
SpinQ: Compilation strategies for scalable spin-qubit architectures

N. Paraskevopoulos1,2, F. Sebastiano1,2, C. G. Almudever3, and S. Feld1,2

1Quantum and Computer Engineering Department, Delft University of Technology, 2628 CD Delft, The Netherlands
2QuTech, Delft University of Technology, 2628 CJ Delft, The Netherlands and

3Computer Engineering Department, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain

Despite NISQ devices being severely constrained, hardware- and algorithm-aware quantum circuit mapping
techniques have been developed to enable successful algorithm executions. Not so much attention has been paid
to mapping and compilation implementations for spin-qubit quantum processors due to the scarce availability
of experimental devices and their small sizes. However, based on their high scalability potential and their
rapid progress it is timely to start exploring solutions on such devices. In this work, we discuss the unique
mapping challenges of a scalable crossbar architecture with shared control and introduce SpinQ, the first native
compilation framework for scalable spin-qubit architectures. At the core of SpinQ is the Integrated Strategy
that addresses the unique operational constraints of the crossbar while considering compilation scalability and
obtaining a O(n) computational complexity. To evaluate the performance of SpinQ on this novel architecture,
we compiled a broad set of well-defined quantum circuits and performed an in-depth analysis based on multiple
metrics such as gate overhead, depth overhead, and estimated success probability, which in turn allowed us
to create unique mapping and architectural insights. Finally, we propose novel mapping techniques that could
increase algorithm success rates on this architecture and potentially inspire further research on quantum circuit
mapping for other scalable spin-qubit architectures.

I. INTRODUCTION

The prospect of quantum computing advantage is steadily
becoming a reality [2, 24, 35]. The community is anticipating
further advances that will allow quantum computing systems
to become practical and to reach computational advantage [9].
With such advancements, quantum computing systems are ex-
pected to solve a plethora of classically intractable problems.
Until then, current quantum systems belong to the so-called
Noisy Intermediate-Scale Quantum (NISQ) era [48], in which
devices can only handle small-sized quantum circuits. This is
due to limitations in increasing the number of qubits and high
operational errors with the latter causing rapid quantum in-
formation deterioration. Combined with more hardware con-
straints, such as cross-talk and limited classical-control re-
sources [1, 27], successful quantum circuit execution is a diffi-
cult feat. Scientists, both in academia and industry, face major
engineering challenges in building both hardware and corre-
sponding system software.

During the NISQ era, there have been significant efforts
[4, 28, 29, 39, 41, 42, 47, 49, 54, 55, 69] to extract the most
out of these resource-constrained and error-prone quantum
computing systems. One of the approaches to do so is by
developing hardware- and algorithm-aware quantum circuit
mapping techniques to maximize performance. In general
terms, mapping refers to the process of modifying potentially
hardware-agnostic quantum circuits in such a way that they
can be run on a given quantum computing device by respect-
ing all of its constraints while optimizing performance (e.g.,
algorithm success rate). So far, several mapping techniques
have been developed mostly for superconducting and ion-trap
qubit devices, as they are nowadays one of the most well-
recognized and most-developed qubit implementation tech-
nologies in terms of qubit counts and availability to users.
However, spin-qubits emerge as a promising technology for
scaling up quantum computing systems mainly due to their
high integration potential [34, 59, 62, 63, 68, 70]. Therefore,

the scientific community is envisioning two-dimensional spin-
qubit architectural proposals that could alleviate some of the
major challenges towards scalability. Recently, a crossbar ar-
ray [6] has been experimentally demonstrated, showing great
promise for architectures with shared control. Such scalable
architectural designs come with a new set of hardware con-
straints for which novel quantum circuit mapping techniques
need to be developed.

In this paper, we present SpinQ, the first native compilation
framework focusing on scalable spin-qubit architectures. To
this purpose, we target the so-called crossbar architecture pro-
posed in [32]. By creating a deep understanding of its opera-
tional constraints, we draw a clear picture of unique mapping
challenges that arise in comparison to other qubit technolo-
gies. We have devised a novel compilation approach called
the Integrated Strategy, a method inspired by mapping solu-
tions found in [19, 38]. Rather than seeking pure optimality,
this strategy prioritizes scalability to harness the potential of
scalable spin-qubit architectures. This pioneering compila-
tion strategy uniquely and effectively navigates the rigid con-
straints of the crossbar architecture, doing so without adding
to the computational complexity in comparison to alternative
proposals. Yet, it’s important to note that the current itera-
tion does restrict the parallelization of certain gates, indicat-
ing room for improvement. However, this design has been
created with future advancements in mind while keeping its
time complexity in check. Our aim, through the elucidation
of our results, is to highlight the imperative nature of com-
prehensive performance evaluation of emerging architectures
and mapping techniques. Through our results, we aim to pro-
vide key insights into the importance of performing an ex-
tensive performance evaluation process of novel architectures
and mapping techniques. With this compilation framework,
we not only enable quantum algorithm executions on scalable
spin qubit hardware but, perhaps more importantly, we form
insights on the behavior and performance of this new breed of
architectures. It also offers design guidelines vital for steering

ar
X

iv
:2

30
1.

13
24

1v
2

 [
qu

an
t-

ph
]

 1
 M

ay
 2

02
4

2

future breakthroughs in both hardware and software.
The main contributions of this paper are:

1. An in-depth analysis of mapping challenges in order to
create novel mapping techniques for spin-qubit crossbar
architectures.

2. SpinQ – The first native compilation framework dedi-
cated to scalable spin-qubit architectures which utilizes
a more scalable compilation strategy compared to pre-
vious proposals.

3. A thorough performance analysis of the main sources of
gate/depth overhead and estimated success probability
when mapping well-defined quantum algorithms on the
crossbar architecture.

4. Deriving algorithmic- and hardware-specific mapping
insights for the crossbar architecture and potentially
other spin-qubit architectures from a scalability point
of view.

The remainder of this paper is structured as follows: In Sec.
II, the current progress and challenges of scalable spin-qubit
architectures are presented. In Sec. III, the crossbar architec-
ture is introduced as a potential candidate in scaling quantum
devices in two dimensions, as well as its native operations. In
Sec. IV, we comprehensively analyze the unique challenges
of mapping quantum algorithms on the crossbar architecture,
which require novel mapping techniques. Then, in Sec. V,
we introduce SpinQ – the first native compilation framework
for scalable spin-qubit architectures. In Sec VI we refer to our
experimental methodology and In Sec. VII we thoroughly an-
alyze the performance of SpinQ when mapping a broad and
well-defined range of quantum algorithms on the crossbar ar-
chitecture after which we form architectural and mapping in-
sights. In Sec. VIII, we discuss potential improvements of our
compilation strategy, and we compare its computational com-
plexity to previous proposals. Finally, we conclude our work
in Sec. IX.

II. SPIN QUBITS AS A SCALABLE PLATFORM

To fulfill the promise [48] of quantum computers being ma-
chines that solve some classically intractable problems, sub-
stantial system sizes have to be reached, i.e., a large number
of qubits [1, 16]. It still remains to be seen which qubit imple-
mentation technologies (e.g., superconducting, trapped ions,
quantum dots, photonics, defect-based on nitrogen-vacancy
diamond centers) will succeed in scaling up quantum com-
puting systems with high-quality qubits [13, 50]. Among
them, spin qubits in quantum dots are a promising technol-
ogy for scalable quantum computers due to the maturity of the
semiconductor industry, the capability of high integration on
a single die compared to other qubit technologies (the phys-
ical space of 1 transmon qubit can fit ∼ 1000 spin qubits
along with classical control electronics), long coherence times
(close to 20µs), and the ability to operate in super-kelvin tem-
peratures (up to 4 kelvin) [12, 13, 20, 34, 59, 62, 63, 67, 68,
70].

Despite the advantages just mentioned, there are still sev-
eral challenges today towards scaling spin-qubit devices in a
sustainable manner. One major challenge is the wiring scheme
between the quantum processor and the classical interface, the
so-called interconnect bottleneck [59]. Formally, the intercon-
nect bottleneck is described by Rent’s exponent [14], which is
a measure of optimization in the wiring scheme in both clas-
sical and quantum processors. The existing scheme in most
quantum devices, which has at least one control line per qubit,
is not scalable in the long term. This is mostly due to the fact
that dilution refrigerators have an upper limit to I/O cable ca-
pacity and that more cables will progressively make it harder
to reach the desired milli-Kelvin temperature due to higher
heat dissipation. Therefore, qubit architectures and classical-
control electronics have to support multi-qubit shared-control
that requires a sub-linear number of control lines alongside an
increasing number of qubits. In other words, each control line
needs to address multiple qubits to effectively mitigate the in-
terconnect bottleneck when scaling up quantum hardware.

Going a step further, the inability to achieve a scalable
wiring scheme also originates from the low device unifor-
mity achieved by today’s fabrication tools. In most cases,
this implies that qubits can not be made homogeneous enough
to control them effectively in a scalable architecture. The
low uniformity results in resonance frequency deviations or
other control variations. This means that in an inhomoge-
neous device, a driving signal for a particular operation will
have to vary from one qubit to another to get the same out-
come [32, 37, 59]. This makes it difficult to successfully con-
trol many qubits with the same line, thus contributing to the
wiring scheme challenge (i.e., the interconnect bottleneck).

There have been significant efforts [8, 14, 23, 32, 44, 46,
59, 60] to reduce the number of control lines reaching the
qubits as devices become ever denser. Such efforts take ad-
vantage of the miniaturization capabilities of spin qubits and
the large-scale integration of solid-state circuits to address the
aforementioned challenges. However, current experimental
work has primarily been focused on one-dimensional spin-
qubit arrays of small sizes [59], which are not easily scal-
able. Recently, a 2 × 2 spin-qubit processor [21] and a 4 × 4
spin-qubit device based on a crossbar architecture [6, 32] with
shared control have demonstrated the potential to scale spin-
qubit devices in two dimensions. Therefore, there will be
a need, as the technology is advancing and further reduc-
ing Rent’s exponent, to effectively map quantum algorithms
on two-dimensional devices such as the crossbar architecture,
which comes not only with limited qubit connectivity but also
with a new set of constraints. This creates an opportunity to
explore its mapping challenges and propose novel solutions.

However, mapping techniques are not studied as much as
other qubit technologies such as superconducting and ion
traps. In addition, the sample space of architectural propos-
als is sparse and lacks a detailed description of hardware con-
straints [7, 23, 60]. In combination with the lack of avail-
able devices for testing leads to a lack of a proper evaluation
tool capable of benchmarking various quantum algorithms.
Therefore, it also remains unclear whether existing techniques
could be applicable. Then, even if such techniques are real-

3

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 QL0

QL1

QL2

QL3

FIG. 1: Schematic overview of the crossbar architecture and
operational control lines [32].

ized they could be incompatible with existing quantum com-
pilation tools made for other qubit technologies. This could
be due to completely different development requirements im-
posed by the particular spin-qubit constraints and their scal-
ability prospects. In other words, a dedicated compilation
framework for spin-qubit architectures with a focus on scal-
ability is still missing. All these obstacles make it difficult to
fully explore the possibilities and compare various architec-
tural proposals under relevant application categories.

III. THE CROSSBAR ARCHITECTURE

The crossbar architecture for arranging spin qubits was in-
troduced in [32] as a scalable solution to the interconnect bot-
tleneck. Inspired by the crossbar architecture used in today’s
classical processors [8, 32], it adopts a similar characteristic,
namely shared control. This achieves a quadratic reduction in
control lines per qubit [19] and opens up the possibility for
high integration of up to 1, 000 qubits in a single package.

In this crossbar architecture, qubits are defined by electron
spin states in Si-based quantum dots. A Si-based quantum dot
is a layer-structured semiconductor device that can confine a
single electron with proper gate electrode control, after which
its quantum-mechanical spin can define a physical qubit [18].
In Figure 1, we illustrate a schematic overview of the crossbar
architecture in which every site (circles) represents a quantum
dot, some of which are occupied by spin-qubits (numbered,
green circles). Spin qubits are usually sparsely initialized in
a pattern to reduce potential cross-talk and to allow for long-
range entanglement through shuttling qubits across the array
[32]. In this case, a checker-board pattern provides these ben-

efits. Finally, the crossbar architecture requires high fabrica-
tion uniformity of its materials to minimize operational errors.
It is possible, however, to mitigate such errors or even vanish
them by operating the crossbar at low magnetic fields and with
proper tuning (e.g., separated resonance frequencies between
columns). Furthermore, a crossbar module is envisioned to be
self-contained and duplicated in a network of multiple cross-
bar modules. This can provide the means to realize quantum
error correction (QEC) in large-scale systems enabled by fast-
shuttling, low-error communication links.

It is now important to focus on the three different kinds
of shared control lines used to perform operations on qubits:
vertical (column line, CL), horizontal (row line, RL), and di-
agonal (qubit line, QL). Notably, each line affects all the sites
that it is connected to. For instance, in Fig. 1 line QL−2

affects the sites in which spin-qubits 5 and 7 reside. This im-
poses some particular restrictions in the parallelization of in-
structions, which we will discuss in Sec. IV. Below, we will
abstractly describe the control properties for executing native
gates of the crossbar architecture. Note that any non-native
gates can be decomposed into native ones as explained in Sec.
V A 1. A more detailed explanation is provided in [19].

A. Qubit shuttling

In the crossbar architecture, qubits can be moved around by
performing shuttling operations. In a shuttle operation, ver-
tical or horizontal lines are used as barrier gates, depending
on the direction. Lowering or raising these barriers can cre-
ate pathways from which qubits can move (shuttle) orthog-
onally from one site to another with the use of DC signals
through the diagonal lines. Specifically, when a barrier, sep-
arating a qubit and an empty quantum dot, is lowered then
it can move pushed/attracted by the voltage difference of the
QL lines going through the origin and destination sites. Fig.
2 (a) shows an example of shuttling, in which qubit 3 is mov-
ing one site to the left. The order in which the control line
signals should be pulsed and other requirements are analyzed
in Sec. IV A. Fig. 2 (b) shows the potential parallel shuttle
operations to shuttling qubit 3 left. In order to do that, the
requirements of shuttling qubit 3 need to be compatible with
the others and satisfied in the same order. Note that the larger
the crossbar topology, the more difficult it gets to parallelize
shuttle operations. A deeper analysis of parallelization pos-
sibilities and challenges is given In Sec. IV. Although this
architecture can support gate-based communication with two
subsequent

√
SWAP s (see Sec. III B), resulting in a SWAP

gate similar to superconducting qubits, shuttling qubits is pre-
ferred due to higher operation fidelity and shorter execution
time. It should be noted that shuttling horizontally, i.e., be-
tween columns, causes a Z rotation (see Sec. III C) which
should be mitigated by timing well the next operation(s) [32].

4

B. Two-qubit gates

Two two-qubit gates are supported by the crossbar architec-
ture, CPHASE and

√
SWAP , with the latter being chosen

for this work due to its higher operational fidelity and faster
execution time according to [32]. A

√
SWAP can be per-

formed similarly to the requirements of a shuttle operation,
analyzed in Sec. III A and IV A. The difference is that the two
qubits need to be vertically adjacent (i.e., same column) and
the fourth requirement related to the QL lines going through
the two sites needs to have equal voltages. Once these are
satisfied, similar rules to shuttle parallelization are applied for
parallel

√
SWAP s as explained in Sec. III A. Finally, it is

possible to parallelize two-qubit gates and shuttle operations
as long as all their constraints are satisfied.

C. Z rotations

In the crossbar architecture, single-qubit gate rotations
should be separated into two categories: Z rotations and X
or Y rotations.

Z qubit rotations can be controlled by a well-timed qubit
shuttling to and from a neighboring column [19, 32, 38]. Due
to the differences in Zeeman energies between the two col-
umn parities, timing is key. The imposing alternating mag-
netic fields on qubits rotate them in the Z axis and the longer
they stay in the opposite column parity the more they rotate.
Therefore, when the second shuttle is timed purposefully, the
qubit can return to the initial position rotated at any angle.
Besides this timing peculiarity between the two shuttles, par-
allelization constraints and mapping challenges are the same
as qubit shuttling. Finally, it is possible to parallelize Z rota-
tions, two-qubit gates, and shuttle operations in the same cycle
when all requirements are satisfied.

D. X or Y rotations

As for X or Y rotations, either all qubits belonging to red-
colored columns or all qubits in blue-colored columns are ro-
tated (see Fig. 1). This is called semi-global single-qubit rota-
tion and is implemented by electron-spin-resonance [32, 61].
A high-level representation of how a particular column parity
is addressed is given in Fig. 4 (a). Depending on the duration
of the applied magnetic field at the CL lines, the qubits can be
rotated at any angle.

E. Measurement

The readout process allows for local single qubit measure-
ments by using the Pauli Spin Blockade (PSB) process [15].
With this process, the measurement outcome is determined by
whether a qubit shuttle towards a horizontally adjacent ancilla
qubit was successful or not. In this work, we considered an
ideal measurement process in which no ancilla qubits are in-
volved.

IV. QUANTUM CIRCUIT MAPPING CHALLENGES OF
THE CROSSBAR ARCHITECTURE

The mapping process of a quantum circuit plays an essen-
tial role in the successful execution of algorithms on a quan-
tum computer. It consists of a cascade of routines that trans-
form a (potentially hardware-agnostic) quantum circuit to a
hardware-compatible version. However, current NISQ quan-
tum processors are severely constrained and cannot run useful
applications successfully yet, despite notable efforts in this
field.

Examples of hardware constraints are low qubit connec-
tivity, cross-talk, reduced primitive gate set, low coherence
time, fabrication imperfections, and limited classical-control
resources. Therefore, a mapping process needs to consider
such limitations and try to optimize performance as much
as possible to increase the algorithm’s success rate. So far,
there are a plethora of proposed solutions which differ in
strategy, methodology and performance metrics to optimize
[4, 28, 29, 31, 39, 41, 42, 47, 49, 54, 55, 69].

Such mapping techniques have been mostly developed for
superconducting and ion-trap qubit devices. However, as of
now, there is not much focus on spin-qubit architectures and
their particular characteristics. Although spin-qubits are now
in a rather early development stage, their scalability potential
is undeniable, and therefore, it is timely to lay grounds for
developing novel mapping techniques and inspire further re-
search. As previously mentioned, in this work, we focus on
the crossbar architecture that comes with a unique set of con-
straints that affect the parallelization of quantum operations,
the application of X or Y rotations on individual qubits, and
the routing of qubits (i.e., moving qubits around the topology).

A. Parallelization of quantum operations

Most of the operation parallelization restrictions of the
crossbar architecture come from the fact that control lines are
shared among multiple qubits and each line has a specific role
and relation to one another. It should also be mentioned that
most operations must be implemented with strict pulse du-
rations and time intervals, depending on the addressed site
[19, 32]. Although such pulse durations have to be carefully
considered in the mapping process by providing recent cali-
bration data [42, 54, 55], in this work, we consider an ideal
crossbar architecture, as such data are not available yet. De-
spite that, the mapping techniques proposed in this work are
compatible with similar considerations and can be added once
calibration data are available.

To better illustrate what conditions and constraints there are
when trying to parallelize quantum operations, let us consider
the following example in which two shuttles are tried in par-
allel. As shown in Fig. 2 (a), the following requirements must
be fulfilled in that order to shuttle qubit 3 one site to the left:

1. The destination site must not be occupied by another
qubit.

5

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 > QL0

>

QL1

QL2

QL3

(a)

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 > QL-2 < QL-1 > QL0

<

QL1

 >

QL2

 <

QL3

(b)

FIG. 2: (a) Shuttling example of qubit 3 moving one site to
the left. The barrier CL0 between origin and destination site

is lowered and voltage of QL−1 is larger than QL0. The
order and signal requirements will be further explained in

Sec. IV A (b) Shows the potential of parallelizing shuttling
operations that can be executed in parallel with shuttling left
qubit 3. However, not all qubits can be shuttled arbitrarily at
the same time due to the specific requirements or potential

conflicts caused by mapping in this architecture. These
challenges are analyzed in Sec. IV.

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 > QL0

><

QL1

<

QL2

>

QL3

FIG. 3: Parallelizing shuttles of qubit 3 and 6 is not allowed
due to violation of constraints shown as QL0 >< QL1.

2. The barrier between destination and origin sites must be
lowered. This is depicted as a dashed vertical CL0 line.

3. All barriers surrounding the origin and destination sites
must be raised. This is shown as solid red RL (RL0 and
RL1) and blue CL lines (CL1 and the always-raised
most-left CL line).

4. The voltage going through the QL line of the destination
site (QL−1) must be higher than the one going through
the origin site (QL0). This is shown as QL−1 > QL0

in the top-right of Fig. 2 (a).

5. To prevent other qubits in these two columns from shut-
tling, the voltage going through their QL lines must be
higher than their adjacent empty sites. This is depicted
as voltage level relations between QL lines. Note that
QLs with no voltage relations are irrelevant for this par-
ticular shuttle operation.

Now, we assume a shuttle of qubit 6 to the right (as de-
picted in Fig. 3) in parallel to the left shuttle of qubit 3.
This implies that all previously listed requirements of qubit
3 need to be satisfied along with the new ones of qubit 6.
However, the fourth requirement can not be satisfied as the
QL0 > QL1 relation we had before would have to be changed
to QL0 < QL1. If this change is allowed, we violate the fifth
requirement of the first shuttle and, as a consequence, qubit 1
will shuttle to the right. Therefore, we can not shuttle qubits
3 and 6 as such at the same time. Contrary to that, in Fig 2 (b)
we were able to shuttle qubit 6 only because qubit 1 shuttles
to the right at the same time.

6

Thus, we see that scheduling parallel gates in the crossbar
implies a strict simultaneous satisfaction of all signal require-
ments for each gate. It also depends on the specific gate (op-
eration) set to be parallelized and their corresponding qubit
positions on the topology. Any violation of the above con-
ditions would potentially result in the shuttling of unwanted
qubits, unwanted qubit interactions, or unknown qubit states.
As seen in the previous example, performing quantum oper-
ations in parallel without affecting other qubits and meeting
all signal requirements is not always possible regardless of
qubit distance. In fact, it does not matter how far qubits are
away from each other, but whether control lines are shared be-
tween them or not, and whether their operational requirements
and relations match or not. A collision is another conflict that
could be caused by improper parallelization of shuttling gates
that try to move two qubits toward the same site. Unlike more
popular qubit architectures based on superconducting or ion
traps, this form of operational constraint is unique. On one
hand, sharing control lines tackles the interconnect bottleneck,
on the other hand, it intrinsically constraints its parallelization
capabilities.

Finally, in other qubit architectures, it is possible to perform
different gate types in parallel. In the crossbar architecture,
this is not always the case. For example, applying single-qubit
gates and shuttling operations at the same time is not possible,
because, in the former, CL lines need to carry an alternating
current (AC) signal (see Fig. 4a) while the latter require DC
signals for raising or lowering the barriers.

B. Mapping of X or Y rotations on single qubits

As established in Sec. III, X or Y qubit rotations are im-
plemented semi-globally, meaning that either all qubits in odd
or even column parities will be rotated. However, during an
arbitrary cycle, not all qubits in odd or even columns should
be rotated. Note that the notion of a cycle refers to the basic
unit of time representing one step in a sequence of quantum
gates applied to a set of qubits, and it may contain multiple
gates. Therefore, to compensate for unwanted X or Y rota-
tions, one has to come up with a specific rotation mapping
scheme such that only the targeted qubits are rotated. In this
work, we have implemented the scheme introduced by [19].
We illustrate how it works in Fig. 4 in which we are interested
in rotating only qubit 5. This is another unique characteristic
of this architecture as additional routing is needed to perform
single-qubit rotations on specific qubits thus imposing new
challenges to the mapping process.

C. Routing of Qubits

We will now expand specifically on the qubit routing chal-
lenges:

Routing a qubit in the crossbar means that an electron (or
a hole, depending on the materials) is physically ”pushed”
to an empty site (i.e., an empty quantum dot). This mecha-
nism is similar to a quantum charged-coupled ion trap device

(QCCD) where ions are shuttled through a common chan-
nel from trap to trap, assuming sufficient destination ion trap
capacity [10, 40]. The QCCD architecture and the cross-
bar architecture fundamentally differ in topology, but both
require special algorithms or additional routing routines to
maintain control of qubit positions and avoid potential con-
flicts. The topology of the crossbar is essentially a 2D square
grid whereas a QCCD device resembles a bi-linear array with
an ”H” shape and in its corners ion traps are located – each
dedicated to a specific purpose during operation. The par-
ticular shape of a QCCD device creates different constraints
for moving qubits or parallelizing operations compared to the
crossbar architecture hence their mapping techniques are dif-
ferent even though both use shuttling.

Shuttling qubits on the crossbar does not only depend on
specific control signal requirements and available empty sites
but on other qubit positions as well. We illustrate this fact with
an example in Fig. 5, in which a vertical shuttle operation of
qubit 3 is indicated by a black arrow. In this case, the hori-
zontal barrier RL0 has to be lowered and the QL lines have
to be pulsed in certain voltage relations to allow for correct
shuttling of only qubit 3. However, an unwanted interaction
is caused between two other qubits in the same rows (qubits 2
and 4, circled), regardless of the QL2 and QL3 relation. Anal-
ogously, the same issue exists with a horizontal shuttle when
having two horizontally adjacent qubits in the same columns
where the shuttle takes place [19, 38]. Lastly, there can be a
blocked path conflict where there is no empty site for a qubit
to shuttle to.

Therefore, a dedicated qubit routing algorithm for the
crossbar architecture has to be developed to avoid collisions,
blocked paths, and unwanted interactions. Furthermore, even
if we had such a dedicated routing algorithm, the same con-
flicts have to be considered when rearranging gates in parallel
during scheduling. For that, control signals and qubit posi-
tions must be carefully monitored within the mapping process.
We provide a summary of unique architectural features and
operational constraints in Table I to clearly show these unique
constraints. From the description above, it is clear that both
the routing and scheduling processes need to jointly work in a
strategy to avoid conflicts and optimize for algorithm success
rate. This will be the main characteristic of SpinQ, presented
in the following section.

V. SPINQ – THE FIRST NATIVE COMPILATION
FRAMEWORK FOR SCALABLE SPIN-QUBIT

ARCHITECTURES

In this work, we present the first native compilation frame-
work – SpinQ – dedicated to compiling and mapping quan-
tum circuits onto scalable spin-qubit architectures, such as the
previously described crossbar. We have based our mapping
techniques on previous works from [19, 38] while improving
them from a scalability standpoint.

Fig. 6 shows the schematic structure of our framework. As
input, SpinQ accepts QASM format files that describe quan-
tum circuits (used as benchmarks) in a device-independent

7

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 QL0

QL1

QL2

QL3

(a) Step 1

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 < QL-1 < QL0

>

QL1

QL2

QL3

(b) Step 2

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 QL0

QL1

QL2

QL3

(c) Step 3

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 < QL0

>

QL1

QL2

QL3

(d) Step 4

FIG. 4: Single-qubit gate on qubit 5: (a) Step 1: AC signals through the CL lines induce magnetic fields on qubits 1, 5, 6, and 2
belonging to the even column parity, thus rotating their state. The direction and frequency of these signals determine which

columns (red or blue) and what rotation (X or Y) will be applied to the corresponding qubits [32, 61]. (b) Step 2: The targeted
qubit 5 is moved with a shuttle operation to a different column parity. For this operation, CL0 opens and closes as a barrier and

the relevant diagonal lines (QL) create potential gradients to only allow for qubit 5 to move (shuttle). Note that in order to
shuttle only qubit 5 all relevant QL lines need to have voltage relations with one another. (c) Step 3: An inverse rotation is

applied again in all even columns containing qubits 1, 6, and 2, similarly to Step 1. (d) Step 4: Target qubit 5 is moved with a
shuttle operation to the initial position.

8

TABLE I: Summary of unique architectural features and operational constraints of the crossbar architecture.

Parallelization Constraints Qubit Routing Constraints

Shared control lines

✓ Need for specialized parallelization algorithm to

prevent conflicts (collisions, blocked paths, unwanted

interactions)

✓ Limited due to strict simultaneous control signal

requirements satisfaction, cycle gate set and qubit

positioning (see Sec. 4)

✓ Need for specialized

algorithm to prevent

conflicts based on qubit

positions while respecting

all operational requirements

Semi-global single-qubit

gates

✓ Possible routing conflicts from specialized mapping

scheme (see Sec. 4.2)

✓ Only one rotation axis and angle at one column parity

allowed in the same cycle

✓ Need for specialized

mapping scheme with

conflict-free routing (see

Sec. 4.2)

Shuttling for movement

✓ Limited due to shared control constraints

✓ Need for specialized parallelization algorithm to avoid

conflicts

✓ Only two-qubit gates qubit gates and Z rotations

allowed in the same cycle

✓ Strict control and timing

constraints (see Sec. 3.1 and

4).

✓ Need for specialized

algorithm to prevent

conflicts during routing

Z rotations with shuttling

✓ Limited due to shared control constraints

✓ Need for specialized parallelization algorithm to avoid

conflicts

✓ Only shuttling and two-qubit gates allowed in the same

cycle

✓ The second time-sensitive shuttle needs to be

scheduled immediately after the first (see Sec. 3.3)

✓ Need for specialized

algorithm to prevent

conflicts during routing for

both shuttle operations (see

Sec. 3.3)

Features

of the architecture

Constraints

9

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 < QL0

<

QL1

QL2

><

QL3

FIG. 5: Example of a conflict: the operational requirements
of shuttling qubit 3 downwards have lowered the RL0 barrier
thus causing an unwanted interaction between qubits 2 and 4.

Additionally, QL2 and QL3 lines passing through these
qubits need to satisfy the 5th requirement described in Sec.

IV A and by doing so create a violation QL2 >< QL3. Note
that QL1 and QL2 are signaled in this example but do not
need to have a voltage relation requirement between them.

manner. To increase the flexibility of our framework, particu-
lar characteristics of the crossbar architecture can be defined
in an architectural configuration file. It can include custom
operations and their particular attributes such as gate dura-
tions, mathematical description of the unitary matrices, asso-
ciated gate fidelities, and architectural constraints, among oth-
ers. Moving on, the compiler consists of a series of passes to
decompose gates, route qubits, and schedule instructions. To
address the unique mapping constraints of the crossbar archi-
tecture, we have conceptualized and developed the Integrated
Strategy. The current implementation has room for improve-
ment (see Sec. VIII), however, our aim in this work is to study
the behavior of algorithms in order to form deep insights about
novel mapping techniques and spin-qubit architectures from a
scalability perspective. The compiler’s output is a QASM file
of the compiled circuit which is compatible to be executed on
the given architecture. Optionally, a verification step can take
place to ensure the compiled circuit meets all operational con-
straints of the architecture without any conflicts. This step is
implemented to be able to check the compatibility of archi-
tectural proposals that are not physically realized yet, such as
the crossbar [32] Finally, several performance metrics are
extracted from the compiled circuit to evaluate algorithm per-
formance. In the next sections, we will further discuss each of
the compiler elements.

A. Compilation passes

The compiler consists of the following steps:

1. Decomposition of quantum gates

Inputted QASM quantum circuits are first transformed into
a custom-made intermediate representation (IR) data format.
Quantum gates are then decomposed into gates native to the
architecture based on the decomposition sequences specified
in the architectural configuration file. These sequences are
reported in [38].

2. Physical initialization of spin qubits

A checkerboard pattern has been proposed [31] to allow
space for data and ancilla qubits to move [19, 38]. The physi-
cal space achieved between the qubits not only facilitates shut-
tling that avoids possible conflicts but also reduces crosstalk
and enables surface code error correction [32]. As we will dis-
cuss later, maintaining this placement pattern throughout a cir-
cuit execution plays an integral role in the Integrated Strategy.
Having said that, initializing qubits in alternative patterns and
changing them during execution is possible. This flexibility
offered by the spin-qubit technology can be particularly ad-
vantageous to highly specialized mapping techniques for the
crossbar as well as for other architectural proposals.

3. Virtual-to-physical qubit initial placement

The current version of SpinQ associates virtual qubits of
an algorithm with physical qubits in a one-to-one manner by
numbering the physical qubits from left to right and from bot-
tom to top as shown in Fig. 1. In the results sections VII and
VIII, we will provide insights on how common initial place-
ment algorithms can be adapted to improve the performance
of spin-qubit architectures, such as the crossbar.

4. Integrated Strategy for Routing and Scheduling

As explained in Sec. IV, both routing and scheduling tech-
niques must avoid conflicts. To do that, a specific strategy
needs to be conceptualized. There can be various strategies
with various performance and compilation time trade-offs.
The presented Integrated Strategy tilts towards minimizing
compilation time while having great prospects to be compet-
itive against other strategies that focus on algorithm perfor-
mance, as will be discussed in Sec. VIII.

To begin with, in the Integrated Strategy, the checker-
board pattern qubit placement [32], also known as ”idle-
configuration” in [19], should be maintained as much as pos-
sible. This provides at least two empty sites for every qubit to
move towards to.

10

Q
u

a
n

tu
m

 A
lg

o
ri

th
m

s

(B
en

ch
m

a
rk

s)

Compiler

G
at

e
D

ec
o

m
p

o
si

ti
o

n

In
it

ia
l

P
la

ce
m

en
t

In
te

g
ra

te
d

 S
tr

at
eg

y
(R

o
u

ti
n

g
 a

n
d
 S

ch
ed

u
li

n
g

)

Architectural Configuration

C
o

m
p

il
ed

 C
ir

cu
it

Metrics

Verification

Depth

Overhead

Gate Overhead

Estimated

Success

Probability

Compilation

time

Operational fidelities

Operational durations

Architectural constraints

Topology

FIG. 6: Overview of our SpinQ framework proposed in this paper.

When routing for two-qubit gates, we maintain the checker-
board pattern throughout the circuit execution with a conflict-
free shuttle-based SWAP technique [38] as shown in Fig. 7.
Note that this movement of qubits results in a gate overhead of
4 (i.e., 4 shuttle operations), but a depth overhead of 2, as these
two shuttle pairs can always be executed in parallel. To bring
one of the qubit operants to the appropriate position before the
two-qubit interaction, multiple shuttle-based SWAPs might be
performed. For that, we have implemented a shortest-path al-
gorithm based on the Manhattan distance between the qubit
operants. Once the two qubits are in the shortest position pos-
sible, the next step is a horizontal shuttle of one of them, ei-
ther to the left or to the right, after which the target and control
qubits are vertically adjacent, and the checkerboard pattern is
temporarily broken. Proceeding the

√
SWAP , a final shuttle

returns the qubit to the previous position, and the checker-
board pattern gets restored. Note that the aforementioned pro-
cess can be successfully executed only in that particular order,
otherwise, there can be a routing conflict. Overall, routing for
two-qubit gates requires at least one shuttle-based SWAP and
exactly two horizontal shuttles.

So far, we have only talked about routing for bringing to-
gether qubits for performing two-qubit gates. However, qubit
routing is also needed for shuttle-based Z rotations and might
be needed for X or Y rotations, as discussed in Sec. III C
and Sec. IV B, respectively. Mapping these two categories
of gates, therefore, should always respect operational require-
ments and avoid conflicts. This also means that the ”idle
configuration” should be maintained when routing for these
gates, as well. Thus, the second consideration of the Inte-
grated Strategy is the integration of single-qubit gate routing
within the scheduling stage, hence the name ”integrated”, in
order to prevent conflicts and optimize performance.

The Integrated Strategy continues with two passes. In the

first pass, the scheduler tries to parallelize X or Y gates in
an ideal manner, based on the gate dependencies [29], (ignor-
ing any potential conflicts) and Z gates individually. This is
no different than other single-qubit gate scheduling processes
proposed for other qubit architectures. However, it differs on
the second pass which integrates the routing procedures for
X, Y, and Z gates. The second pass iterates over each cy-
cle produced by the first pass. For each cycle, there are two
causes: (a) if no conflicts are detected when scheduling the
shuttle instructions of the mapping scheme described in Sec.
IV B, these instructions are inserted, each in a new cycle one
after the other (b) if conflict(s) are detected, the subset of the
problematic gate(s) is separated. Once the non-problematic
gate subset is scheduled according to case (a), the problem-
atic subset is recalled. This time it constitutes a conflict-free
cycle and is scheduled similarly to case (a). The Integrated
Strategy is described in Algorithm 1 and its time complexity
is calculated to be O(n), with n as the number of gates.

The key concept of this strategy is the ideal paralleliza-
tion in the first pass, which is aimed to relieve the increased
complexity of concurrently avoiding conflicts and optimizing.
Then, the second pass tries to satisfy the scheduling of the first
pass in the least cycles possible while completing the mapping
steps of all gates (e.g., applying the mapping scheme for X or
Y gates or adding shuttles for Z rotations, etc.). Overall, this
first implementation of our Integrated Strategy does not par-
allelize gates of different types in the same cycle, and thus
each cycle is dedicated to one instruction type. Additionally,
it leaves room for improvement while maintaining its O(n)
time complexity, as discussed in Sec. VIII A. Fortunately,
the strategy described above and suggested extensions in Sec.
VIII A can be adapted to a real setup. As explained in Sec.
IV, a fabricated crossbar device will most likely have material
imperfections, thus requiring pulse calibration per site. As

11
14 Nikiforos Paraskevopoulos, Fabio Sebastiano, Carmen G. Almudever, and Sebastian Feld

Algorithm 1 Integrated Strategy
Input: Intermediate representation ir_d of decomposed circuit
Output: Intermediate representation ir_c of compiled circuit

1: Initialize ir_r, ir_c_1, ir_c
2: for gate in ir_d do ⊲ The shuttle-based SWAPs. See Fig. 7
3: if type(gate) = two-qubit gate and qubits(gate) not neighbors then
4: ir_r← new cycles with shuttle operations based on the shuttle-based SWAP process ⊲ See Sec. 5.1.4
5: ir_r← new cycle for shuttle that makes qubits(gate) vertically adjacent
6: ir_r← new cycle for gate
7: ir_r← new cycle for shuttle that restores the checkerboard pattern
8: else
9: ir_r← new cycle for gate
10: end if
11: end for
12: for gate in ir_r do ⊲ First pass
13: if type(gate) = z_rotation then
14: ir_c_1← new cycle with gate
15: else if type(gate) = shuttle of shuttle-based SWAP then ⊲ See Fig. 7 and Sec. 5.1.4
16: if one of the shuttle pair in ir_c_1[cycle_index] then
17: ir_c_1[cycle_index]← add gate
18: else
19: ir_c_1← new cycle with gate
20: end if
21: else if type(gate) = two-qubit gate then
22: ir_c_1← new cycle with gate
23: else if type(gate) = X or Y rotation then
24: condition← is there a cycle_index in ir_r with the same rotation on qubits belonging in the same column

parity as gate and satisfy gate dependencies?
25: if condition = True then
26: ir_c_1[cycle_index]← add gate
27: else
28: ir_c_1← new cycle with gate
29: end if
30: end if
31: end for
32: for gates in ir_c_1 do ⊲ Second pass
33: if type(gates) = shuttle then
34: ir_c← new cycle with gates
35: else if type(gates) = two-qubit gates then
36: ir_c← new cycle with gates
37: else if type(gates) = z_rotation then
38: shuttle_direction, shuttle_opposite_direction← left or right (depending on constraints)
39: ir_c← new cycle with shuttle_direction
40: ir_c← new cycle with shuttle_opposite_direction
41: else if type(gates) = X or Y rotation then
42: non-problematic gate set, problematic gate set← check if mapping scheme of Sec. 4.2 is applicable
43: ir_c← new cycles for each gate of the mapping scheme for the non-problematic gate set
44: if problematic gate set ≠ Null then: ir_c← new cycles for each gate of the mapping scheme
45: end if
46: end for

Manuscript submitted to ACM

pointed out by [19, 26], pulsing control lines prematurely to
account for material variations could cause an unwanted inter-
action. Since, however, the Integrated Strategy (or an exten-
sion thereof) exclusively schedules gates of the same type in

each cycle, fine-tuning pulses within is possible before mov-
ing to the next cycle.

12

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 > QL0

<

QL1

QL2

QL3

(a) Horizontal shuttling

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 < QL0

>

QL1

<

QL2

>

QL3

(b) Vertical shuttling

FIG. 7: Conflict-free shuttle-based SWAP for two-qubit gate
routing: With this technique, two diagonally neighboring

qubits exchange their position by consecutively performing
two horizontal and two vertical shuttles. Each pair can be

performed in parallel.

B. Performance metrics

We will now introduce the metrics used in this work to eval-
uate the performance of SpinQ when mapping different algo-
rithms on the crossbar architecture.

1. Gate overhead

One commonly used metric to evaluate the performance of
a mapper and its underlying architecture is gate overhead. We
calculate it as the percentage relation of additional gates in-
serted by the mapper to the number of gates after decompo-
sition. We do not count decomposition gate overhead as it is
always proportional to the number of gates. Getting a clear
view of the various sources of gate overhead will help to form
useful insights. Therefore, the main sources of gate overhead
are the following:

• 4 additional shuttle instructions per shuttle-based
SWAP for two-qubit gates

• At least 3 additional instructions for each X or Y rota-
tion gate due to the semi-global rotation scheme (Sec.
IV B)

• 2 additional shuttle instructions for each two-qubit gate

• 1 additional shuttle operation for each Z rotation gate

Note that, unlike superconducting architectures where gate
overhead results from routing instructions (i.e., SWAP gates)
for performing two-qubit gates, in the crossbar, it can be
caused by single-qubit gates as well.

2. Depth overhead

Another commonly used metric to evaluate the perfor-
mance of a mapper and its underlying architecture is the depth
overhead of a circuit. The depth of a circuit is equal to the
minimum number of time steps of a circuit when executing
gates in parallel [5, 22, 29, 52, 69]. Note that the initial circuit
depth is calculated after scheduling the circuit only by its gate
dependencies, meaning without any architectural constraints.
We calculate depth overhead as the percentage relation of ad-
ditional depth produced by the mapper to the circuit depth af-
ter decomposition. The main sources of depth overhead are:

• At least 3 additional cycles for each X or Y rotation
gate due to the semi-global rotation scheme (Sec. IV B)

• 2 additional cycles per shuttle-based SWAP for two-
qubit gates

• 2 additional cycles for each two-qubit gate

• 1 additional cycle for each Z rotation gate

13

3. Estimated Success Probability

A key metric to assess the performance not only of the com-
piler but in general of a quantum computing system is the al-
gorithm’s success rate. From an experimental point of view,
the algorithm success rate is calculated by executing the al-
gorithm several times on a given (real) quantum processor
and creating the distribution of successful executions, based
on the expected measurement. An alternative way to calculate
the success rate without the need for a real quantum proces-
sor is by classical simulation. Recently, hybrid Schrodinger-
Feynman simulations have been used efficiently, but only for
shallow circuits [11, 36, 43]. Another method uses tensor net-
works and has been shown as a more scalable technique for
IBM’s Eagle or Google’s Sycamore chips, but suffers from
exponential time complexity on more connected architectures
or circuits larger in both depth and width [43, 56].

However, there is a need for a more efficient method able
to approximate the success rate of much larger circuits. One
of the most commonly used methods is considering the fi-
nal compiled circuit and particular architectural configura-
tions given as input at the beginning of compilation [49, 58].
The estimated success probability (ESP) of an algorithm can
be calculated as:

ESP =
∏
i

∏
j

gate fidelityi,j (1)

where i represents the ith time step and j the jth gate in the
ith time step.

This method is less complex in both time and space, but not
as accurate, compared to classical simulations. From equa-
tion 1 it is evident that the time complexity of ESP only in-
creases linearly with the number of gates in a circuit while
space complexity remains constant, contrary to the aforemen-
tioned methods. To expand it, we have considered a per-type
and per-location variability of gate fidelities based on a nor-
mal distribution. This implies that, for instance, a two-qubit
gate (e.g.,

√
SWAP) will have lower fidelity than a single-

qubit gate and that the actual fidelity will depend on the exact
location in the topology. These expansions constitute a more
realistic, i.e., closer to a real device, estimation of circuit suc-
cess probability:

ESP =
∏
i

∏
j

gate fidelityx,yi,j (2)

where i represents the ith time step, j the jth gate in the ith
time step and and x, y are the physical qubit(s) coordinates.

4. Compilation time

In this work, we are not only interested in building map-
ping techniques themselves but also in their scalability po-
tential. This necessitates that our proposed SpinQ strategy
should remain efficient for a variety of quantum circuit pa-
rameters (e.g., number of qubits or percentage of two-qubit

gates). By measuring the compilation time for mapping quan-
tum circuits, we get a reference of the scalability of our im-
plementations.

C. Verification

A verification tool is important to this work due to the lack
of a working device for real-system testing. It is used on de-
mand in the initial stage of development to debug and verify
current or future mapping approaches. The tool searches for
mismatches between the qubits’ position history stored during
the compilation and all shuttling sequences. This ensures that
all routing instructions added in the final compiled circuit will
shuttle the right qubits in the correct places without conflicts,
and vice versa. This is critical for an architecture such as this
one where both the routing and scheduling can produce con-
flicts. It also checks for operational constraint violations and
potential conflicts caused by those. Finally, and after the pre-
vious checks, a state vector simulation takes place between the
main stages of the compiler with the use of Qiskit Aer library
[25]. Specifically, it compares the probability distributions
produced by the qasm simulator backend between the initial
circuit, the decomposed, the routed for two-qubits gates, and
the one processed by the Integrated Strategy. This ensures
that the mapping techniques and the compilation strategies
used do not change the outcome of the algorithm. However,
it should be noted that in non-application-based algorithms
(e.g., randomly generated) their state distribution probability
can be anything and will suffer a change just from the decom-
position stage compared to application-based algorithms. For
this reason, this last verification stage can not be used for all
benchmarks. Additionally, this verification can not be used for
more than 30 qubits due to exceeded memory requirements.

VI. EXPERIMENTAL METHODOLOGY

A. Benchmarks

We have generated 3, 630 random uniform algorithms [53]
containing X, Y, Z and

√
SWAP gates (all native to the cross-

bar architecture) to be used as benchmarks. With this set, we
can vary on demand the number of gates, number of qubits,
and percentage of two-qubit gates. For example, a random
uniform benchmark with 50% of two-qubit gates relative to
single-qubit gates will have 33.33% of X or Y gates, 33.33%
of Z gates, and 33.33% of two-qubit gates. Generating syn-
thetic circuits provides a well-controlled benchmark collec-
tion from which we can better understand results and form
insights. Moreover, we use real benchmarks from the RevLib
library in a [5 - 1400] gate range [64]. Quantum circuits from
this library are often used in related quantum circuit compila-
tion works [28, 39, 69] and it consists of quantum algorithms
with parameters ranging from 3 to 16 qubits, 18.75% to 100%
of two-qubit gates and 5 to 512, 064 gates. Finally, we also
consider quantum circuits from the Qlib library [33] which
contains real quantum algorithms in increasing sizes.

14

B. Benchmarks characterization

When it comes to performance evaluation, it is important
to not only consider properties of the architecture but also
the characteristics of quantum circuits. The simplest and
most commonly [4] used parameters of quantum circuits are
number of qubits, number of gates, and absolute or relative
(i.e., percentage) number of two-qubit gates. However, only
these three characteristics can be misleading for two reasons.
Firstly, two benchmarks, for instance, could have the same
parameter values but heavily differ in the circuit’s structure
[4]. When one of them has all pairs of qubits interact with
each other, it will require more routing than the other, which
might have the same number of interactions, but with only one
pair of qubits interacting. The structure of a quantum circuit
is derived from its qubit interaction graph (QIG) which rep-
resents the number and distribution of interactions (i.e., two-
qubit gates) between virtual qubits. Several internal circuit
parameters can be extracted from the QIG that better distill
its properties [4]. Having said that, we analyze QIGs mainly
visually, as this is still an active field of research [4]. We sup-
port these conclusions by extracting the average degree [4]
or program communication [57] of the QIG, which represents
the average number of edges that are incident to (i.e., con-
nected to) a node. In simple terms, it expresses the level of
”connectedness” of a graph. We can thus make concrete con-
clusions and form insights from such a QIG assessment. The
second reason is that initial gates can be decomposed to na-
tively supported instructions for the underlying architecture.
This means that the number of gates and ratios (percentages)
between each gate type can differ from the initial set to the
decomposed set, meaning that evaluations can become more
accurate when accounting for the decomposed set.

C. Experimental Setup

We run SpinQ on a laptop with an Intel(R) Core(TM) i7-
3610QM CPU @ 3.20GHz and 16GB DDR3 memory. SpinQ
is written in Python 3.9.6 version.

VII. EVALUATION AND ANALYSIS

In this Section, we present an in-depth performance anal-
ysis of SpinQ when mapping a broad range of quantum al-
gorithms on the crossbar architecture. We then form architec-
tural and mapping insights for each performance metric. More
specifically, gate overhead and corresponding insights are pre-
sented in Sec. VII A and VII B, depth overhead in Sec. VII C
and VII D, and ESP in Sec. VII E and VII F. Finally, we show
results regarding the compilation time of SpinQ in Sec. VII G
to asses its scalability capability.

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

5

10

15
20

25 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

0

20

40

60

80

100

MAX=1114.28, AVG=473.69, MED=423.23, MIN=124.53
Gate Overhead [%]

200

400

600

800

1000

(a)

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

30
40

50
60

70
80

90
100 2-

Q
Ga

te
 P

er
ce

nt
ag

e
(b

ef
or

e
de

co
m

p.
)

0

20

40

60

80

100

MAX=2416.29, AVG=971.93, MED=891.83, MIN=65.03
Gate Overhead [%]

500

1000

1500

2000

(b)

FIG. 8: Resulting gate overhead when 3, 630 random
uniform quantum algorithms are mapped onto the crossbar

architecture. The three axes correspond to benchmark
characteristics, namely, the number of gates [50 - 20,000],
number of qubits [3 - 99] (split into two subfigures), and

two-qubit gate percentage [0 – 100].

A. Gate Overhead

To start with, we analyze the gate overhead trend in a wide
range of quantum algorithms. In Fig. 8 we have mapped ran-
dom uniform circuits on the crossbar architecture. Focusing
on Fig. 8a, which reaches up to 25 qubits, we observe that as
we go from low to high number of qubits and from low to high

15

Gates (before decomp.)

0 200 400 600 800 10001200
1400

Qub
its

4
6

8
10

12
14

16 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

20
30
40
50
60
70
80
90
100

MAX=306.6, AVG=210.59, MED=205.72, MIN=167.0
Gate Overhead [%]

180

200

220

240

260

280

300

(a)

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

20
40

60
80

100 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

25

30

35

40

45

50

MAX=387.35, AVG=286.29, MED=272.05, MIN=179.87
Gate Overhead [%]

200

225

250

275

300

325

350

375

(b)

FIG. 9: (a) Resulting gate overhead when mapping quantum
algorithms from the RevLib library onto the crossbar
architecture. The three axes correspond to benchmark

characteristics, namely, number of gates [5 - 1400], number
of qubits [3 - 16], and two-qubit gate percentage [18.75 -

100]. RevLib algorithms consist of reversible [3] quantum
algorithms including, but not limited to, arithmetic and

encoding functions [65]. (b) Resulting gate overhead when
mapping Grover’s (bottom line of data points) and QFT (top

line of data points) quantum algorithms onto the crossbar
architecture. The three axes correspond to benchmark
characteristics, namely, number of gates [52 - 20050],

number of qubits [5 - 100] and two-qubit gate percentage
[22.86 - 49.63].

Gates (before decomp.)

0 50 100 150 200 250 300 350

Qub
its

0
20

40
60

80
100

120 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

50

55

60

65

70

MAX=283.65, AVG=261.78, MED=263.04, MIN=187.88
Gate Overhead [%]

200

220

240

260

280

FIG. 10: Resulting gate overhead when mapping the Cuccaro
Adder (top line of data points) and the Vbe Adder (bottom)
quantum algorithms from the Qlib library onto the crossbar

architecture. The three axes correspond to benchmark
characteristics, namely, number of gates [4 - 385], number of
qubits [4 - 130] and two-qubit gate percentage [50 - 71.43].

percentage of two-qubit gates, the gate overhead increases
(from blue to red color). More precisely, higher qubit counts
imply larger crossbar topologies, thus potentially longer rout-
ing distances, i.e., more shuttle-based SWAPs. Furthermore,
higher percentages of two-qubit gates potentially lead to more
routing of qubits. These observations verify that the main
source of gate overhead is indeed the routing of qubits for
two-qubit gates (see Sec. V A). We also notice that the num-
ber of gates has a small but noticeable influence on the gate
overhead. To further observe the trend when increasing the
number of qubits, we changed the range of qubits from [3
– 25] to [25 – 99] in Fig. 8b. We see once more that the
gate overhead increases as we go from low to high number
of qubits and percentage of two-qubit gates. As expected, the
gate overhead, shown on the color bars, of the [25 – 99] qubit
range is on average 102.49% higher than that of the [3 – 25]
qubit range because of the increased routing distances.

So far, the above random algorithms were generated to have
control of different circuit parameters (i.e., number of qubits
and gates and two-qubit gate percentage) in a way to broadly
cover the parameter space and up to certain boundaries. How-
ever, they might not be representative of real algorithms from
a circuit structure point of view (e.g., how two-qubit gates
are distributed among qubits or the degree of operation par-
allelism). Therefore, we then mapped real algorithms from
the RevLib [65] and Qlib [33] libraries, Grover and QFT re-
sulting in the gate overhead shown in Fig. 9, Fig. 10, and Fig.
11. In Fig. 9 (a) we can observe that benchmarks “cluster”
together in similar colors, namely shades of blue, green, yel-
low, and red. This implies that similar benchmarks, meaning

16

Cuccaro MultiplierVbe Adder

Cuccaro Adder

FIG. 11: Resulitng gate overhead when the Vbe Adder, Cuccaro Adder, and Cuccaro Multiplier from the Qlib library are
mapped onto the crossbar architecture alongside their Quantum Interaction Graphs (QIG) consisting of 40, 38, and 21 qubits,

respectively. The y-axis represents the two-qubit gate percentage and the x-axis the number of qubits. We see gate overhead to
be influenced not only by the number of qubits and two-qubit gate percentage but also by the qubit interaction distribution.

with similar parameters and structure, have similar gate over-
head. Note that whereas random uniform algorithms have the
same circuit structure because of the way they are generated,
RevLib algorithms present different structural parameters not
only compared to the randomly generated circuits but also be-
tween them. For this reason, correlations such as the higher
the number of qubits and two-qubit gate percentage gets, the
higher the gate overhead, are not as evident as for the random
circuits. Similarly, in Fig. 9 (b) we have executed Grover’s
and QFT algorithms. With these simulations, we also want to
perform a scalability analysis of algorithms, which is not pos-
sible with RevLib circuits. From a first observation, it seems
that QFT (top dots) produces higher gate overhead due to the
higher two-qubit gate percentage compared to Grover’s algo-
rithm. However, once again, this can not be conclusive as they
scale in different rates of benchmark characteristics.

To further analyze how structural circuit parameters impact
the gate overhead, we mapped algorithms with similar rates
of number of gates, qubits, percentage of two-qubit gates and
QIGs. First, note in Fig. 10 that the Cuccaro Adder (top
line in Fig. 10) has a small drop in the percentage of two-
qubit gates that goes from 71.43% to 66.75% when increas-
ing in size (number of qubits) whereas the Vbe Adder (bot-
tom line) maintains a lower percentage of 50% for the same

qubit increase. One can immediately observe that the Cuc-
caro Adder shows a higher gate overhead up to 284% due to
the higher two-qubit gate percentage compared to the 271%
of Vbe Adder, matching the conclusions made for Fig. 8.
However, as we emphasized above, in the case of real algo-
rithms comparisons can only be properly made when looking
not only at their circuit parameters but also at their more struc-
tural ones such as the QIG.

For this reason, in Fig. 11 we show the derived QIGs from
Vbe Adder’s 40-qubit circuit, Cuccaro Adder’s 38-qubit cir-
cuit and Cuccaro Multiplier’s 21-qubit circuit alongside their
gate overhead in relation to the number of qubits and two-
qubit gate percentage. In these QIGs, nodes correspond to
qubits and edges to qubit interactions, i.e., two-qubit gates.
The particular QIGs size selection was made to easily show
their structure. We immediately observe similarities in the
QIGs of the two Adders as the distribution of interactions is
almost identical. More specifically, we see 2 to 3 interactions
per qubit on average, with others close to their logical qubit
number. Such a visual observation can be also quantified with
the average QIG degree, which is calculated to be 3 for both.
It is not surprising, therefore, that the higher gate overhead
of Cuccaro Adder is indeed due to the higher percentage of
two-qubit gates, compared to Vbe Adder.

17

However, note that the Cuccaro Multiplier has the highest
gate overhead of all three (309%) despite having a lower two-
qubit gate percentage than the Cuccaro Adder. Looking at its
much more connected QIG implies a denser qubit interaction
distribution, compared to the others. Its average degree is de-
termined to be 8; higher than that of the two other algorithms.
Because of this, more routing is needed to connect nearly all
qubits across the topology.

B. Insights from gate overhead analysis

Accounting for the routing constraints, as discussed in Sec.
IV, mapping on the crossbar architecture is not a trivial task.
In fact, we have emphasized the importance of conceptu-
alizing and developing new routing techniques that specif-
ically can address the unique mapping challenges of spin-
qubit architectures. More specifically, with the adoption of
the checkerboard pattern combined with the shuttle-based
SWAPs, we can provide a scalable solution of qubit routing
for two-qubit gates. Additionally, the complexity only scales
with the number of two-qubit gates, therefore being a viable
solution for large-scale implementation. However, this tech-
nique makes two-qubit gate routing the highest source of gate
overhead and it can dramatically increase it with higher qubit
counts and a higher percentage of two-qubit gates (see Fig. 8
and 10). Moreover, in Fig. 11 we saw that gate overhead can
also be increased by a more connected QIG even though other
circuit parameter values are comparatively lower. This shows
the importance of basing circuit performance evaluation not
only on simple circuit parameters but also on other ‘hidden’
structural characteristics such as the qubit interaction distribu-
tion.

Having said that, the second biggest source of gate over-
head originates from X or Y qubit rotations. This is due
to the unprecedented semi-global rotation scheme. As men-
tioned in Sec. IV B, this first time that single-qubit gate map-
ping requires additional routing instructions (i.e., produce gate
overhead) compared to other qubit architectures. In compar-
ison, neutral-atom architecture [17, 30, 45, 51, 66] demon-
strated small algorithms execution by constructing local Rϕ

rotations at an arbitrary angle or axis by synthesizing a local
Rz in between two global Rxy . This is a similar concept to
the semi-global rotation mapping scheme of the crossbar ar-
chitecture but it differs in two key aspects. Firstly, one has
the ability of global rotation whereas the other is only semi-
global. This could be an advantage or a disadvantage in terms
of performance depending on the algorithm at hand and on the
mapping techniques used. Secondly and more importantly,
the crossbar architecture demands a more constrained scheme
that necessitates routing operations. These operations must be
executed meticulously to address the distinct architectural re-
strictions, such as ensuring the availability of empty sites for
qubit movement, adhering to the shuttling signal constraints,
and diligently sidestepping any potential conflicts. Therefore,
this feature is exclusive and raises unique mapping challenges
for spin-qubit architectures and calls for careful considera-
tions during the compilation process, as explained in Sec. IV.

The previous two facts inspire novel mapping techniques
for the crossbar architecture and potentially for other spin-
qubit architectures with similar characteristics that can in-
crease performance, namely:

1. Developing a routing solution dedicated to accounting
for potential conflicts and constraints can reduce the
gate overhead resulting from the shuttle-based SWAPs.
Such a generalized routing algorithm could also include
SWAP interactions (two consecutive

√
SWAP s) and

CPHASE interactions. For instance, there can be sce-
narios that choosing a more noisy two-qubit interaction,
for the purpose of avoiding an upcoming conflict, could
result in higher ESP. Additionally, such a heuristic algo-
rithm can allow multiple control or target qubits ([29])
to be shuttled around the topology enabling for paral-
lelization of many two-qubit gates while avoiding high
error variabilities in the topology [55]. However, such
a solution must be implemented with the complexity
in mind such that it will not make it unviable on large
scale.

2. A more efficient routing algorithm for single-qubit
gates can significantly reduce the gate overhead, such
that a specific rotation scheme to rotate targeted qubits
is used less often. Such an algorithm can route qubits to
the appropriate odd or even columns before the execu-
tion of single-qubit gates eliminating the need to apply
any scheme afterward, such as the one in Sec. IV B.

3. Combining the previous two points, there can be a uni-
fied algorithm implementing both. In such an algo-
rithm, upcoming routing for single-qubit gates is ac-
counted for when routing for two-qubit gates, and vice
versa.

4. Finally, an initial placement algorithm can take into ac-
count not only two-qubit gates but single-qubit gates as
well. Since the positions of qubits influence the gate
overhead resulting from single-qubit gate mapping (due
to the semi-global rotation scheme), an extension of an
initial placement algorithm accounting for single-qubit
gates can further reduce the gate overhead.

Last but not least, we have emphasized that to concretely
evaluate results, there has to be sufficient characterization of
benchmarks, especially when evaluating novel architectures
and mapping techniques. In our analysis, we did not rely only
on simple benchmark parameters, such as the percentage of
two-qubit gates, but also on the internal structure of bench-
marks using the Quantum Interaction Graph (QIG).

C. Depth Overhead

This time, we analyze in Fig. 12, the depth overhead when
mapping onto the crossbar the same random uniform bench-
mark set as in Fig. 8. It can be observed that the trend (colors)
of the depth overhead changes for different ranges of number
of qubits as shown in the two subfigures. Knowing that the

18

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

5

10

15
20

25 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

0

20

40

60

80

100

MAX=6290.98, AVG=2217.92, MED=2132.74, MIN=262.0
Depth Overhead [%]

1000

2000

3000

4000

5000

6000

(a)

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

30
40

50
60

70
80

90
100 2-

Q
Ga

te
 P

er
ce

nt
ag

e
(b

ef
or

e
de

co
m

p.
)

0

20

40

60

80

100

MAX=27786.21, AVG=12864.81, MED=12362.91, MIN=2250.0
Depth Overhead [%]

5000

10000

15000

20000

25000

(b)

FIG. 12: Resulting depth overhead when 3, 630 random
uniform quantum algorithms are mapped onto the crossbar

architecture. The three axes correspond to benchmark
characteristics, namely, number of gates [50 - 20,000],

number of qubits [3 - 99] (split into two subfigures), and
two-qubit gate percentage [0% – 100%].

main source of depth overhead originates from X or Y gates
(at least 3 additional cycles), we expect the depth overhead to
become higher in lower regions of two-qubit gate percentage.
That is observed in Fig. 12a, where the number of qubits goes
up to 25. However, moving on to Fig. 12b, we see that this
trend changes. Now, due to the higher number of qubits, rout-
ing distances have increased, thus routing for two-qubit gates
dominates the depth overhead. This is apparent by its increase

Gates (before decomp.)

0 50 100 150 200 250 300 350

Qub
its

0
20

40
60

80
100

120 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

67

68

69

70

71

MAX=585.94, AVG=562.74, MED=570.11, MIN=450.0
Depth Overhead [%]

460

480

500

520

540

560

580

FIG. 13: Resulting depth overhead when Cuccaro Adder
from the Qlib library is mapped onto the crossbar

architecture. The three axes correspond to benchmark
characteristics, namely, number of gates [4 - 385], number of

qubits [4 - 130] and two-qubit gate percentage [66.75 -
71.43].

(from blue to red color) as we go from lower qubit counts to
higher qubit counts, and as we go from low to higher percent-
age of two-qubit gates. Finally, this fact is also apparent in
the absolute values of depth overhead of the two subfigures.
Note also that the number of gates has a slight influence on
the depth overhead, but it is not as relevant as the other char-
acteristics discussed above.

Moving on, Fig. 13 shows the depth overhead of a Cuc-
caro Adder when scaling it up from 4 to 130 qubits. In the
range of 4 to 20 qubits, we observe an increase in depth over-
head as the percentage of two-qubit gates decreases, which
aligns with the remarks about the main source of depth over-
head (i.e., the X or Y gates). Then, for an increasing number
of qubits (from 20 qubits on) and at an almost constant two-
qubit gate percentage (67%), the depth overhead increases at
a slower rate. Here we conclude, once again, that two-qubit
gate routing starts to dominate the depth overhead as routing
distances become larger.

In most previous works, the amount of two-qubit gates is
the main circuit characteristic to anticipate how much qubit
routing will be needed for a specific quantum algorithm and
therefore the major and only source of gate/depth overhead.
However, in the crossbar architecture, and potentially in other
spin-qubit crossbar designs, single-qubit gates can also con-
tribute to this overhead as discussed before. It is then impor-
tant to have a closer look at the X or Y rotation gate per-
centage and further analyze how it impacts the depth over-
head. Additionally, after the gate decomposition step, the per-
centages and ratios between all gate types are changed. To
illustrate this, imagine a quantum circuit that originally con-

19

0 20 40 60 80 100 120
Qubits

45.25

45.50

45.75

46.00

46.25

46.50

46.75

X/
Y

Ga
te

 P
er

ce
nt

ag
e

(a
fte

r d
ec

om
p.

)
Depth Overhead [%]

450

500

550

600

650

700

750

(a)

Gates (after decomp.)

0 10000200003000040000500006000070000

Qub
its

20
40

60
80

100 Z
Ga

te
 P

er
ce

nt
ag

e
(a

fte
r d

ec
om

p.
)

26
28
30
32
34
36
38

MAX=465.99, AVG=388.7, MED=398.79, MIN=232.03
Depth Overhead [%]

250

300

350

400

450

(b)

FIG. 14: (a) Resulting depth overhead when Cuccaro Adder
(bottom line of data points) and Vbe Adder (top) from the

Qlib library are mapped onto the crossbar architecture. The
y-axis represents the X or Y gate percentage after

decomposition, and the x-axis the number of qubits. (b)
Resulting depth overhead when mapping Grover’s (top line

of data points) and QFT (bottom line of data points) quantum
algorithms onto the crossbar architecture. The three axes

correspond to benchmark characteristics after decomposition,
namely, number of gates [52 - 20050], number of qubits [5 -

100], and Z gate percentage [25.97 - 38.29].

sists of a low number of CNOT gates and no Z gates. After
the decomposition to gates supported by the crossbar archi-
tecture, the percentage of Z rotation gates will increase, and
consequently, the two-qubit gate percentage will decrease, as
CNOT gates are decomposed as Ry(π2), two

√
SWAP , S,

S†, Ry(−π
2). Thus, it is relevant to consider this gate percent-

age change in our analysis as ultimately the executable circuit
will only consist of native gates. To summarize, as overhead
comes from mapping different types of gates on the crossbar,
individually distinguishing between them, in particular after
decomposition, can increase the accuracy of our evaluations.

To illustrate the previous point, in Fig. 14 (a) we show the
depth overhead of the Cuccaro Adder (upper dots) and the
Vbe Adder (lower dots) with the same ranges as in Fig. 10.
Note that the y-axis corresponds to the percentage of X or Y
rotation gates after decomposition. From this new perspective,
we clearly see their difference in actual (i.e., executed by the
architecture) X or Y rotation gate percentage. On average
the depth overhead of the Vbe adder is 196% higher than the
Cuccaro Adder for the same range of qubits. As explained
before, the highest source of depth overhead comes from X
or Y rotations gates, which explains the large depth overhead
difference between those two algorithms.

In constant, in Fig. 14 (b), we show the depth overhead after
decomposition of the same algorithms with the same ranges as
in Fig. 9 (b). This time, Grover’s algorithm (top dots) shows
on average 113% higher gate overhead than of QFT algorithm
(lower dots). Note here, these two algorithms are plotted in
relation to their Z gate percentage in the z-axis. Thus, their
performance variations can be partially attributed to their dif-
ferences in Z gate percentage, though this cannot be a defini-
tive explanation. As previously stated, drawing a direct com-
parison is less straightforward due to disparities in algorithm
structure and differing rates of benchmark characteristics.

D. Insights from depth overhead analysis

From the previous analysis, we can observe that trends can
change based on the parameter ranges of benchmarks. This
is because different sources of depth overhead contribute with
different rates based on the number of qubits (i.e., crossbar
size). More specifically, the overhead contribution resulting
from mapping X/Y gates was higher up to a certain number
of qubits after which was exceeded by the contribution rate of
two-qubit gates. We saw that exceeding a threshold of more
than 20 qubits increases the depth overhead at a steadier pace,
which specifically favored scalability for Cuccaro Adder in
Fig. 13 and 14. It is expected, however, that with different
algorithms, there will be different trends. With such observa-
tions, we stress the importance of distinguishing between all
gate types and especially after decomposition to better under-
stand the performance impact of mapping. With that knowl-
edge, we can create better mapping techniques and/or make
an informed selection of algorithms to execute.

As mentioned before, the fact that gate overhead and rout-
ing can result from mapping single-qubit gates is unprece-
dented. Furthermore, we notice that mapping both, single-

20

and two-qubit gates, requires additional shuttles and they pro-
duce the highest gate and depth overhead. Therefore, novel
mapping techniques minimizing all qubit movements (shut-
tles) can increase performance substantially, such as the ones
discussed in Sec. VII B. From an architectural point of view,
since the shuttle operation is so relevant, there have to be as
few operational constraints as possible when mapping them.

Finally, the current SpinQ version does not parallelize gates
that are shuttle-based. These are the resulting shuttle gates
from the shuttle-based SWAP, mapping of single-qubit gates,
and the two shuttling operations to facilitate a Z rotation. An
improved version can involve a constraint and conflict check
for any shuttle-based type gate to reach the full paralleliza-
tion potential of the second pass, without increasing the time
complexity.

E. Estimated Success Probability

In this section, we will show how the success probability of
an algorithm drops after mapping it to the crossbar architec-
ture. Before we continue, we have to mention that even with
operational fidelities as high as 99.99% for single-qubit gates
and shuttles (as suggested in [32]) and 99.98% for

√
SWAP s,

the ESP drops drastically to 0 in most algorithms with a high
number of gates. For that reason, we only focused on the
Bernstein-Vazirani algorithm as it has a low percentage of
two-qubit gates (usually there are only one or two CNOT s),
therefore errors are mostly introduced by single-qubit gates.

0 100 200 300 400 500

0

20

40

60

80

100

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

(E
SP

)

0 50 100 150 200 250
ESP
Original ESP

Gates (before mapping)

Gates (after mapping)

FIG. 15: Estimated success probability (ESP) before and
after mapping of Bernstein-Vazirani algorithm from 2 to 129

qubits.

Fig. 15 shows the ESP of the Bernstein-Vazirani algorithm

when scaling it from 2 to 129 qubits. The red line “Origi-
nal ESP” refers to the ESP before mapping, and the blue line
”ESP” refers to ESP after mapping. We observe a sharp ESP
decrease approaching 10% for 267 gates after mapping with
a slope rate of −0.6 which is caused by the increased num-
ber of gates. For 529 gates after mapping we obtained a 0%
ESP. Another reason for the ESP decrease is the semi-global
single-qubit rotation; for each of the X or Y gates contained
in the circuit after decomposition, all qubits in odd or even
columns are rotated even the ones that are not targeted for ro-
tation. This is further explained in Sec. IV B.

F. Insights from Estimated Success Probability analysis

We observed a rapid decline in ESP in a minimally con-
nected algorithm (mostly X or Y rotation gates), even though
our equation did not include decoherence-induced errors [19,
26]. Although simple, equation 2, is approximating a worse-
case-scenario algorithm success rate. The main reason for
this decrease is the resulting overhead when implementing
single-qubit gates on specific qubits given the semi-global ro-
tation scheme. Note that in this case, all qubits in either col-
umn parities are rotated thus each contributing to this ESP
drop. Therefore, it is essential to determine which algorithms
could take advantage of the semi-global control and/or de-
velop architecture-specific mapping techniques to minimize
the need for a scheme, as suggested in Sec. VII B.

There are other sources of noise on real NISQ quantum
devices that impact algorithm execution. Fortunately, it is
expected that processors will gradually become more robust
with better fabrication tolerances and error-mitigation tech-
niques that will enable quantum error correction protocols. It
remains challenging, however, to accurately simulate errors in
large-scale devices to derive the algorithm’s success probabil-
ity.

G. Compilation time

Finally, we measure the compilation time of our solution
to evaluate its scalability. The compilation time of SpinQ In-
tegrated Strategy can be seen in Fig. 16 for a subset of the
random uniform circuits that have been used in Fig. 8 and
Fig. 12. This subset consists of circuits with only 50% of
two-qubit gates. With this subset we map the same number
of gates for each gate type, thus all internal SpinQ processes
are weighted equally. We observe a linear increase (O(n)) in
compilation time in relation to the number of gates for each
qubit count. This implies that our strategy is suited for scal-
able spin-qubit crossbar architectures. Improvements in com-
pilation strategies of SpinQ can be directed towards reducing
the slopes for each qubit count. This is further discussed in
Sec. VIII A.

21

0 2500 5000 7500 10000 12500 15000 17500 20000
Gates

0

2

4

6

8

Se
co

nd
s

 Compilation Time [s]
qubits = 3
qubits = 12
qubits = 21
qubits = 30
qubits = 39
qubits = 48
qubits = 57
qubits = 66
qubits = 75
qubits = 84
qubits = 93

FIG. 16: Compilation time when mapping random uniform
algorithms with 50% of two-qubit gates onto the crossbar

architecture. We observe a linear relation that makes SpinQ
suitable for scalable crossbar architectures.

VIII. DISCUSSION AND FUTURE DIRECTIONS

A. Integrated strategy improvements

This is the first version of SpinQ and the Integrated Strat-
egy is not utilized completely. More specifically, in this im-
plementation, we are only parallelizing X or Y rotation gates
and shuttles from the shuttle-based SWAP technique. How-
ever, there can be a few extensions to the Integrated Strategy
that can provide better performance (less overhead and higher
ESP). These improvements can be divided into two categories:
a) improvements that increase complexity marginally and b)
improvements that will increase complexity substantially. It is
important to make this differentiation because on large scale
we have to consider the trade-off between complexity mani-
fested as higher computation time as sizes increase and per-
formance manifested as less overhead and higher ESP.

Improvements in category (a) are for the first and second
pass of the Integrated Strategy and will improve scheduling
of gates that use the QL lines (i.e., shuttling, two-qubit gates
and Z rotations). Note that the Integrated Strategy is made
to support such an improvement within the two passes and it
will not increase its time complexity. In particular, the first
pass could parallelize ideally Z rotations together with one
two-qubit gate, in lines 13 and 21 respectively. Then in the
second pass in lines 35 and 37 a similar conflict checking pro-
cess can be followed as line 37 when completing the Z rotation
mapping and schedule them in the least cycles possible. Fur-

thermore, two-qubit gate routing could be better parallelized
in the second pass instead of the pairing presented in Fig. 7.
Two-qubit gate ideal parallelization in the first pass constitutes
routing in the second pass which will require a new routing al-
gorithm to handle multiple gates at the same time. Thus, such
an improvement belongs to category (b). Once again, each cy-
cle remains dedicated to one gate type, therefore, fine-tuning
pulse durations in real devices is still possible.

Moving on to the next category (b), it consists of all heuris-
tic mapping algorithms (routing and initial placement) dis-
cussed in Sections VII B, VII D and VII F, which can be ex-
tended to other scalable spin-qubit architectures. This will en-
able complete parallelization of two-qubit gates and less rout-
ing for both, single- and two-qubit gates.

Finally, in Sec. III E an ideal measurement process has been
considered for this work. However, it would increase the ac-
curacy of our performance evaluation to include a more real-
istic readout process in SpinQ as an additional step after the
Integrated Strategy. To do that there needs to be a protocol
to move data and ancilla qubits in an efficient manner during
and after algorithm execution — a non-trivial task. An opti-
mization algorithm will need to initialize ancilla qubits in the
right places and time so they do not remain inactive for long
periods. Then, optimize the measurement procedure to take
as less steps and shuttling operations as possible. As a conse-
quence, there will always be additional operational overhead
and degradation of the algorithm’s success during readout.
Additionally, parallelization of qubit measurement is also a
relatively unexplored topic and it highly depends on the ever-
developing hardware implementations of spin-qubits.

B. Strategy Comparisons

TABLE II: Computational complexity comparison between
compilation strategies for the crossbar architecture [32].

With n we denote the number of gates in a quantum circuit.

Strategy Complexity
Backtrack [38] O(n3)

Suffer a side effect [38] O(n2log(n))
Avoid the deadlock [38] O(n)

Integrated (ours) O(n)

As we discussed in Sec. IV, the crossbar architecture comes
with constraints that prevent full parallelization of quantum
instructions. The crossbar, however, may reach two types of
conflicts (i.e., unwanted interactions or blocked paths), even
if all constraints are respected. For that reason, there must
be some kind of compilation strategy between the scheduler
and the router to prevent conflicts. In this work, we have im-
plemented the Integrated strategy which is different from the
three strategies suggested in [38]. Table II compares the com-
putational complexity of these three strategies with our own.
The Backtrack strategy suggested in [38] avoids conflicts by
trying alternative scheduling combinations. If after repeating
this process the scheduler has backtracked to the first instruc-

22

tion of the cycle, meaning no more scheduling combinations,
a new routing path is generated by the routing algorithm and
the scheduling is repeated. This strategy can be quite com-
plex as the worst case scenario can un-route and un-schedule
all the gates going back to a completely un-mapped circuit un-
til a conflict-free mapping is found. An improved version of
this strategy, called Suffer a side effect, is a special case of the
former and it is only preferred whenever a corresponding con-
flict can be corrected and if the correction is less costly than
exclusively following the ”backtracking” strategy. The final
strategy, and the one implemented in [38], is called Avoid the
deadlock. This strategy, similar to our Integrated strategy, is
trying to avoid conflicts by parallelizing only X or Y gates.
In this way,

√
SWAP s and shuttle operations can not cause a

conflict. However, in this strategy there is no synergy between
the routing and scheduling stages as our Integrated strategy
has, therefore there is little flexibility for improvements and
performance can not be easily improved while maintaining the
same complexity. Our strategy is able to maintain the same
O(n) complexity even after improvements, particularly type
(a) improvements referred to in Sec. VIII A

C. General discussion

When developing novel mapping techniques for scalable
quantum computing architectures such as the si-spin crossbar
two main factors have to be considered: scalability and adapt-
ability. As spin-qubit fabrication capabilities are improving,
new architectural designs with potentially higher qubit counts
will be explored. Therefore, from a computation/compilation
time point of view, mapping techniques should be as scalable
as the underlying technology. Practically, this implies that
highly sophisticated and more complex mapping techniques
might be excellent for a particular architecture and up to a
certain number of qubits, but could be impractical for more
qubits or even unusable for another architecture. In addition,
as we are slowly exiting the NISQ era, quantum technologies
will become more robust, especially with the use of quantum
error correction techniques. By that time, optimizing map-
ping techniques for specific hardware and/or algorithm might
not be as relevant as today, but rather how fast and adaptable
these techniques are to a plethora of quantum algorithms and
increased number of qubits.

IX. CONCLUSION

Different quantum circuit mapping techniques have been
developed to deal with the limitations that current quantum
hardware presents and are being consistently improved to ex-
pand its computational capabilities by getting better and better
algorithm success rates. The most advanced mapping meth-
ods focus on ion-trap and superconducting devices due to
their ‘maturity’ compared with other quantum technologies.
However, spin-qubit-based processors have a great potential
to scale rapidly and the first 2D crossbar architectures have
been recently demonstrated. In this work, we focused on the
quantum circuit mapping challenges of the newly emerging
spin qubit technology for which highly-specialized mapping
techniques are needed to take advantage of its operational
abilities. Specifically, we used the crossbar architecture as
a stepping stone to explore novel mapping solutions while
focusing on scalability. The crossbar architecture adopts a
shared-control scheme, thus making it a great candidate to
tackle the interconnect bottleneck. On that note, we have
developed SpinQ, the first native compilation framework for
spin-qubit architecture which we used to analyze the perfor-
mance of synthetic and real quantum algorithms on the cross-
bar architecture. Through our analysis, we tried to inspire
novel algorithm- and hardware-specific mapping techniques
that can increase the performance while taking into account
compilation scalability. We also emphasized the importance
of characterizing benchmarks before and after decomposition
together with their Quantum Interaction Graph (QIG) struc-
ture to better evaluate results. We plan to make SpinQ publicly
available in the future.

X. ACKNOWNLEDGEMENT

This work is part of the research program OTP with project
number 16278, which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO). This work has
also been partially supported by the Spanish Ministerio de
Ciencia e Innovación, European ERDF under grant PID2021-
123627OB-C51 (CGA). We thank Menno Veldhorst and Hans
van Someren for their fruitful discussions.

XI. ACKNOWNLEDGEMENT

[1] Carmen G Almudever, Lingling Lao, Xiang Fu, Nader Kham-
massi, Imran Ashraf, Dan Iorga, Savvas Varsamopoulos,
Christopher Eichler, Andreas Wallraff, Lotte Geck, et al. 2017.
The engineering challenges in quantum computing. In Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 836–845.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,

Fernando GSL Brandao, David A Buell, et al. 2019. Quantum
supremacy using a programmable superconducting processor.
Nature 574, 7779 (2019), 505–510.

[3] Medina Bandić, Carmen G Almudever, and Sebastian Feld.
2022. Interaction graph-based profiling of quantum bench-
marks for improving quantum circuit mapping techniques.
arXiv preprint arXiv:2212.06640 (2022).

23

[4] Medina Bandic, Sebastian Feld, and Carmen G Almudever.
2022. Full-stack quantum computing systems in the NISQ era:
algorithm-driven and hardware-aware compilation techniques.
In 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 1–6.

[5] Medina Bandic, Hossein Zarein, Eduard Alarcon, and Car-
men G Almudever. 2020. On structured design space explo-
ration for mapping of quantum algorithms. In 2020 XXXV con-
ference on design of circuits and integrated systems (DCIS).
IEEE, 1–6.

[6] Francesco Borsoi, Nico W Hendrickx, Valentin John, Sayr
Motz, Floor van Riggelen, Amir Sammak, Sander L de Snoo,
Giordano Scappucci, and Menno Veldhorst. 2022. Shared con-
trol of a 16 semiconductor quantum dot crossbar array. arXiv
preprint arXiv:2209.06609 (2022).

[7] Jelmer M Boter, Juan P Dehollain, Jeroen PG van Dijk, Yuanx-
ing Xu, Toivo Hensgens, Richard Versluis, Henricus WL Naus,
James S Clarke, Menno Veldhorst, Fabio Sebastiano, et al.
2021. The spider-web array–a sparse spin qubit array. arXiv
preprint arXiv:2110.00189 (2021).

[8] Jelmer M Boter, Juan P Dehollain, Jeroen PG Van Dijk, Yuanx-
ing Xu, Toivo Hensgens, Richard Versluis, Henricus WL Naus,
James S Clarke, Menno Veldhorst, Fabio Sebastiano, et al.
2022. Physical Review Applied 18, 2 (2022), 024053.

[9] Sergey Bravyi, Oliver Dial, Jay M Gambetta, Darı́o Gil, and
Zaira Nazario. 2022. The future of quantum computing with
superconducting qubits. Journal of Applied Physics 132, 16
(2022), 160902.

[10] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and
Jeremy M Sage. 2019. Trapped-ion quantum computing:
Progress and challenges. Applied Physics Reviews 6, 2 (2019),
021314.

[11] Lukas Burgholzer, Hartwig Bauer, and Robert Wille. 2021. Hy-
brid Schrödinger-Feynman simulation of quantum circuits with
decision diagrams. In 2021 IEEE International Conference on
Quantum Computing and Engineering (QCE). IEEE, 199–206.

[12] Leon C Camenzind, Simon Geyer, Andreas Fuhrer, Richard J
Warburton, Dominik M Zumbühl, and Andreas V Kuhlmann.
2022. A hole spin qubit in a fin field-effect transistor above 4
kelvin. Nature Electronics 5, 3 (2022), 178–183.

[13] Anasua Chatterjee, Paul Stevenson, Silvano De Franceschi,
Andrea Morello, Nathalie P de Leon, and Ferdinand Kuem-
meth. 2021. Semiconductor qubits in practice. Nature Reviews
Physics 3, 3 (2021), 157–177.

[14] David P Franke, James S Clarke, Lieven MK Vandersypen, and
Menno Veldhorst. 2019. Rent’s rule and extensibility in quan-
tum computing. Microprocessors and Microsystems 67 (2019),
1–7.

[15] Takafumi Fujita, Timothy Alexander Baart, Christian Reichl,
Werner Wegscheider, and Lieven Mark Koenraad Vandersypen.
2017. Coherent shuttle of electron-spin states. npj Quantum
Information 3, 1 (2017), 1–6.

[16] Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit
RSA integers in 8 hours using 20 million noisy qubits. Quantum
5 (2021), 433.

[17] TM Graham, Y Song, J Scott, C Poole, L Phuttitarn, K Jooya, P
Eichler, X Jiang, A Marra, B Grinkemeyer, et al. 2021. Demon-
stration of multi-qubit entanglement and algorithms on a pro-
grammable neutral atom quantum computer. arXiv preprint
arXiv:2112.14589 (2021).

[18] Ronald Hanson, Leo P Kouwenhoven, Jason R Petta, Seigo
Tarucha, and Lieven MK Vandersypen. 2007. Spins in few-
electron quantum dots. Reviews of modern physics 79, 4 (2007),
1217.

[19] Jonas Helsen, Mark Steudtner, Menno Veldhorst, and Stephanie
Wehner. 2018. Quantum error correction in crossbar architec-
tures. Quantum Science and Technology 3, 3 (2018), 035005.

[20] NW Hendrickx. 2021. Qubit arrays in germanium. (2021).
[21] Nico W Hendrickx, William IL Lawrie, Maximilian Russ, Floor

van Riggelen, Sander L de Snoo, Raymond N Schouten, Amir
Sammak, Giordano Scappucci, and Menno Veldhorst. 2021. A
four-qubit germanium quantum processor. Nature 591, 7851
(2021), 580–585.

[22] Steven Herbert and Akash Sengupta. 2018. Using reinforce-
ment learning to find efficient qubit routing policies for de-
ployment in near-term quantum computers. arXiv preprint
arXiv:1812.11619 (2018).

[23] Charles D Hill, Eldad Peretz, Samuel J Hile, Matthew G
House, Martin Fuechsle, Sven Rogge, Michelle Y Simmons,
and Lloyd CL Hollenberg. 2015. A surface code quantum com-
puter in silicon. Science advances 1, 9 (2015), e1500707.

[24] Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan
Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Bab-
bush, Richard Kueng, John Preskill, et al. 2022. Quantum
advantage in learning from experiments. Science 376, 6598
(2022), 1182–1186.

[25] IBM. 2022. Qiskit Aer Library. https://qiskit.org/
documentation/apidoc/aer_library.html.

[26] Y Kharkov, A Ivanova, E Mikhantiev, and A Kotelnikov. 2022.
Arline Benchmarks: Automated Benchmarking Platform for
Quantum Compilers. arXiv preprint arXiv:2202.14025 (2022).

[27] Thaddeus D Ladd, Fedor Jelezko, Raymond Laflamme, Ya-
sunobu Nakamura, Christopher Monroe, and Jeremy Lloyd
O’Brien. 2010. Quantum computers. nature 464, 7285 (2010),
45–53.

[28] Lingling Lao and Dan E Browne. 2022. 2qan: A quantum
compiler for 2-local qubit hamiltonian simulation algorithms.
In Proceedings of the 49th Annual International Symposium on
Computer Architecture. 351–365.

[29] Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen G
Almudever. 2021. Timing and resource-aware mapping of
quantum circuits to superconducting processors. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems (2021).

[30] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed
Omran, Tout T Wang, Sepehr Ebadi, Hannes Bernien, Markus
Greiner, Vladan Vuletić, Hannes Pichler, et al. 2019. Parallel
implementation of high-fidelity multiqubit gates with neutral
atoms. Physical review letters 123, 17 (2019), 170503.

[31] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit
mapping problem for NISQ-era quantum devices. In Proceed-
ings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems. 1001–1014.

[32] Ruoyu Li, Luca Petit, David P Franke, Juan Pablo Dehollain,
Jonas Helsen, Mark Steudtner, Nicole K Thomas, Zachary R
Yoscovits, Kanwal J Singh, Stephanie Wehner, et al. 2018. A
crossbar network for silicon quantum dot qubits. Science ad-
vances 4, 7 (2018), eaar3960.

[33] Chia-Chun Lin, Amlan Chakrabarti, and Niraj K Jha. 2014.
Qlib: Quantum module library. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 11, 1 (2014), 1–
20.

[34] Daniel Loss and David P. DiVincenzo. 1998. Quantum compu-
tation with quantum dots. Phys. Rev. A 57 (Jan 1998), 120–126.
Issue 1. https://doi.org/10.1103/PhysRevA.57.
120

https://qiskit.org/documentation/apidoc/aer_library.html
https://qiskit.org/documentation/apidoc/aer_library.html
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120

24

[35] Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi
Askarani, Fabien Rortais, Trevor Vincent, Jacob FF Bulmer,
Filippo M Miatto, Leonhard Neuhaus, Lukas G Helt, Matthew J
Collins, et al. 2022. Quantum computational advantage with a
programmable photonic processor. Nature 606, 7912 (2022),
75–81.

[36] Igor L Markov, Aneeqa Fatima, Sergei V Isakov, and Sergio
Boixo. 2018. Quantum supremacy is both closer and farther
than it appears. arXiv preprint arXiv:1807.10749 (2018).

[37] Marcel Meyer, Corentin Déprez, Timo R van Abswoude, Ding-
shan Liu, Chien-An Wang, Saurabh Karwal, Stefan Oosterhout,
Franscesco Borsoi, Amir Sammak, Nico W Hendrickx, et al.
2022. Electrical control of uniformity in quantum dot devices.
arXiv preprint arXiv:2211.13493 (2022).

[38] Alejandro Morais Tejerina. 2019. Mapping quantum algorithms
in a crossbar architecture.

[39] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Fred-
eric T Chong, and Margaret Martonosi. 2019. Noise-adaptive
compiler mappings for noisy intermediate-scale quantum com-
puters. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems. 1015–1029.

[40] Prakash Murali, Dripto M Debroy, Kenneth R Brown, and
Margaret Martonosi. 2020. Architecting noisy intermediate-
scale trapped ion quantum computers. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture
(ISCA). IEEE, 529–542.

[41] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi,
Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta
Alderete. 2019. Full-stack, real-system quantum computer
studies: Architectural comparisons and design insights. In 2019
ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 527–540.

[42] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and
Rodney Van Meter. 2020. Extracting Success from IBM’s 20-
Qubit Machines Using Error-Aware Compilation. ACM Journal
on Emerging Technologies in Computing Systems (JETC) 16, 3
(2020), 1–25.

[43] Feng Pan and Pan Zhang. 2022. Simulation of quantum circuits
using the big-batch tensor network method. Physical Review
Letters 128, 3 (2022), 030501.

[44] B Paquelet Wuetz, PL Bavdaz, LA Yeoh, R Schouten, H Van
Der Does, M Tiggelman, D Sabbagh, A Sammak, Carmen G
Almudever, F Sebastiano, et al. 2020. Multiplexed quantum
transport using commercial off-the-shelf CMOS at sub-kelvin
temperatures. npj Quantum Information 6, 1 (2020), 1–8.

[45] Tirthak Patel, Daniel Silver, and Devesh Tiwari. 2022. Geyser:
a compilation framework for quantum computing with neutral
atoms. In Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture. 383–395.

[46] SJ Pauka, K Das, R Kalra, A Moini, Y Yang, M Trainer, A
Bousquet, C Cantaloube, N Dick, GC Gardner, et al. 2019. A
cryogenic interface for controlling many qubits. arXiv preprint
arXiv:1912.01299 (2019).

[47] Matteo G Pozzi, Steven J Herbert, Akash Sengupta, and
Robert D Mullins. 2020. Using reinforcement learning to
perform qubit routing in quantum compilers. arXiv preprint
arXiv:2007.15957 (2020).

[48] John Preskill. 2018. Quantum computing in the NISQ era and
beyond. Quantum 2 (2018), 79.

[49] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2022.
Predicting good quantum circuit compilation options. arXiv
preprint arXiv:2210.08027 (2022).

[50] Salonik Resch and Ulya R Karpuzcu. 2019. Quantum com-
puting: an overview across the system stack. arXiv preprint
arXiv:1905.07240 (2019).

[51] Cheng Sheng, Xiaodong He, Peng Xu, Ruijun Guo, Kunpeng
Wang, Zongyuan Xiong, Min Liu, Jin Wang, and Mingsheng
Zhan. 2018. High-fidelity single-qubit gates on neutral atoms
in a two-dimensional magic-intensity optical dipole trap array.
Physical review letters 121, 24 (2018), 240501.

[52] Animesh Sinha, Utkarsh Azad, and Harjinder Singh. 2022.
Qubit routing using graph neural network aided Monte Carlo
tree search. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, Vol. 36. 9935–9943.

[53] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Sim-
mons, Alec Edgington, and Ross Duncan. 2020. t— ket¿: A
retargetable compiler for NISQ devices. Quantum Science and
Technology (2020).

[54] Matthew A. Steinberg, Sebastian Feld, Carmen G. Almudever,
Michael Marthaler, and Jan-Michael Reiner. 2022. Topological-
Graph Dependencies and Scaling Properties of a Heuristic
Qubit-Assignment Algorithm. IEEE Transactions on Quan-
tum Engineering 3 (2022), 1–14. https://doi.org/10.
1109/TQE.2022.3160015

[55] Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all
qubits are created equal: a case for variability-aware policies for
NISQ-era quantum computers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. 987–999.

[56] Joseph Tindall, Matt Fishman, Miles Stoudenmire, and Dries
Sels. 2023. Efficient tensor network simulation of IBM’s kicked
Ising experiment. arXiv preprint arXiv:2306.14887 (2023).

[57] Teague Tomesh, Pranav Gokhale, Victory Omole, Gokul Sub-
ramanian Ravi, Kaitlin N Smith, Joshua Viszlai, Xin-Chuan
Wu, Nikos Hardavellas, Margaret R Martonosi, and Fred-
eric T Chong. 2022. Supermarq: A scalable quantum bench-
mark suite. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 587–603.

[58] Diogo Manuel Antunes Lopes Valada. 2020. Predicting the
fidelity of Quantum Circuits Search for better metrics for the
Qubit Mapping Problem.

[59] LMK Vandersypen, H Bluhm, JS Clarke, AS Dzurak, R Ishi-
hara, A Morello, DJ Reilly, LR Schreiber, and M Veldhorst.
2017. Interfacing spin qubits in quantum dots and donors—hot,
dense, and coherent. npj Quantum Information 3, 1 (2017), 1–
10.

[60] M Veldhorst, HGJ Eenink, Chih-Hwan Yang, and Andrew S
Dzurak. 2017. Silicon CMOS architecture for a spin-based
quantum computer. Nature communications 8, 1 (2017), 1–8.

[61] M Veldhorst, JCC Hwang, CH Yang, AW Leenstra, Bob de
Ronde, JP Dehollain, JT Muhonen, FE Hudson, Kohei M Itoh,
A Morello, et al. 2014. An addressable quantum dot qubit
with fault-tolerant control-fidelity. Nature nanotechnology 9,
12 (2014), 981–985.

[62] Menno Veldhorst, CH Yang, JCC Hwang, W Huang, JP Dehol-
lain, JT Muhonen, S Simmons, A Laucht, FE Hudson, Kohei M
Itoh, et al. 2015. A two-qubit logic gate in silicon. Nature 526,
7573 (2015), 410–414.

[63] TF Watson, SGJ Philips, Erika Kawakami, DR Ward, Pasquale
Scarlino, Menno Veldhorst, DE Savage, MG Lagally, Mark
Friesen, SN Coppersmith, et al. 2018. A programmable two-
qubit quantum processor in silicon. nature 555, 7698 (2018),
633–637.

[64] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W Dueck,
and Rolf Drechsler. 2008. RevLib: An online resource for re-
versible functions and reversible circuits. In 38th International

https://doi.org/10.1109/TQE.2022.3160015
https://doi.org/10.1109/TQE.2022.3160015

25

Symposium on Multiple Valued Logic (ismvl 2008). IEEE, 220–
225.

[65] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler.
2008. RevLib: An Online Resource for Reversible Functions
and Reversible Circuits. In Int’l Symp. on Multi-Valued Logic.
220–225. RevLib is available at http://www.revlib.org.

[66] T Xia, M Lichtman, K Maller, AW Carr, MJ Piotrowicz, L Isen-
hower, and M Saffman. 2015. Randomized benchmarking of
single-qubit gates in a 2D array of neutral-atom qubits. Physi-
cal review letters 114, 10 (2015), 100503.

[67] Jun Yoneda, Kenta Takeda, Tomohiro Otsuka, Takashi Naka-
jima, Matthieu R Delbecq, Giles Allison, Takumu Honda, Tet-
suo Kodera, Shunri Oda, Yusuke Hoshi, et al. 2018. A quantum-
dot spin qubit with coherence limited by charge noise and fi-
delity higher than 99.9%. Nature nanotechnology 13, 2 (2018),

102–106.
[68] DM Zajac, TM Hazard, X Mi, K Wang, and Jason R Petta.

2015. A reconfigurable gate architecture for Si/SiGe quantum
dots. Applied Physics Letters 106, 22 (2015), 223507.

[69] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An
efficient methodology for mapping quantum circuits to the IBM
QX architectures. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 38, 7 (2018), 1226–
1236.

[70] Floris A. Zwanenburg, Andrew S. Dzurak, Andrea Morello,
Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard
Klimeck, Sven Rogge, Susan N. Coppersmith, and Mark A.
Eriksson. 2013. Silicon quantum electronics. Rev. Mod. Phys.
85 (Jul 2013), 961–1019. Issue 3. https://doi.org/10.
1103/RevModPhys.85.961

https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/RevModPhys.85.961

	SpinQ: Compilation strategies for scalable spin-qubit architectures
	Abstract
	Introduction
	Spin qubits as a scalable platform
	The Crossbar Architecture
	Qubit shuttling
	Two-qubit gates
	Z rotations
	X or Y rotations
	Measurement

	Quantum circuit mapping challenges of the crossbar architecture
	Parallelization of quantum operations
	Mapping of x or y rotations on single qubits
	Routing of Qubits

	SpinQ – the first native compilation framework for scalable spin-qubit architectures
	Compilation passes
	Decomposition of quantum gates
	Physical initialization of spin qubits
	Virtual-to-physical qubit initial placement
	Integrated Strategy for Routing and Scheduling

	Performance metrics
	Gate overhead
	Depth overhead
	Estimated Success Probability
	Compilation time

	Verification

	Experimental Methodology
	Benchmarks
	Benchmarks characterization
	Experimental Setup

	Evaluation and analysis
	Gate Overhead
	Insights from gate overhead analysis
	Depth Overhead
	Insights from depth overhead analysis
	Estimated Success Probability
	Insights from Estimated Success Probability analysis
	Compilation time

	Discussion and future directions
	Integrated strategy improvements
	Strategy Comparisons
	General discussion

	Conclusion
	Acknownledgement
	Acknownledgement
	References

