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Abstract

This paper introduces the first public large-scale, long-
span dataset with sea turtle photographs captured in the
wild – SeaTurtleID2022. The dataset contains 8729 pho-
tographs of 438 unique individuals collected within 13
years, making it the longest-spanned dataset for animal re-
identification. All photographs include various annotations,
e.g., identity, encounter timestamp, and body parts segmen-
tation masks. Instead of standard ”random” splits, the
dataset allows for two realistic and ecologically motivated
splits: (i) a time-aware closed-set with training, validation,
and test data from different days/years, and (ii) a time-
aware open-set with new unknown individuals in test and
validation sets. We show that time-aware splits are essen-
tial for benchmarking re-identification methods, as random
splits lead to performance overestimation. Furthermore, a
baseline instance segmentation and re-identification perfor-
mance over various body parts is provided. Finally, an end-
to-end system for sea turtle re-identification is proposed and
evaluated. The proposed system based on Hybrid Task Cas-
cade for head instance segmentation and ArcFace-trained
feature-extractor achieved an accuracy of 86.8%.

1. Introduction
Image-based individual animal re-identification, i.e., the

process of recognizing individual animals based on their
unique stable-over-time external characteristics, is essential
for studying different aspects of wildlife, like population
monitoring, movements, behavioral studies, and wildlife
management [36, 43, 49]. The increasing sizes of the asso-
ciated photo databases stemming from the multi-year span
of such projects [42,45] have highlighted the need for auto-
mated methods to reduce labor-intensive human supervision
in individual animal identification.

As a result, a plethora of automatic re-identification
methods have been developed during the last years [8, 16,
29,50]. Evaluation of these methods is performed on bench-
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Figure 1. The long-span difference in visual appearance of one
individual sea turtle. The shapes of the facial scales remain the
same, but other features, e.g., coloration, pigmentation, shape, and
scratches, change over time.

mark databases, covering several animal groups like mam-
mals [1, 30, 35, 46, 47, 52], reptiles [4, 16], and smaller or-
ganisms [10,20,40]. Typically, such databases are split into
a reference set – a set of images with individuals whose
identity (label) is known – and a query set – the set of im-
ages with individuals whose identity needs to be matched
to the reference set. In deep learning, these sets are usually
called training and test sets.

The quality of datasets influences the objectivity of the
method evaluation. Therefore, the dataset and its splitting
should mimic a realistic scenario, i.e., the images in the
query and reference sets should not originate from the same
encounters (burst mode in camera traps, consecutive video
frames, multiple photographs taken during an encounter)
and/or capture unknown identities. Other factors, e.g., dif-
ferent locations, image capture conditions, and images that
reflect changes in animal appearances over time, are also
vital. For reference see Figure 1.

Typically, images produced during one encounter share
the same factors as the encounter lasts for a short period.
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The most efficient way to indicate different encounters and
factors in a dataset is by including the capture date and time
in metadata, i.e., timestamps. Without knowing the time
of the observation, datasets are often split into reference
and query sets exclusively randomly. Therefore, images
in training and test sets often originate from the same en-
counter/observation, representing unwanted training-to-test
data leakage. This might result in overfitting to factors of a
particular encounter instead of learning an inner representa-
tion of each individual. Thus, a random split implicitly as-
sumes that one will encounter the same factors in the future,
which is highly unrealistic. On the other hand, timestamps
allow for time-aware splits, where images from a time pe-
riod are all in either the reference or the query set. This
leads to a more realistic case in which new factors are en-
countered in the future.

Based on our extensive research, just five publicly avail-
able datasets contain timestamps (see Table 1). From those,
Cows2021 [21] and GiraffeZebraID [37] span only one
month, and WhaleSharkID [26] includes timestamps for
only 9% of photographs. This leaves only two wildlife
datasets with timestamps; with span of at most two years.
We introduce a novel dataset with photographs of logger-
head sea turtles (Caretta caretta) – the SeaTurtleID2022.
The dataset was collected over 13 years and consists of
8729 high-resolution photographs of 438 unique individ-
uals. Each photograph includes various annotations, e.g.,
identities, encounter timestamps, and body parts segmen-
tation masks. To the best of our knowledge, the Sea-
TurtleID2022 is the longest-spanned public wild animal im-
age dataset and the only public dataset of sea turtles with
photographs captured in the wild. In contrast to existing
datasets, the SeaTurtleID2022 allows for two realistic and
ecologically motivated splits instead of a ”random” split:

• time-aware closed-set: with reference images belong-
ing to different encounters than query ones, and

• time-aware open-set: with new unknown individuals
(i.e., newly introduced to population) in test and vali-
dation sets (common in ecology).

Dataset images t-stamp ind. enc. span

Cows2021 [21] 8670 100% 181 3036 31
GiraffeZebraID [37] 6925 100% 2051 2494 12
MacaqueFaces [51] 6280 100% 34 494 525
BelugaID [1] 5902 100% 788 1241 785
WhaleSharkID [26] 7693 9% 98 424 1971

SeaTurtleID2022 (ours) 8729 100% 438 1221 4390

Table 1. Dataset statistics for all publicly available animal re-
identification datasets with timestamps; number of photographs,
percentage of photographs with timestamps, number of individu-
als and encounters, and dataset span in days.

Even though the SeaTurtleID2022 dataset is intended
primarily as an animal re-identification benchmark, it can
be used for the evaluation and testing of several fundamen-
tal problems, including: (i) object detection, (ii) instance
segmentation, (iii) fully- and weakly supervised semantic
segmentation, (iv) 3D reconstruction, and (v) concept drift
analysis.

We stress that SeaTurtleID2022 lacks common draw-
backs of other (human) re-identification datasets. In partic-
ular, face-id datasets typically contain low-resolution pho-
tographs, are restricted to limited poses, have limited time
spans, and are either artificially generated [6], or collected
by crawling the internet [27], raising privacy concerns.

Apart from the dataset, we provide a baseline per-
formance evaluation for body-part segmentation and re-
identification. Based on that, a baseline methodology for
wildlife re-identification is proposed and evaluated over the
SeaTurtleID2022 and several other well-known datasets us-
ing hand-crafted features and metric learning approaches.
The best ArcFace-trained feature extractor achieved an ac-
curacy of 69.2% on the SeaTurtleID2022 dataset while us-
ing cropped heads. In case no body part detection is done,
the use of full images and the same approach resulted in an
accuracy of 17.1%, showing that turtle identification is still
a challenging task without body parts detection.

Furthermore, we showcase that time-unaware splits can
often lead to performance overestimation if compared to
time-aware splits. Hence, we recommend evaluating re-
identification-focused algorithms over datasets with times-
tamps and unbiased (e.g., time-aware) splits. Additionally,
imaging data collectors and database curators should ensure
that time information is included in the metadata.

The main contributions of this paper are as follows:

• We introduce a novel dataset – SeaTurtleID2022 –
for animal re-identification with unique characteris-
tics and a wide variety of annotations, e.g., identities,
encounter timestamps, segmentation masks, bounding
boxes, and orientations for all body parts.

• We provide (i) baseline re-identification performance
evaluation using hand-crafted features and metric
learning approaches over SeaTurtleID2022 and other
established datasets and (ii) baseline performance for
body-part segmentation using well-known instance
segmentation methods.

• We provide empirical evidence that a time-unaware
splitting of the dataset leads to a significant overesti-
mation bias.

• Based on all the above, we have developed and evalu-
ated an end-to-end system for reliable sea turtle iden-
tification in the wild that can potentially be transferred
to other species as well.
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2011: compact camera, no flash 2014: DSLR camera, no flash 2019: DSLR camera, with flash

Figure 2. Selected individual turtle (t023) from the SeaTurtleID2022 database, photographed with three different camera set-ups. Pho-
tographs taken with the DSLR camera are of higher quality, and the additional use of flash recovers the natural colouration of the animal.
All the photographs were cropped for illustration purposes.

2. The SeaTurtleID2022 dataset

This section describes the data collection process, anno-
tation procedures, and key features of the dataset.

2.1. Data collection

Location and species: All photographs were taken in La-
ganas Bay, Zakynthos Island, Greece (37◦43′N, 20◦52′E),
from 2010 until 2022; May–October. Laganas Bay is
a main breeding site for the Mediterranean loggerhead
sea turtles [33]. Female turtles (around 300 annually)
are mainly migratory and visit the island to breed every
2–3 years [42]. On the other hand, certain individu-
als reside on the island, and they can be observed in
consecutive years [36, 43]. Loggerheads are long-lived
species, and they can have reproductive longevity of more
than three decades [32], which can lead to long-span
image recordings for specific individuals. Sea turtles are
particularly amenable to photo-identification due to their
scale patterns [41]. In particular, the polygonal scales in
the lateral (side) and dorsal (top) sides of their heads are
unique to every individual and remain stable throughout
their lives [11], see Figure 1 and additional examples in
the supplementary material. Notably, the left and right side
patterns differ for a given turtle.

Photographic procedure: All photographs were captured
underwater during snorkeling surveys from a distance rang-
ing from 7 meters to a few centimeters using three cameras:
(i) Canon IXUS 105 digital compact camera with a Canon
underwater housing in 2010–2013, (ii) Canon 6D full-
frame DSLR camera combined with a Sigma 15mm fish-
eye lenses and an Ikelite underwater housing in 2014–2017,
and (iii) the same camera with an additional INON Z330
external flash in 2018–2022. The resolution ranges from
4000×3000 (Canon IXUS) to 5472×3648 pixels (Canon
6D) with an average of 5269×3564. The water depth
ranged from 1 to 8 meters, with the vast majority of pho-
tographs taken less than 5 meters deep.

Photographs taken in 2014–2022 are generally of better
quality due to the use of a more advanced camera and a
shorter camera-subject distance. On the other hand, due to
the use of fisheye lenses, barrel shape distortion can be no-
ticeable, especially for close-up photographs. Finally, more
natural colors were acquired using the external flash. In
Figure 2, we display three images of the same individual –
obtained by the three different camera set-ups – to highlight
the resulting visual differences.

2.2. Dataset highlights

Large-scale in the wild dataset: With 8729 photographs
and 438 individuals, the dataset represents the most exten-
sive publicly available dataset for sea turtle identification in
the wild. The images are in original resolution and with
various backgrounds. Approximately 90% of photographs
have a size of 5472×3648 pixels, the average photograph
size is 5269×3564 pixels, while the head occupies on av-
erage 635×554 pixels. Figure 3 shows the number of pho-
tographs for each individual. The majority of individuals
( 272438 ) have at least ten photographs (depicted by the dashed
line). Similarly, most individuals ( 270438 ) were encountered at
least twice. We note that this number is expected to increase
in the following years since this dataset is updated annually.
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Figure 3. Number of photographs for each of the 438 turtles. The
orange line corresponds to 10 photographs.
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Figure 4. Time-related statistics within the SeaTurtleID2022 dataset: number of encounters per year (left), distribution of all individuals to
the total number of observation years, i.e., recurrence of individuals (middle), and number of newly observed identities in each year (right).

Long time span & timestamps: The dataset contains pho-
tographs continuously captured over 13 years from 2010 to
2022. In contrast to most existing animal datasets that are
usually collected in controlled environments and/or over
a short time span, the SeaTurtleID2022 dataset includes a
timestamp (in dd:mm:yyyy format) for each photograph.
Figure 4 (left) shows the number of encounters for each
year, with a significantly larger number from 2015 onwards.
We note that this is driven by an increasing data collection
effort rather than reflecting actual annual recurrence. In
Figure 4 (right), we show the number of newly observed
individuals. Furthermore, Figure 4 (middle) shows the
distribution of the 438 individuals with respect to the total
number of observation years. A span of one year means
that a turtle was photographed only in one year. Many
turtles (180438 ) were photographed in at least two different
years, and 9 individual turtles spanned more than 9 years.

Segmentation masks and bounding boxes: Almost all
photographs in the dataset have a visible head and/or
flippers. Therefore we provide body parts annotations
photographs as segmentation masks and bounding boxes.
Apart from masks, we include orientation (left, right,
top, top-right, top-left, front or bottom) for each head
mask, and orientation (top or bottom) and location (front
left/right or rear left/right) for flipper masks. Such an-
notations allow further development and evaluation of
turtle identification methods or novel methods for object
detection and semantic segmentation. All segmentation
mask annotations were done semi-automatically using the
Segment Anything [28] model integrated within the CVAT.

Multiple poses: The dataset includes multiple images from
different angles and, therefore, provides a ground for the
challenging task of 3D animal reconstruction.

Comparison with ZindiTurtleRecall [4]: For a better per-
spective, we compare the SeaTurtleID2022 with the Zindi-
TurtleRecall dataset, which is the only other publicly avail-
able sea turtle dataset. We stress that the latter dataset con-
tains photographs in a controlled environment (a rehabilita-
tion center) with no timestamps. We summarise all compa-
rable aspects of both datasets in Table 2.

Figure 5. Examples of body parts (head, carapace, flippers) seg-
mentation masks.

SeaTurtleID2022 ZindiTurtleRecall

Sea turtle species Loggerheads Greens/Hawksbills
Images 8729 12803
Individuals 438 2265
Image average size 5269×3564 1382×1118
Head average size 635×554 1382×1118
Location underwater land (rehab. centre)
Allowed splits time-aware & open-set random

In the wild ✓ ✗

Turtle segment ✓ ✗

Head bbox ✓ ✓

Head segment ✓ ✗

Head orientation ✓ partially
Flipper segment ✓ ✗

Flipper bbox ✓ ✗

Timestamp ✓ ✗

Table 2. Comparison with the ZindiTurtleRecall dataset.
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Same day in 2011 Same day in 2021

easy match easy matchhard match

Figure 6. Unwanted background similarities in photographs from same/similar locations or time of observations.

2.3. Dataset splits and subsets

Standardly, the re-identification datasets are split into a
reference (training) and a query set (test) randomly, which
might result in unwanted data leakage and inflated perfor-
mance. In other words, images from the same encounter
might be in both sets. To illustrate the problem, we provide
in Figure 6 four images of the same individual turtle, two
captured in the same day in 2011 and two in the same day
in 2021. While images from the same day are easy to match
due to the same background and coloration, images from
different days/years do not share it and therefore are signif-
icantly more challenging to match. To overcome this issue,
we introduce two realistic ecologically motivated splits that
utilize timestamps to prevent information leakage from the
test set to the training set. We further refer to those splits as
time-aware splits. For easier future comparison, we provide
predefined training/validation/test splits even though vali-
dation in some cases is not mandatory. The construction is
further elaborated below. The dataset statistics, including
the number of individuals and images, are listed in Table 3.

Time-aware closed-set split is similar to a standard
closed-set re-identification scenario, as all validation/test
sets identities are available for training. Such a scenario is
realistic in environments with controlled populations, e.g.,
zoos or reservations. While constructing the split, we group
all the data based on the date of acquisition and split it in
a time-aware fashion. Data from approximately 80% days
are selected for the development set (training + validation),
and the remaining days go to the test set. If an individual
turtle was observed just once, it was kept for training. We
provide 438 identities for training and 270 for testing. The
development set was split into training/validation subsets
using the same strategy.

Time-aware open-set split is based on cutoff time points
(specific years). In this setting, each subset (train-
ing/validation/test) contains all images within given sub-
sequent periods. Intuitively, this split results in an open-
set problem, reflecting the natural population dynamic and
growth. During construction, we used the 2010–2018 pe-

riod for training, the whole year of 2019 for the validation,
and the 2020–2022 period for the test set. There are 357
identities in the training set and 151 in the test set. Out of
the 151 identities, 51 are newly observed. A similar ratio
(new/known) is naturally acquired in the validation set; 38
out of 83 are new identities.

# of images # of identities
Subset closed-set open-set closed-set open-set

Training 4679 5303 438 357
Validation 1418 1118 91 83
Test 2632 2308 270 151

Table 3. Provided time-aware datasets split and their statistics.

Note: The open-set split is much closer to the real-world
re-identification settings than the closed-set problem.
Therefore, the open-set split should be preferred for
automated method evaluation over all datasets. In case
closed-set evaluation is desired, then the time-aware split
must be the preferred option over the random split.

Body-parts subsets: Furthermore, we provide three sub-
sets that cover various body parts, e.g., full-body, flippers,
and heads, using crops from the original resolution. The
number of data points differs for each body part, as some
parts might not be visible. We used the time-aware closed-
set and constructed part-based sets with the following num-
ber of training/test samples: (i) 6139 / 2650 full turtle bod-
ies, (ii) 14849 / 6237 flippers, and (iii) 5956 / 2583 heads.

3. Sea turtle re-identification baselines
Animal re-identification is generally approached using

either (i) traditional methods and local descriptors (e.g.,
SIFT and SURF) [5, 19, 39], (ii) deep learning [10, 30, 48],
or (iii) species-specific methods [7, 22, 50]. To establish a
baseline performance on the SeaTurtleID2022 and to pro-
pose the system for end-to-end turtle identification, we per-
form various ablation studies using various traditional and
deep learning based methods. In this section, we describe
selected methods and all relevant hyperparameters.
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3.1. Local feature-based methods

The most popular methods used for wildlife re-
identification – Wild ID [9], and Hotspotter [19] – are
based on local descriptors. Therefore we study the perfor-
mance of SIFT and more recent Superpoint [18] descriptors
on the proposed dataset. We have developed a straightfor-
ward algorithm (inspired by Dunbar et al. [19]) based on
local descriptors matching1. First, we extract a set of key-
points and their corresponding descriptors for each image.
Second, for all possible training-test image pairs, we calcu-
late the distance between their descriptors. Third, all po-
tentially false matches are filtered out using a ratio test and
threshold; the optimal values (0.2 for SIFT, 0.6 for Super-
point) for the ratio test thresholds were obtained from the
training set. At last, we predict an identity using the training
label with maximal similarity score, calculated as an abso-
lute number of correspondences. We opt not to use alter-
native approaches, such as RANSAC or SuperGlue, as they
add significant computational overhead and provide just a
small improvement [19, 38].

3.2. Metric learning

Metric learning methods aim to learn a representation
function that maps objects into a deep embedding space.
Usually, a CNN- or transformer-based feature extractor is
trained to group samples within the same semantic category
closer and far from other categories. For our experiments,
we use two algorithms with state-of-the-art performance in
face recognition: ArcFace [17] and Triplet loss [44]. For
baseline performance evaluation, we use a Swin-B [31]
backbone and default training hyperparameters.

Both metric learning approaches were optimized for 100
epochs using a learning rate of 0.01, the cosine annealing
schedule, and a mini-batch size of 128. All images were
pre-processed using the Random augment method.

ArcFace loss [17] was designed for face recognition but
can be easily repurposed for wildlife re-identification. It ex-
tends the cross-entropy loss by placing the embeddings on
the hypersphere with radius s and incorporating an angu-
lar margin m to improve the learned embeddings’ discrim-
inative capability that ensures high inter-class variety while
keeping a high level of intra-class compactness. The sim-
ilarity of samples is determined using cosine distance. We
use the same values for s = 64 and m = 0.5 as in [17].

In Triplet loss [44], we select triplets (xa, xp, xn)
with anchor xa that has the same label as positive xp and
a different label than negative sample xn. Triplet loss
learns a representation that minimizes the distance between
xa and xp and maximizes the distance between xn up
to a margin m. In our experiments, we follow [44] and

1For SIFT we use default parameters and OpenCV implementation; for
Superpoint, we use default parameters and this implementation.

use m = 0.1. Triplet loss tends to be sensitive to triplet
selection. Therefore, we follow [25] and select hard triplets
using an online mining strategy to improve the training.

Feature matching: In our metric learning experiments, we
approach animal identification using k-NN classifier in a
deep embedding space. For each image x from the test set,
we assume its k most similar training set identities, and we
take the one with the highest occurrence. The formal def-
inition of k-NN we use is as follows. The set of k nearest
neighbors Sx of x is defined as a subset of the training set
such that every point in the training set but not in Sx is at
least as far away from x as the furthest point in Sx, mea-
sured in a suitable distance function. We define the clas-
sifier as a function returning the most common label in Sx

In the case of a draw, we take an identity from smaller k,
i.e, (k − 1). For metric learning approaches, the distance
function is a cosine distance, i.e.,

dist(x, z) =
x · z

∥x∥ ∥z∥
. (1)

3.3. Random vs. time-aware splits

To showcase the unwanted performance overestimation
when a random dataset split is used, we compare the per-
formance of newly proposed time-aware splits (open and
closed) with their random counterparts. The random split
is obtained by randomly shuffling the time-aware split for
each identity separately. This ensures a fair comparison be-
tween the split with the same training/validation/test ratio.
We used the entire image and different body parts in this
experiment. We use an ArcFace loss with the Swin-B back-
bone and input size of 224× 224.

4. Baseline Results
In this section, we provide (i) baseline results for body-

part segmentation and re-identification achieved over the
newly proposed dataset (ii) qualitative and quantitative eval-
uation to show the importance of the time-aware splits, and
(iii) performed ablation studies to select the most viable ap-
proach for sea turtle re-identification.

Based on extensive experiments with different k values
for k-NN matching (available in Supplementary), we
predict an identity using k-NN, with k = 1.

Local vs deep features: Comparing local descriptors with
metric learning approaches showed superior performance
of metric learning on our dataset and seven other datasets
with patterned species. In most cases, the metric learn-
ing approaches outperformed the Superpoints by more
than 20%. Furthermore, if we compare local descriptor
methods, the Superpoints method is a better fit for animal
re-identification. A detailed comparison is listed in Table 4.

6
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Dataset SIFT Superpoint ArcFace Triplet

BelugaID [1] 1.1 2.4 18.2 20.5
HumpbackWhaleID [2] 11.7 11.8 52.5 43.9
NDD20 [46] 17.1 30.0 59.1 29.9
NOAARightWhale [3] 6.5 15.3 23.5 5.4
WhaleSharkID [26] 4.3 22.9 28.6 32.5

ZindiTurtleRecall [4] 17.9 25.7 45.8 19.1
SeaTurtleID2022 (ours) 8.4 20.2 34.7 25.7

Table 4. Local and deep feature methods performance comparison
(accuracy) for full images. Time-aware closed-set split. Input size
224× 224. For metric learning, a Swin-B backbone was used.

Body parts performance: In addition to setting overall
full-body turtle performance, we explored the importance
of various body parts, revealing their relative significance.
In contrast to the findings of [34], our results highlight
the key role of the turtle’s head in sea turtle identification.
Focusing solely on the head increased the absolute perfor-
mance by 34.5% compared to the full body. Furthermore,
we show that the flippers appear as the less influential body
part for in-the-wild identification using metric learning2.
The full comparison is provided in Table 5.

Encounter based prediction: Available timestamps allow
combining all image-based predictions into so-called en-
counters. Rather than identifying each image separately,
one identity is predicted for each set of images belonging
to one individual. Using just majority voting to combine
the image-based predictions, we significantly increased the
performance for all body parts (see Table 5). In the case of
heads, the accuracy was increased by 19.2%.

4.1. Random vs time-aware splits

The performance comparison of two ArcFace-trained
feature extractors on the random and time-aware splits of
the SeaTurtleID2022 dataset validated our hypothesis about
unwanted performance inflation related to training-to-test
data leakage. Results listed in Table 5 demonstrate that the
random split results (in terms of accuracy) were higher by
42.2%, 53.8%, 45.8%, and 18% for full image, and flippers,
body, and head crops, respectively.

Split Full image Flippers Turtle Head

Images Time-aware 17.1 12.2 34.7 69.2
Encounters Time-aware – 21.4 48.6 88.4

Images Random 59.4 66.0 80.5 87.2

Table 5. Random split accuracy inflation on SeaTurtleID2022
(closed-set). Encounter- vs image-based; Swin-B + ArcFace.

2For the flippers performance evaluation, we choose the closest (based
on cosine similarity) identity using all available flippers on a given image.

Performance inflation analysis: To further elaborate on
the performance inflation, we conducted an additional re-
identification experiment using (i) images with redacted
backgrounds, showing only the turtle in the foreground, and
(ii) images with redacted foregrounds, displaying only the
background. With the redacted background, the model’s
performance remains relatively comparable to the full im-
age performance in both scenarios. Contrarily, in the case
of redacted foreground, the model trained on a random
split exhibits comparable performance to that achieved on
the full images. However, the performance for the model
trained on a time-aware dropped significantly in perfor-
mance relative to the full images, achieving only 3.9% ac-
curacy. See results in Table 6.

Split Full image Background Foreground

Random 59.4 45.1 59.5
Time-aware 17.1 3.9 14.3

∆ +42.2 +41.2 +45.2

Table 6. Random split accuracy inflation on the SeaTurtleID2022
(closed-set). Swin-B + ArcFace; 224× 224.

Furthermore, we qualitatively demonstrate overfitting to
the background using Grad-CAM++ [12] and visualizing
identity activations based on the cosine similarity between
the embeddings of the two images. We selected two simi-
lar images with noticeable backgrounds from the same en-
counter that are in the test set for both random and time-
aware splits. In Figure 7, we illustrate that the model
trained on the random split learns to utilize background fea-
tures, whereas the model trained using the time-aware ap-
proach concentrates on the turtle’s features.

Figure 7. Qualitative evaluation demonstrating overfitting to the
background on random split using Grad-CAM++. Identity-based
activations for (left) time-aware and (right) random split.
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4.2. Body-parts segmentation baselines

The SeaTurtleID2022 dataset comes along with instance
segmentation annotations; thus, it might be used as a bench-
mark for instance segmentation or object detection. To set
the baseline performance for the turtle body parts (head,
flipper, and full-body) segmentation, we evaluate three dis-
tinct architectures, including the standard Mask R-CNN
[23], the Hybrid Task Cascade (HTC) [13], and the state-of-
the-art transformer-based Mask2Former [15]. We combine
the three detection methods with two backbones, ResNet-
50 [24] and Swin-B transformer [31] using the MMDetec-
tion [14] framework. While training, both backbones were
initialized from publicly available ImageNet-1k weights us-
ing the default implementation and hyperparameters setting.
All models were fine-tuned for 12 epochs with a step-wise
learning rate schedule. Experiments are conducted on both
time-aware splits.

Generally, all selected methods evaluated on the Sea-
TurtleID2022 achieved a competitive performance (in terms
of coco mAP) suitable for the following task, i.e., tur-
tle re-identification. While the best-performing model –
Mask2Former with Swin-B backbone – achieved a coco
mAP of 0.896, the worst-performing model – Mask R-CNN
with ResNet-50 backbone – achieved an mAP of 0.865.
Even though the Mask2Former approach showed better
overall performance, the HTC method performed better on
heads that are important for accurate re-identification.

The full performance comparison on both time-aware
splits (open and closed) is available in Table 7 and supple-
mentary materials.

Method mAP head turtle flippers

R
es

N
et

-5
0 Mask R-CNN 0.865 0.838 0.910 0.848

HTC 0.868 0.842 0.912 0.852
Mask2Former 0.892 0.822 0.977 0.876

Sw
in

-B

Mask R-CNN 0.871 0.845 0.919 0.85
HTC 0.880 0.860 0.923 0.857
Mask2Former 0.896 0.829 0.975 0.883

Table 7. Instance segmentation performance of selected backbone
and head architectures over the SeaTurtleID2022. Closed-set split.

5. Recommended end-to-end system

Following the insights from our baseline experiments al-
lowed us to create a reliable end-to-end system that takes
sets of images as input and returns identity predictions. The
system within the pipeline and the performance of the sys-
tem are fully described below.

First, we find all head region bounding boxes on high-
resolution images (20MP) using the Hybrid Task Cascade
instance segmentation model (with Swin-S backbone). We

focus primarily on turtle heads as they allow the best re-
identification capability. Second, we crop all heads from
the high-resolution photographs and rescale them to 224 ×
224 to match the expected input size for the feature ex-
tractor, i.e., the Swin-B ArcFace-trained re-identification
model. Third, all head-based crops are feed-forwarded into
the feature extractor to obtain feature vectors for matching.
For images without a head segmentation, we do not provide
any identity prediction. Fourth, for each image, we pre-
dict an identity using k-NN (with k = 1) with the training
set’s head embeddings. Finally, we group all images based
on time and create the so-called encounters. The identity
of each image within an encounter is retrieved by majority
voting.

The proposed end-to-end system for sea turtle re-
identification achieved an accuracy of 86.8% on the Sea-
TurtleID2022. Notably, it shows a significant improvement
over the 17.1% accuracy achieved by a naive approach that
analyzes full images without utilizing body parts or harness-
ing encounter knowledge.

6. Conclusions

This paper introduced the SeaTurtleID2022 dataset, the
longest-spanned publicly available wildlife re-identification
dataset with various annotations, e.g., identities, encounter
timestamps, and body parts segmentation masks. The
dataset can be used for benchmarking re-identification al-
gorithms and several other computer vision tasks, including
instance and semantic segmentation and object detection.
Instead of a standard ”random” split, we highlight the ne-
cessity to use realistic and ecologically motivated splits: (i)
time-aware: with reference data from different encounters,
and (ii) open-set: with new unknown individuals (i.e., newly
introduced to population) in test and validation sets.

Furthermore, (i) we provided a baseline performance of
various methods, for instance segmentation and animal re-
identification, (ii) provided qualitative and quantitative evi-
dence that time-unaware (random) splits of the dataset lead
to a significant performance overestimation bias, and (iii)
we proposed, described, and evaluated an end-to-end sys-
tem for sea turtle identification in the wild, that could po-
tentially be transferred to other species as well.
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A. Additional Experiments and Evaluation

A.1. Dependence of identification accuracy on k
in k-NN classification

We conducted additional experiments to find an op-
timal k value for the animal re-identification using the
k-NN classifier. Besides SeaTurtleID2022 (head and
full-body versions), we evaluated the experiments on
BelugaID, NDD20, WhaleSharkID, HumpbackWhaleID,
NOAARightWhale and ZindiTurtleRecall datasets. We
used embeddings from the ArcFace-trained model.

Our findings indicate that opting for a smaller k value
yields better results, with k=1 being a reasonable choice in
any case. This discovery is consistently supported by re-
sults in various other datasets we considered. We attribute
this phenomenon to the significant class imbalance present
in wildlife datasets. As k increases, identities with higher
prior probability overwhelm the classification results, i.e.,
for larger k values, there are often just a few samples for
the less frequent identities. On the SeaTurtleID2022 dataset
(head and full-body) the performance in terms of accuracy
significantly decreased from 69.2% at k = 1 to 55.0 % at
k = 100. A similar, though less severe, drop in perfor-
mance was also noticeable in other datasets. We depict the
relationship between accuracy and values of k in Fig. 8.

A.2. Time-aware vs random split: Additional ex-
periment with cross-entropy learning

To further elaborate the performance inflation related to
random split, we have tested various deep learning back-
bone architectures optimized using softmax cross-entropy.
In Tab. 8, we provide the performance of five architectures
on two splits of the SeaTurtleID2022 dataset: time-aware
and a random split. In Tab. 9, we perform a similar exper-
iment on 3 other datasets that allow time-aware splitting,
showcasing that this inflation is not a characteristic of the
SeaTurtleID2022 dataset, but it occurs in other datasets as
well. We employed a 50/50 training-test split; therefore, re-
sults are directly not comparable to results in Section 4.1. In
all experiments, all images were resized to match the pre-
trained model input size of 224× 224.
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Figure 8. Effect of k on performance. We display the classifi-
cation accuracy of k-NN classifier with ArcFace embeddings for
various k values. Different body parts (e.g. head and full-body)
performance on the SeaTurtleID2022 dataset (top) and selected
wildlife re-identification datasets (bottom).

Backbone Time-aware close-set Random split

ResNeXt-50 38.6% 63.4%
EfficientNet-B0 39.9% 76.5%
ConvNeXt-B 47.2% 78.5%
ViT-Base/p32 45.2% 82.5%
Swin-B/p4w7 47.6% 83.2%

Table 8. Performance inflation (accuracy) with different back-
bones fine-tuned with softmax cross-entropy.

Dataset Time-aware close-set Random split

BelugaID 7.8% 12.1%
GiraffeZebraID 2.1% 30.1%
MacaqueFaces 91.1% 98.9%

Table 9. Performance inflation (accuracy) with different datasets.

A.3. Body-part instance segmentation

We further present additional baseline instance segmen-
tation experiments for different turtle body parts (head,
flipper, and full-body). We provide an evaluation of
three architectures, e.g., Mask R-CNN, the Hybrid Task
Cascade (HTC), and the state-of-the-art transformer-based
Mask2Former, on the time-aware open-set split. We used
the same training strategy, i.e., backbones were initialized
from publicly available ImageNet-1k checkpoints using the
default implementation and hyperparameters setting and
fine-tuned the models for 12 epochs with a step-wise LR
schedule.
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The comparison of selected methods utilizing well-
known CNN- and transformer-based backbone archi-
tectures on the time-aware open-set split of the Sea-
TurtleID2022 dataset validated findings from the initial ex-
periment with closed-set split, i.e., that the Mask2Former
(both backbones) approach showed better overall perfor-
mance but underperformed in the on heads. See Table 10
for detailed performance evaluation.

Method mAP head turtle flippers

R
es

N
et

-5
0 Mask R-CNN 0.827 0.735 0.907 0.840

HTC 0.833 0.740 0.909 0.849
Mask2Former 0.850 0.708 0.975 0.866

Sw
in

-B

Mask R-CNN 0.833 0.743 0.913 0.844
HTC 0.839 0.740 0.921 0.856
Mask2Former 0.855 0.714 0.977 0.874

Table 10. Instance segmentation performance of selected back-
bone and head architectures over the SeaTurtleID. Open set split.

A.4. The importance of time-aware splitting

We further test and demonstrate the need for time-aware
splits on other datasets that include timestamps using the
Swin-B/p4w7 with the same setting as in the previous
section. In Tab. 9, we show that in all cases, the results
on the random split are undesirably inflated and much
better than the ones of the time-aware split. We get further
insight by considering all pairs of images of the same
individuals with the same head orientation and see how
their matching probability (proportion of correctly matched
pairs) is affected by the time between them. Fig. 9 shows
that the probability of correctly matching such image pairs
decreases as the time between them increases. For instance,
while this probability is 53.5% for images taken on the
same day, it decreases to 2.5% for images taken more than
one year apart.
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Figure 9. The probability of the correctly matched pairs of images
of the same individuals with the same head orientation (left side)
decreases as the time between the two images increases.

Further insights: We further interpret Fig. 9 with the
specific example of turtle “t298”, which was observed only

on two days: 01/07/2016 and 12/07/2020. The random split
has images from both dates in both reference and query
sets, while the time-proportion split contains all images
from 2016 in the reference set and all images from 2020 in
the query set. While there were 26 matches for 2016-2016
images and 140 matches for 2020-2020 images, there were
only 2 matches for 2016-2020 images. This further implies
that there are many matches between the reference and
query sets for the random split but almost no such matches
for the time-proportion split. Therefore, the random split
unnaturally simplifies the real-world re-identification
problem.

B. Additional figures about the Sea-
TurtleID2022 dataset

Fig. 10 displays photographs of seven individuals (one
individual per row) showing the variability of the unique
facial scale patterns of loggerhead sea turtles. The scales on
the left and right sides of the head are different in a given
individual, making it impossible to match them without any
intermediate images.

Fig. 11 shows further examples of different visual ap-
pearances of the same individual sea turtles over long peri-
ods of time due to different factors like camera capture con-
ditions and animal aging. The shapes of the facial scales
remained stable, but other features have changed over time,
like coloration, pigmentation, shape, and scratches.

Fig. 12 shows sample images from the SeaTurtleID2022
dataset, highlighting the variety of photographs (poses, ori-
entations, backgrounds, etc.).
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Figure 10. Examples of 7 individuals (one individual per row) that
show the variability of unique facial scale patterns of loggerhead
sea turtles. From left to right: right lateral facial scales, left lateral
facial scales, dorsal head scales.
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Figure 11. Further examples of different visual appearances of
the same individual sea turtles over long periods of time due to
different factors like camera capture conditions and animal ageing.
The shapes of the facial scales remained stable, but other features
have changed over time, like colouration, pigmentation, shape, and
scratches.
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Figure 12. Examples of original photographs from the SeaTurtleID2022 dataset.
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