dramatic ca identitatea noastră a devenit o problemă de alegere, cum acest slide este făcut să arate.
DINOISER (w/ DDIM) ceva de de de de de de de de de a de de de de de de de de de de de de de de de de.
DINOISER (w/ CEDI) ceva atât de dramatic ca identitatea noastră, a devenit acum o problemă de alegere, aşa cum se înseamnă să indice acest imagine

6 Related Work

Non-autoregressive Sequence Generative Mod-
els. Non-autoregressive sequence learning (NAR)
was first proposed by Gu et al. (2018) as an alter-
native to its autoregressive counterpart. It gener-
ates target tokens in parallel, either fully NAR (Gu
et al., 2018) or up to a mild number of itera-
tions (Ghazvininejad et al., 2019), liberating se-
quence modeling from the constraint of a prede-
fined order (Qian et al., 2022). With recent ef-
forts, NAR shows great potential in the applica-
tions of various domains, including language (Qian
et al., 2021; Qi et al., 2021; Huang et al., 2022c;
Qian et al., 2022), speech (Kim et al., 2021), pro-
teins (Zheng et al., 2023a; Wang et al., 2024), and
molecules (Hoogeboom et al., 2022). Different
from more commonly-used autoregressive (AR)
models (Sutskever et al., 2014), NAR models as-
sume conditional independence among the out-
put tokens. Such an assumption risks ignoring
the target dependencies (Ren et al., 2020; Huang
et al., 2022b) and leads to the multi-modality prob-
lem (Gu et al., 2018). As a result, the vanilla fully
NAR model has inferior generation quality. Some
of the later improvements alleviate the strong as-
sumption by reformulating NAR formulation under
iterative refinement (Lee et al., 2018; Gu et al.,
2019; Ghazvininejad et al., 2019, 2020; Huang
et al., 2022a,d; Zheng et al., 2023b; Ye et al., 2023),
which iteratively takes as input the previously gen-
erated sequence, which serves as an intermediate
random variable, to produce the tokens of its re-
fined or denoised version in parallel until conver-
gence or the budget of maximum iterations run
out. Some recent advances herein follow the idea
of discrete diffusion (Sohl-Dickstein et al., 2015;
Austin et al., 2021) and formalize iterative refine-
ment as Markov processes (Savinov et al., 2021; He
et al., 2022; Reid et al., 2022). Although both are
named after diffusion models, these works operate
on discrete state space, whereas our focus, continu-
ous diffusion models accommodate the continuous
(embedding) space of discrete tokens.

Diffusion Models for Sequence Learning. Con-
tinuous diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020b) gained
first success in generating high-quality images.
Recently, DiffusionLM (Li et al., 2022) success-
fully adapted them to sequence learning and pro-
posed the DiffusionLM, the first diffusion-based
sequence generative model with a special focus
on controllable text generation. Later improve-
ments to the diffusion-based sequence generative
models are mainly categorized threefold. The
first line includes novel components for diffusion
modeling, such as the partial diffusion process
proposed by DiffuSeq (Gong et al., 2022), self-
conditioning techniques introduced by Strudel et al.
(2022), and the adaptive noise schedule of Yuan
et al. (2022). The second line applies diffusion
models to the latent space of specific pretrained
language models (Lovelace et al., 2022). And
the third tries to incorporate conventional prac-
tice in discrete token prediction. For instance,
CDCD (Dieleman et al., 2022), Difformer (Gao
et al., 2022) and SSD (Han et al., 2022) incorpo-
rate the cross-entropy objectives in training. For
the application of diffusion-based models for se-
quence learning, previous work found their advan-
tages in controllable generation (Yu et al., 2022;
Liu et al., 2022; Li et al., 2022), and generating
diverse sequences (Gong et al., 2022). GENIE (Lin
et al., 2022) demonstrates that diffusion-based se-
quence generative models can benefit from large-
scale self-supervised pretraining. While almost all
these works mainly focus on the training phrase of
diffusion-based sequence generative models, our
study emphasizes both training and inference.

7 Conclusion

In this paper, we shed light on the crucial role of
noise schedules in diffusion models for conditional
sequence learning by systematic empirical study.
Motivated by our findings, we propose DINOISER

to determine the best-suited noise scales for both
training and inference. As a result, DINOISER



makes training more effective and also enables the
model to better utilize source conditions for predic-
tion, thereby leading to considerable performance
improvements. We expect that our study can help
facilitate further research on diffusion models to
empower various applications in NLP.
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A More Results on Machine Translation

To provide references for further study and comparisons, we report more results on machine translation.

Knowledge distillation (KD). A common practice to improve the performance of non-autoregressive
machine translation is knowledge distillation (Kim and Rush, 2016; Zhou et al., 2020). We report the
performance of our method trained on distilled data of WMT14 and WMT16 on Tab. 7. The result
shows that the performance gap between our method and the autoregressive transformer is small when
knowledge distillation is used. This suggests that our method achieves performance that satisfies the needs
of applications.

Table 7: Model performances on machine translation with knowledge distillation. The results of transformer are
from raw data, while DINOISER is trained on distilled data. The performances are measured with SacreBLEU.

WMT14 WMT16
Methods DE→EN EN→DE RO→EN EN→RO

Transformer 30.55 26.85 33.08 32.86
DINOISER (LB=5, MBR=1) 30.13 25.70 32.96 32.58
DINOISER (LB=5, MBR=10) 30.12 25.90 33.04 32.57
DINOISER (LB=10, MBR=5) 30.30 25.88 33.13 32.84

Evaluation with tokenized BLEU. Some of the previous studies in machine translation reported
tokenized BLEU, despite inconsistent tokenizers (other than the standard Moses tokenizer) they might
use. To help conveniently compare DINOISER to them, we also report the performance of DINOISER

with tokenized BLEU9 in Tab. 8.

Table 8: Tokenized BLEU of our method on machine translation datasets. We use the moses tokenizer for all the
texts. “LB”: the size of length beam. “MBR”: the number of candidates for each length beam to apply Minimum
Bayes-Risk decoding. +KD means the results are obtained with knowledge distillation.

IWSLT14 WMT14 WMT16
Methods DE→EN EN→DE DE→EN EN→DE RO→EN EN→RO

DINOISER (LB=5, MBR=1) 32.23 25.54 29.35 24.43 31.21 31.18
DINOISER (LB=5, MBR=10) 32.48 25.68 29.53 24.45 31.39 31.29
DINOISER (LB=10, MBR=5) 32.25 25.99 29.40 24.48 31.50 31.27
DINOISER + KD (LB=5, MBR=1) - - 30.64 26.08 33.21 32.57
DINOISER + KD (LB=5, MBR=10) - - 30.62 26.29 33.29 32.59
DINOISER + KD (LB=10, MBR=5) - - 30.76 26.04 33.40 32.89

B Implementation Details

All our implementations are based on Transforme-base (Vaswani et al., 2017) for all datasets except
IWSLT14. For IWSLT14, we use a smaller architecture that has 4 attention heads and 1024-dimensional
feedforward layers. The embedding dimension for the diffusion model is 16 on IWSLT14 and 64 on the
others. In the implementation of our method, we follow recent advances and apply self-conditioning
techniques (Dieleman et al., 2022; Chen et al., 2022; Strudel et al., 2022). Besides, following previous
practice in non-autoregressive machine translation, we train our model both with and without knowledge
distillation (KD, Kim and Rush, 2016; Zhou et al., 2020).

During inference, we apply beam search in the autoregressive Transformer with beam size 5 for machine
translation. Correspondingly, we use length beam 5 in the non-autoregressive models, except for CDCD
and DiffuSeq since they vary the target lengths by predicting paddings instead of length predictions. For
text simplification and paraphrasing, we report results with various length beams as length prediction on

9https://github.com/alvations/sacremoses
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these tasks is more challenging and less studied. For all the diffusion-based methods, we follow previous
work (Li et al., 2022; Gong et al., 2022; Dieleman et al., 2022) and apply Minimum Bayes-Risk (MBR)
decoding (Kumar and Byrne, 2004). For both DiffusionLM and our model, we sample with 20 steps.

We implement DiffusionLM and DINOISER upon fairseq (Ott et al., 2019), and also train Trans-
former and CMLM baselines using fairseq. For data preprocessing, we follow the instruction in
fairseq for IWSLT1410 and use the preprocessed data by (Gu and Kong, 2021) for WMT14 and
WMT1611. For Wiki and QQP, we use preprocessed data provided by DiffuSeq12 and tokenized them with
byte-pair encoding (BPE, Sennrich et al., 2016). The training batch size is 128K for WMT14/WMT16,
and 32K for the others. We empirically find checkpoint averaging unnecessary for our method and have
not applied it in all our implementations.

C Relationship Between Different Noise Schedules and Time Samplers

Generally, the training objective of diffusion models can be expressed as

Et∼r(t),ϵ∼N (0,I)[w(t)∥zθ − z(0)∥22],

where zθ is the model prediction zθ(
√

1− σ2(t)z(0) + σ(t)ϵ, t) for short.
The above expectation over timesteps can be rewritten into the expectation of noise scales as follows.

Et∼r(t),ϵ[w(t)∥zθ − z(0)∥22]

=Eϵ[

∫ 1

0
r(t)w(t)∥zθ − z(0)∥22dt]

=Eϵ[

∫ 1

0
r̂(σ)ŵ(σ)∥zθ − z(0)∥22]

dt

dσ
dσ

=Eσ∼ U(0,1),ϵ[w
′(σ)∥zθ − z(0)∥22],

where w′(σ) = w(σ−1)r(σ−1) dt
dσ . Therefore, training with different noise schedules and different time

samplers is interchangeable by applying different weighting functions.

D Effect of Sizes of Length Beam and MBR

DINOISER can leverage both length beam search and MBR decoding to produce diverse candidates for
selection. The results on all of the evaluated datasets (Tab. 2 and Tab. 3) demonstrate that the method
can gain its performance by properly adjusting the two hyperparameters for sampling. In particular, we
search on various combinations of length beams and MBRs and evaluate the corresponding performance
of DINOISER on the validation set of WMT14 EN→DE, shown in Fig. 6. The model performance
rises first and then drops down as the length beam increases. And for each length beam, we can further
boost the performance of DINOISER with MBR > 1, suggesting that the effects of the two factors are
complementary.

Using both length beam search and MBR decoding also brings benefits to DINOISER over those only
involving one of them. Compared to CMLM which decodes deterministically, DINOISER is able to sample
multiple sentences for each length beam, providing more diverse candidates. Compared to CDCD, which
predicts paddings to generate sentences of various lengths and whose sampling efficiency is restricted
by maximum target length, DINOISER’s use of length beams allows more fine-grained control of the
computational budget.

10https://github.com/facebookresearch/fairseq/tree/main/examples/translation
11https://github.com/shawnkx/Fully-NAT
12https://github.com/Shark-NLP/DiffuSeq
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Figure 6: SacreBLEU on the validation set of WMT14 EN→DE with different length beams and MBR sizes.


