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Abstract

This article proposes a new two-parameter generalized entropy, which can be reduced to the Tsallis and the

Shannon entropy for specific values of its parameters. We develop a number of information-theoretic properties

of this generalized entropy and divergence, for instance, the sub-additive property, strong sub-additive property,

joint convexity, and information monotonicity. This article presents an exposit investigation on the information-

theoretic and information-geometric characteristics of the new generalized entropy and compare them with the

properties of the Tsallis and the Shannon entropy.
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1 Introduction

We encounter complex systems obeying asymptotic power-law distributions in different fields of science and technol-
ogy. For explaining the statistical natures of these complex systems, an effective approach is addressing statistical
mechanics in the form of a suitable generalization of the Shannon entropy. The Tsallis’ non-extensive thermostatis-
tics [1] is one of such generalizations, which is utilized in image processing [2], medical engineering [3], signal analysis
[4], quantum information [5, 6], and in many other disciplines, in the recent years. The Sharma-Mittal entropy [7, 8]
is a two-parameter generalization of the Shannon entropy which incorporates a large number of prominent entropy
measures as special cases, such as the Tsallis and Rényi entropy. It is useful in the investigations of diffusion pro-
cesses in statistical physics [9], analysis of record values in statistics [10], estimating the performance of clustering
models in data analysis[11], and modeling uncertainty in the theory of human cognition [12]. In the context of
astrophysics, generalized entropy is useful in modeling holographic dark energy [13, 14], and in the investigation of
the different phenomenon of black holes [15, 16].

This article concentrates on the information theoretic properties of a generalized entropy with two parameters.
In the literature, a number of two-parameter generalized entropy are proposed in the context of thermodynamics
and statistical mechanics. Given a discrete probability distribution P = {p(x) : x ∈ X}, the Sharma-Mittal entropy
[7, 8] of a random variable X is defined by

SM{α,β}(X) =
1

β − 1



1−

(

∑

x∈X

(p(x))α
)

1−β
1−α



 , (1)

for two real parameters α 6= 1 and β 6= 1. Another two-parameter entropy was defined by Borges and Roditi [17]
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which is

BR{α,β}(X) =
∑

x∈X

(p(x))α − (p(x))β

β − α
, (2)

where α 6= β. Later in [18, 19] a two-parameter entropy was proposed by Kaniadakis, Lissia, and Scarfone, which is

KLS{k,r}(X) =
∑

x∈X

(p(x))
1+r (p(x))k − (p(x))−k

2k
= −

∑

x∈X

p(x) Ln{k,r} (p(x)) , (3)

where Ln{k,r}(u) = ur uk−u−k

2k and the parameters k and r were chosen from R = {(k, r) : −|k| ≤ r ≤ |k|, 0 < |k| <
1
2} ∪ {(k, r) : |k| − 1 ≤ r ≤ 1− |k|, 1

2 ≤ |k| < 1}. The information theoretic properties of KLS{k,r} and BR{α,β} are
investigated in [20], and [21, 22], respectively.

We observe that a modification to the parameters k and r of Ln{k,r} provides a product rule of the two param-
eter deformed logarithm. It leads us to define the two-parameter generalized entropy S{k,r} and the generalized
divergence D{k,r}. The significant attributes of S{k,r} and D{k,r} derived in this article are listed below:

1. The pseudo-additivity of S{k,r} (Equation (30)): Given any two discrete random variables X and Y we have

S{k,r}(X,Y ) = S{k,r}(X) + S{k,r}(Y )− 2kS{k,r}(X)S{k,r}(Y ). (4)

2. The sub-additive property of S{k,r} (Theorem 2) : Given a sequence of random variables X1, X2, . . . Xn, it
can be proved that

S{k,r}(X1, X2, . . . Xn) ≤
n
∑

i=1

S{k,r}(Xi). (5)

3. The pseudo-additivity of D{k,r} (Theorem 4): Consider probability distributions P(1), and Q(1) defined on a

random variable X as well as P(2), and Q(2) defined on random variable Y . Then,

D{k,r}(P
(1)⊗P(2)||Q(1)⊗Q(2)) = D{k,r}(P

(1)||Q(1))+D{k,r}(P
(2)||Q(2))−2kD{k,r}(P

(1)||Q(1))D{k,r}(P
(2)||Q(2)).

(6)

4. The joint convexity of D{k,r} (Theorem 5):

D{k,r}(P
(1) + λP(2)||Q(1) + λQ(2)) ≤ D{k,r}(P

(1)||Q(1)) + λD{k,r}(P
(2)||Q(2)). (7)

5. The information monotonicity of D{k,r} (Theorem 6) : Given any two probability distributions P and Q of a
random variable and a probability transition matrix W we have

D{k,r}(WP||WQ) ≤ D{k,r}(P||Q). (8)

The similar properties for the Tsallis entropy and divergence are investigated in detail [23], [24], [25]. To the best of
our knowledge, this article develops these properties for two-parameter generalized entropy first time in literature.

This article is distributed as follows. In section 2, we define the joint entropy and the conditional entropy
to present a number of properties of two-parameter generalized entropy as well as the chain rule. Section 3 is
dedicated to two-parameter generalized relative entropy and its properties. We discuss the information geometric
aspects of entropy in section 4. Then we conclude the article comparing similar properties of Shannon, Tsallis and
two-parameter generalized entropy.

2 Two-parameter generalized entropy

From classical information theory we recall that the function f(u) = − log(u) is a positive, monotone decreasing,
convex function where 0 ≤ u ≤ 1 where the convention 0 log 0 = 0 is used. The two-parameter deformed log-
arithm should preserve equivalent properties. Below, we define a two parameter deformed logarithm justify its
characteristics.

Definition 1.

ln{k,r}(u) =
uk − u−k

2kur
=

u2k − 1

2kur+k
,

with r > 0 and 0 < k ≤ 1.
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Lemma 1. For r < 0, and 0 < k ≤ 1 the function − ln{k,r}(u) = −ur uk−u−k

2k is positive, convex, and monotonically
decreasing for all u ∈ (0, 1].

Proof. Recall that a twice differentiable function f(u), u ∈ R is convex if f ′′(u) > 0. Note that, f(u) = ur is a
positive, monotone decreasing, and convex function for all u ∈ (0, 1] and r < 0. Also, for all k > 0 and u ∈ (0, 1]

we have u−k ≥ uk. Therefore, the function g(u) = −uk−u−k

2k is a positive and monotone decreasing function. For

convexity, we need g′′(u) = − (k−1)uk−2−(k+1)u−k−2

2 ≥ 0, which holds for 0 < k ≤ 1. We know that, if two given
functions f, g : R → R

+ are convex, and both monotonically decreasing on an interval, then fg(u) = f(u)g(u)
is convex [26]. Combining we get − ln{k,r}(u) = f(u)g(u) is a positive, monotonically decreasing, and convex
function.

In the next lemma, we present a product rule for ln{k,r} which leads us to the chain rule of generalized entropy.

Lemma 2. Given any two real numbers u, v 6= 0 we have

(uv)r+k ln{k,r}(uv) = ur+k ln{k,r}(u) + vr+k ln{k,r}(v) + 2kur+kvr+k ln{k,r}(u) ln{k,r}(v).

Proof.

ln{k,r}(u) ln{k,r}(v) =
u2k − 1

2kur+k

v2k − 1

2kvr+k
=

u2kv2k − u2k − v2k + 1

4k2ur+kvr+k

=
u2kv2k − 1 + 1− u2k − v2k + 1

4k2ur+kvr+k

=
u2kv2k − 1

4k2ur+kvr+k
−

u2k − 1

4k2ur+kvr+k
−

v2k − 1

4k2ur+kvr+k

=
ln{k,r}(uv)

2k
−

ln{k,r}(u)

2kvr+k
−

ln{k,r}(v)

2kur+k
.

(9)

Simplifying, we get the result.

Note that, in Lemma 2 every term of ln{k,r}(z) has the coefficient zr+k for z = u and v. This structure motivates

us to keep a term of zr+k with ln{k,r}(z) in definition of entropy. Hence, we define the two-parameter generalized
entropy as follows:

Definition 2. We define the two-parameter generalized entropy for a random variable X with probability distribution
P = {p(x)}x∈X as

S{k,r}(X) = −
∑

x∈X

(p(x))
r+k+1

ln{k,r}(p(x)),

where ln{k,r}(u) =
uk−u−k

2kur with 0 < k ≤ 1
2 , and r > 0.

In Definition 2, if p(x) = 0 for some x ∈ X then conventionally we have

0r+k+1 ln{k,r}(0) = lim
p(x)→0

(p(x))
r+k+1

ln{k,r}(p(x)) = 0.

Here, restriction in the domain of k is essential for proving Lemma 4 and 5. Lemma 1 suggests that for any random
variable X we have S{k,r}(X) ≥ 0. Moreover, S{k,r} reduces to the Tsallis entropy when k = r = q−1

2 that is

S{ q−1

2
,
q−1

2 }(X) = −
∑

x∈X

(p(x))
q (p(x))1−q − 1

1− q
= Sq(X). (10)

An alternative expression of S{k,r} can be presented. We can verify that

ln{k,r}(uv) =
1

ur−k
ln{k,r}(v) +

1

vr+k
ln{k,r}(u). (11)

Putting v = 1
u
in this equation we find

ln{k,r}

(

1

v

)

= −u2r ln{k,r}(u), or ln{k,r}(u) = −
1

u2r
ln{k,r}

(

1

u

)

. (12)

Therefore, Definition 2 suggests that

S{k,r}(X) =
∑

x∈X

(p(x))
k−r+1

ln{k,r}

(

1

p(x)

)

. (13)
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Definition 3. (Joint entropy) Let P = {p(x, y)}(x,y)∈(X,Y ) be a probability distribution of the joint random variable
(X,Y ). The generalized joint entropy of (X,Y ) is defined by

S{k,r}(X,Y ) = −
∑

x∈X

∑

y∈Y

(p(x, y))
k+r+1

ln{k,r}(p(x, y)).

Similarly, for three random variables X,Y , and Z the joint entropy is

S{k,r}(X,Y, Z) = −
∑

x∈X

∑

y∈Y

∑

z∈Z

(p(x, y, z))k+r+1 ln{k,r}(p(x, y, z)). (14)

Definition 4. (Conditional entropy) Given a conditional random variable Y |X = x we define the generalized
conditional entropy as

S{k,r}(Y |X) =
∑

x∈X

(p(x))2k+1S{k,r}(Y |X = x)

= −
∑

x∈X

(p(x))2k+1
∑

y∈Y

(p(y|x))k+r+1
ln{k,r}(p(y|x))

= −
∑

x∈X

∑

y∈Y

(p(x))2k+1 (p(y|x))k+r+1 ln{k,r}(p(y|x)).

As ln{k,r}(u) = − 1
u2r ln{k,r}

(

1
u

)

, we can alternatively write down

S{k,r}(Y |X) =
∑

x∈X

∑

y∈Y

(p(x))2k+1 (p(y|x))k−r+1
ln{k,r}

(

1

p(y|x)

)

. (15)

This definition can be generalized for three or more random variables. Given three random variables X,Y and
Z we have

S{k,r}(X,Y |Z) = −
∑

x∈X

∑

y∈Y

(p(z))
2k+1

S{k,r}(X,Y |Z = z)

= −
∑

x∈X

∑

y∈Y

∑

z∈Z

(p(z))
2k+1

(p(x, y|z))k+r+1
ln{k,r} (p(x, y|z)) .

(16)

In a similar fashion, we can define

S{k,r}(Y |X,Z) = −
∑

x∈X

∑

y∈Y

(p(x, z))
2k+1

S{k,r}(Y |X = x, Z = z)

= −
∑

x∈X

∑

y∈Y

∑

z∈Z

(p(x, z))2k+1 (p(y|x, z))k+r+1 ln{k,r} (p(y|x, z)) .
(17)

Likewise, definition of the conditional entropy can be extended for any number of random variables for defining
S{k,r}(X1, X2, . . .Xn|Y1, Y2, . . . Ym). Now we prove a number of characteristics of generalized entropy.

Lemma 3. Given two independent random variables X and Y the generalized conditional entropy can be expressed
as

S{k,r}(Y |X) = S{k,r}(Y )− 2S{k,r}(X)S{k,r}(Y ).

Proof. Definition of ln{k,r} suggests that (p(x))2k = 1 + 2k(p(x))r+k ln{k,r}(p(x)). Putting it in definition of the
conditional entropy we construct

S{k,r}(Y |X) = −
∑

x∈X

(p(x))
[

1 + 2k(p(x))r+k ln{k,r}(p(x))
]

∑

y∈Y

(p(y|x))r+k+1
ln{k,r}(p(y|x)). (18)

As X and Y are independent we have p(y|x) = p(y). Therefore,

S{k,r}(Y |X) = −
∑

x∈X

(p(x))
[

1 + 2k(p(x))r+k ln{k,r}(p(x))
]

×
∑

y∈Y

(p(y))r+k+1 ln{k,r}(p(y))

=−
∑

x∈X

(p(x))
∑

y∈Y

(p(y))
r+k+1

ln{k,r}(p(y))−
∑

x∈X

2k(p(x))r+k+1 ln{k,r}(p(x))
∑

y∈Y

(p(y))
r+k+1

ln{k,r}(p(y))

=S{k,r}(Y )− 2kS{k,r}(X)S{k,r}(Y ).

(19)
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Lemma 3 suggests that S{k,r}(Y |X) ≤ S{k,r}(Y ) for independent random variables X and Y . The next lemma
proves this inequality for any two random variables.

Lemma 4. Given any two random variables X and Y we have S{k,r}(Y |X) ≤ S{k,r}(Y ).

Proof. Note that, the function f(u) = uk+r+1 ln{k,r}(u) where r > 0, 0 < k ≤ 1
2 and 0 ≤ u ≤ 1 is a convex

function, that is −f(u) is a concave function. As 0 ≤ p(x) ≤ 1, we have 0 ≤ (p(x))
2k+1 ≤ p(x) ≤ 1. Also,

0 ≤ p(y|x) ≤ 1 indicates −f(p(y|x)) = − (p(y|x))k+r+1 ln{k,r} (p(y|x)) = (p(y|x))k−r+1 ln{k,r}

(

1
p(y|x)

)

≥ 0, for

0 ≤ x ≤ 1. Combining we get

−(p(x))2k+1 (p(y|x))k+r+1
ln{k,r} (p(y|x)) ≤ −p(x) (p(y|x))k+r+1

ln{k,r} (p(y|x)) . (20)

Now, applying the concavity property of −f(u) we find

−
∑

x∈X

p(x)f (p(y|x)) ≤ −f

(

∑

x∈X

p(x)p(y|x)

)

= −f

(

∑

x∈X

p(x, y)

)

= −f (p(y)) . (21)

Expanding f(p(y|x)) in the above equation,

−
∑

x∈X

p(x) (p(y|x))k+r+1
ln{k,r} (p(y|x)) ≤ − (p(y))

k+r+1
ln{k,r} (p(y)) . (22)

Summing over Y we find

−
∑

x∈X

p(x)
∑

y∈Y

(p(y|x))k+r+1
ln{k,r} (p(y|x)) ≤ −

∑

y∈Y

(p(y))
k+r+1

ln{k,r} (p(y)) . (23)

Combining this equation with equation (21) we find

−
∑

x∈X

(p(x))2k+1
∑

y∈Y

(p(y|x))k+r+1
ln{k,r} (p(y|x)) ≤−

∑

x∈X

p(x)
∑

y∈Y

(p(y|x))k+r+1
ln{k,r} (p(y|x))

≤−
∑

y∈Y

(p(y))
k+r+1

ln{k,r} (p(y)) .
(24)

The first and the last term of the above inequality indicates S{k,r}(Y |X) ≤ S{k,r}(Y ).

Theorem 1. (Chain rule for generalized entropy) Given any two random variables X and Y we have

S{k,r}(X,Y ) = S{k,r}(X) + S{k,r}(Y |X).

Proof. The product rule of ln{k,r}(u) mentioned in Lemma 2 indicates that

(p(x)p(y|x))r+k ln{k,r}(p(x)p(y|x)) =p(x)r+k ln{k,r}(p(x)) + p(y|x)r+k ln{k,r}(p(y|x))

+ 2kp(x)r+kp(y|x)r+k ln{k,r}(p(x)) ln{k,r}(p(y|x)).
(25)

Applying p(x, y) = p(x)p(y|x) we find that

(p(x, y))r+k ln{k,r}(p(x, y)) =p(x)r+k ln{k,r}(p(x)) + p(y|x)r+k ln{k,r}(p(y|x))

+ 2kp(x)r+kp(y|x)r+k ln{k,r}(p(x)) ln{k,r}(p(y|x))

=p(x)r+k ln{k,r}(p(x)) + [1 + 2k(p(x))r+k ln{k,r}(p(x))]p(y|x)
r+k ln{k,r}(p(y|x)).

(26)

Definition 2 of the generalized entropy suggests that (p(x))2k = 1 + 2k(p(x))r+k ln{k,r}(p(x)). Putting it in the
above equation we find

(p(x, y))r+k ln{k,r}(p(x, y)) = p(x)r+k ln{k,r}(p(x)) + (p(x))2kp(y|x)r+k ln{k,r}(p(y|x)). (27)

Multiplying both side by p(x, y) and summing over X and Y we get

−
∑

x∈X

∑

y∈Y

p(x, y))r+k+1 ln{k,r}(p(x, y)) =−
∑

x∈X

∑

y∈Y

p(x, y)p(x)r+k ln{k,r}(p(x))

−
∑

x∈X

∑

y∈Y

p(x, y)(p(x))2kp(y|x)r+k ln{k,r}(p(y|x)).
(28)
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Now, definitions of the joint entropy and the conditional entropy together indicate

S{k,r}(X,Y ) =−

[

∑

x∈X

p(x)r+k+1 ln{k,r}(p(x))

]





∑

y∈Y

p(y|x)





−
∑

x∈X

∑

y∈Y

(p(x))2k+1p(y|x)r+k+1 ln{k,r}(p(y|x))

or S{k,r}(X,Y ) =S{k,r}(X) + S{k,r}(Y |X).

(29)

The above theorem clearly indicates that S{k,r}(X) ≤ S{k,r}(X,Y ). For two independent random variables X
and Y Lemma 3 and Theorem 1 produce that the pseudo-additivity property for the generalized entropy which is

S{k,r}(X,Y ) = S{k,r}(X) + S{k,r}(Y )− 2kS{k,r}(X)S{k,r}(Y ). (30)

Corollary 1. The following chain rules holds for the generalized entropy: S{k,r}(X,Y, Z) = S{k,r}(X,Y |Z) +
S{k,r}(Z).

Proof. We have p(x, y, z) = p(x, y|z)p(z). Now, applying the product rule mentioned in Lemma 2 we find

(p(x, y, z))
r+k

ln{k,r} (p(x, y, z)) = (p(z))
r+k

(p(x, y|z))r+k
ln{k,r} (p(x, y|z)p(z))

= (p(z))
r+k

ln{k,r} (p(z)) + (p(x, y|z))r+k
ln{k,r} (p(x, y|z))

+ 2k (p(z))
r+k

(p(x, y|z))r+k
ln{k,r} (p(z)) ln{k,r} (p(x, y|z)) .

(31)

Now the equation (p(z))
2k

= 1+2k (p(z))
r+k

ln{k,r} (p(z)) and definitions of joint and conditional entropies indicate
S{k,r}(X,Y, Z) = S{k,r}(X,Y |Z) + S{k,r}(Z).

Corollary 2. The generalized entropy also fulfills the chain rule:

S{k,r}(X,Y |Z) = S{k,r}(X |Z) + S{k,r}(Y |X,Z).

Proof. We also have p(x, y, z) = p(y|x, z)p(x, z). Applying the similar approach in Corollary 1 and Theorem 1 we
have

S{k,r}(X,Y, Z) = S{k,r}(Y |X,Z) + S{k,r}(X,Z)

or S{k,r}(Y |X,Z) = S{k,r}(X,Y, Z)− S{k,r}(X,Z).
(32)

Applying Corollary 1 we have

S{k,r}(Y |X,Z) = S{k,r}(X,Y |Z) + S{k,r}(Z)− S{k,r}(X,Z). (33)

Now Theorem 1 suggests S{k,r}(X,Z) = S{k,r}(Z) + S{k,r}(X |Z). Putting it in the above equation we have

S{k,r}(Y |X,Z) = S{k,r}(X,Y |Z) + S{k,r}(Z)− [S{k,r}(Z) + S{k,r}(X |Z)]

or S{k,r}(Y |X,Z) = S{k,r}(X,Y |Z)− S{k,r}(X |Z)

or S{k,r}(X,Y |Z) = S{k,r}(X |Z) + S{k,r}(Y |X,Z).

(34)

Corollary 2 also suggests that S{k,r}(X |Z) ≤ S{k,r}(X,Y |Z). In general Corollary 1 and 2 can be generalized as

S{k,r}(X1, X2, . . . Xn|Y ) =

n
∑

i=1

S{k,r}(Xi|Xi−1, . . . , X1, Y ), (35)

which indicates

S{k,r}(X1, X2, . . . Xn) =

n
∑

i=1

S{k,r}(Xi|Xi−1, . . . , X1). (36)

For any two independent random variables X and Y equation (30) suggests that S{k,r}(X,Y ) ≤ S{k,r}(X) +
S{k,r}(Y ). If X and Y are any two random variables Theorem 1 and Lemma 4 together indicate the following
theorem, which is the sub-additive property for the generalized entropy.
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Theorem 2. Given any two random variables X and Y we have S{k,r}(X,Y ) ≤ S{k,r}(X) + S{k,r}(Y ).

For random variables X1, X2, . . .Xn this theorem can be further generalized as

S{k,r}(X1, X2, . . . Xn) ≤
n
∑

i=1

S{k,r}(Xi). (37)

Lemma 5. Given any three random variables X, Y and Z we have S{k,r}(Y |Z) ≥ S{k,r}(Y |X,Z).

Proof. Observe that the function f(u) = uk+r+1 ln{k,r}(x), where r > 0, 0 < k ≤ 1
2 and 0 ≤ u ≤ 1 is a convex

function, as well as f(u) ≤ 0. Therefore, as 0 ≤ p(y|z) ≤ 1 we have

−f(p(y|z)) = −(p(y|z))r+k+1 ln{k,r}(p(y|z)) > 0. (38)

In addition, 0 ≤ p(y|x, z) ≤ 1 indicates

−p(x|z)f(p(y|x, z)) = p(x|z)(p(y|x, z))r+k+1 ln{k,r}(p(y|x, z)) ≥ 0. (39)

A basic result of conditional probability states that p(y|z) =
∑

x∈X p(x|z)p(y|x, z). Using the concavity property
of −f(u) in the expression below we find

−
∑

x∈X

p(x|z)(p(y|x, z))r+k+1 ln{k,r}(p(y|x, z)) = −
∑

x∈X

p(x|z)f(p(y|x, z))

≤ −f

(

∑

x∈X

p(x|z)p(y|x, z)

)

= −(p(y|z))r+k+1 ln{k,r}(p(y|z)).

(40)

Multiplying both side of the above inequality with (p(z))2k+1 and summing over Y and Z we find

−
∑

y∈Y

∑

z∈Z

(p(z))2k+1
∑

x∈X

p(x|z)(p(y|x, z))r+k+1 ln{k,r}(p(y|x, z))

≤−
∑

y∈Y

∑

z∈Z

(p(z))2k+1(p(y|z))r+k+1 ln{k,r}(p(y|z)) = S{k,r}(Y |Z).
(41)

Note that, p(x, z)2k+1 = (p(z))2k+1(p(x|z))2k+1 ≤ (p(z))2k+1p(x|z). Therefore,

S{k,r}(Y |X,Z) = −
∑

x∈X

∑

y∈Y

∑

z∈Z

(p(x, z))2k+1(p(y|x, z))r+k+1 ln{k,r}(p(y|x, z))

≤ −
∑

x∈X

∑

y∈Y

(p(z))2k+1
∑

x∈X

p(x|z)(p(y|x, z))r+k+1 ln{k,r}(p(y|x, z)).
(42)

Combining we get S{k,r}(Y |Z) ≥ S{k,r}(Y |X,Z).

The above inequality leads us to the strong sub-additivity property of the generalized entropy which is mentioned
below.

Theorem 3. Given any three random variable X,Y and Z we have

S{k,r}(X,Y, Z) + S{k,r}(Z) ≤ S{k,r}(X,Z) + S{k,r}(Y, Z).

Proof. Theorem 1 indicates

S{k,r}(X,Z) + S{k,r}(Y, Z) =S{k,r}(Z) + S{k,r}(X |Z) + S{k,r}(Z) + S{k,r}(Y |Z)

=2S{k,r}(Z) + S{k,r}(X |Z) + S{k,r}(Y |Z).
(43)

Now, applying the chain rules mentioned in Corollary 2 we find

S{k,r}(X,Z) + S{k,r}(Y, Z) = 2S{k,r}(Z) + S{k,r}(X,Y |Z)− S{k,r}(Y |X,Z) + S{k,r}(Y |Z). (44)

The chain rule in Corollary 1 leads us to

S{k,r}(X,Z) + S{k,r}(Y, Z) =2S{k,r}(Z) + S{k,r}(X,Y, Z)− S{k,r}(Z)− S{k,r}(Y |X,Z) + S{k,r}(Y |Z)

=S{k,r}(X,Y, Z) + S{k,r}(Z) + S{k,r}(Y |Z)− S{k,r}(Y |X,Z).
(45)

Now, Lemma 5 indicates S{k,r}(Y |Z)− S{k,r}(Y |X,Z) ≥ 0. Therefore,

S{k,r}(X,Z) + S{k,r}(Y, Z) ≥ S{k,r}(X,Y, Z) + S{k,r}(Z). (46)

Hence, the result follows.
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3 Two-parameter generalized divergence

In the Shannon information theory, the relative entropy, or the Kullback-Leibler (KL) divergence is a measure of
difference between two probability distributions. Recall that given two probability distributions P = {p(x)}x∈X

and Q = {q(x)}x∈X the Kullback-Leibler divergence [27] is defined by

D(P||Q) =
∑

x∈X

p(x) ln

(

p(x)

q(x)

)

= −
∑

x∈X

p(x) ln

(

q(x)

p(x)

)

. (47)

We generalize it in terms of the generalized entropy as follows:

Definition 5. (Generalized divergence) Given two probability distributions P = {p(x)}x∈X and Q = {q(x)}x∈X

the generalized divergence is represented by

D{k,r}(P||Q) =
∑

x∈X

p(x)

(

p(x)

q(x)

)r−k

ln{k,r}

(

p(x)

q(x)

)

= −
∑

x∈X

p(x)

(

q(x)

p(x)

)r+k

ln{k,r}

(

q(x)

p(x)

)

,

where 0 < k ≤ 1
2 and r > 0.

The equivalence between two expressions of D{k,r}(P||Q) follows from equation (12). Putting k = r = 1−q
2 in

−
∑

x∈X p(x)
(

q(x)
p(x)

)r+k

ln{k,r}

(

q(x)
p(x)

)

we find

D{ 1−q
2

,
1−q
2 } = −

∑

x∈X

p(x)

(

q(x)
p(x)

)1−q

− 1

1− q
= Dq(P||Q), (48)

which is the Tsallis divergence [24], [23]. Below we discuss a few properties of the generalized divergence.

Lemma 6. (Non-negativity) For any two probability distribution P and Q the generalized divergence D{k,r}(P||Q) ≥
0. The equality holds for P = Q.

Proof. It can be proved that the function −uk+r ln{k,r}(u) is a convex function for u ≥ 0, 0 ≤ k ≤ 1
2 and r > 0.

Therefore,

D{k,r}(P||Q) = −
∑

x∈X

p(x)

(

q(x)

p(x)

)r+k

ln{k,r}

(

q(x)

p(x)

)

≥ −

[

∑

x∈X

p(x)

(

q(x)

p(x)

)r+k
]

ln{k,r}

(

∑

x∈X

p(x)
q(x)

p(x)

)

.

(49)

Now, ln{k,r}

(

∑

x∈X p(x) q(x)
p(x)

)

= ln{k,r}
(
∑

x∈X q(x)
)

= ln{k,r}(1) = 0. Note that, if P = Q then

D{k,r}(P||P) = −
∑

x∈X

p(x)

(

p(x)

p(x)

)r+k

ln{k,r}

(

p(x)

p(x)

)

= −
∑

x∈X

p(x) ln{k,r}(1) = 0. (50)

Lemma 7. (Symmetry) Let P ′ = {p′i} and Q′ = {q′i} be two probability distributions, such that, p(x)′ = pπ(i)
and q(x)′ = qπ(i) for a permutation π and probability distributions P = {p(x)}x∈X and Q = {q(x)}x∈X. Then
D{k,r}(P

′||Q′) = D{k,r}(P||Q).

Proof. The permutation π alters the position of p(x)
(

p(x)
q(x)

)r−k

ln{k,r}

(

p(x)
q(x)

)

under addition and keeps the sum

D{k,r}(P||Q), unaltered. Hence, the proof follows trivially.

Lemma 8. (Possibility of extension) Let P ′ = P ∪ {0} and Q′ = Q∪ {0}, then D{k,r}(P
′||Q′) = D{k,r}(P||Q).
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Proof. Define 0
(

0
0

)r+k
ln{k,r}

(

0
0

)

= lim(x,y)→(0,0) x
(

y
x

)r+k
ln{k,r}

(

y
x

)

. Note that,

lim
x→0

lim
y→0

x
(y

x

)r+k

ln{k,r}

( y

x

)

= 0.

In addition, we can write that limy→0 limx→0 x
(

y
x

)r+k
ln{k,r}

(

y
x

)

= 0. Now applying Moore-Osgood Theorem

[28] we find that lim(x,y)→(0,0) x
(

y
x

)r+k
ln{k,r}

(

y
x

)

= 0. Therefore, 0 ln{k,r}
(

0
0

)

= 0. Hence, D{k,r}(P
′||Q′) =

D{k,r}(P||Q).

Given two probability distributions P = {p(x)}x∈X and Q = {q(y)}y∈Y we can define a joint probability
distribution P ⊗ Q = {p(x)q(y)}(x,y)∈X⊗Y . Note that, for all x ∈ X and y ∈ Y we have 0 ≤ p(x)q(y) ≤ 1. In
addition,

∑

x∈X

∑

y∈Y p(x)q(y) = 1. Now, we have the following theorem.

Theorem 4. (Pseudo-additivity) Given probability distributions P(1) = {p(1)(x)}x∈X , Q(1) = {q(1)(x)}x∈X , P(2) =
{p(2)(y)}y∈Y and Q(2) = {q(2)(y)}y∈Y we have

D{k,r}(P
(1) ⊗ P(2)||Q(1) ⊗Q(2)) = D{k,r}(P

(1)||Q(1)) +D{k,r}(P
(2)||Q(2))− 2kD{k,r}(P

(1)||Q(1))D{k,r}(P
(2)||Q(2)).

Proof. Recall the product rule of ln{k,r}(xy) mentioned in Lemma 2. Expanding the logarithm we find

(

q(1)(x)q(2)(y)

p(1)(x)p(2)(y)

)r+k

ln{k,r}

(

q(1)(x)q(2)(y)

p(1)(x)p(2)(y)

)

=

(

q(1)(x)

p(1)(x)

)r+k

ln{k,r}

(

q(1)(x)

p(1)(x)

)

+

(

q(2)(y)

p(2)(y)

)r+k

ln{k,r}

(

q(2)(y)

p(2)(y)

)

+ 2k

(

q(1)(x)

p(1)(x)

)r+k

ln{k,r}

(

q(1)(x)

p(1)(x)

)(

q(2)(y)

p(2)(y)

)r+k

ln{k,r}

(

q(2)(y)

p(2)(y)

)

.

(51)

Multiplying p(1)(x)p(2)(y) with both side we find

− p(1)(x)p(2)(y)

(

q(1)(x)q(2)(y)

p(1)(x)p(2)(y)

)r+k

ln{k,r}

(

q(1)(x)q(2)(y)

p(1)(x)p(2)(y)

)

=− p(1)(x)

(

q(1)(x)

p(1)(x)

)r+k

ln{k,r}

(

q(1)(x)

p(1)(x)

)

p(2)(y)

− p(2)(y)

(

q(2)(y)

p(2)(y)

)r+k

ln{k,r}

(

q(2)(y)

p(2)(y)

)

p(1)(x)

− 2k × p(1)(x)

(

q(1)(x)

p(1)(x)

)r+k

ln{k,r}

(

q(1)(x)

p(1)(x)

)

× p(2)(y)

(

q(2)(y)

p(2)(y)

)r+k

ln{k,r}

(

q(2)(y)

p(2)(y)

)

.

(52)

Now, applying Definition 5 we find D{k,r}(P
(1) ⊗ P(2)||Q(1) ⊗Q(2))

=−

[

∑

x∈X

p(1)(x)

(

q(1)(x)

p(1)(x)

)r+k

ln{k,r}

(

q(1)(x)

p(1)(x)

)

]





∑

y∈Y

p(2)(y)





−





∑

y∈Y

p(2)(y)

(

q(2)(y)

p(2)(y)

)r+k

ln{k,r}

(

q(2)(y)

p(2)(y)

)





[

∑

x∈X

p(1)(x)

]

− 2k ×

[

∑

x∈X

p(1)(x)

(

q(1)(x)

p(1)(x)

)r+k

ln{k,r}

(

q(1)(x)

p(1)(x)

)

]

×





∑

y∈Y

p(2)(y)

(

q(2)(y)

p(2)(y)

)r+k

ln{k,r}

(

q(2)(y)

p(2)(y)

)





=D{k,r}(P
(1)||Q(1)) +D{k,r}(P

(2)||Q(2))− 2kD{k,r}(P
(1)||Q(1))D{k,r}(P

(2)||Q(2)).

(53)
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The next theorem needs the log-sum inequality for ln{k,r}, which we mention in the next lemma.

Lemma 9. Let a1, a2, . . . an and b1, b2, . . . bn be non-negative numbers. In addition, a =
∑n

i=1 ai and b =
∑n

i=1 bi.
Then,

n
∑

i=1

ai

(

ai

bi

)r−k

ln{k,r}

(

ai

bi

)

≥ a
(a

b

)r−k

ln{k,r}

(a

b

)

.

Proof.

n
∑

i=1

ai

(

ai

bi

)r−k

ln{k,r}

(

ai

bi

)

= b

n
∑

i=1

bi

b

ai

bi

(

ai

bi

)r−k

ln{k,r}

(

ai

bi

)

= b

n
∑

i=1

bi

b
f

(

ai

bi

)

. (54)

We can prove that the function f(x) = xr−k+1 ln{k,r}(x) is a convex function x > 0 and for 0 < k ≤ 1
2 . Therefore,

n
∑

i=1

ai

(

ai

bi

)r−k

ln{k,r}

(

ai

bi

)

≥ bf

(

n
∑

i=1

bi

b

ai

bi

)

= bf

(

1

b

n
∑

i=1

ai

)

= bf
(a

b

)

= b
(a

b

)r−k+1

ln{k,r}

(a

b

)

, (55)

which indicates the proof.

Theorem 5. (Joint convexity) Let P(k) = {p(k)(x)}x∈X and Q(k) = {q(k)(x)}x∈X for k = 1, 2 are probability
distributions. Construct new probability distributions (1 − λ)P(1) + λP(2) = {(1 − λ)p(1)(x) + λp(2)(x)}x∈X , and
(1 − λ)Q(1) + λQ(2) = {(1− λ)q(1)(x) + λq(2)(x)}x∈X as convex combinations. Then,

D{k,r}((1 − λ)P(1) + λP(2)||(1− λ)Q(1) + λQ(2)) ≤ (1 − λ)D{k,r}(P
(1)||Q(1)) + λD{k,r}(P

(2)||Q(2)).

Proof. Note that, D{k,r}((1 − λ)P(1) + λP(2)||(1− λ)Q(1) + λQ(2)) =

∑

x∈X

((1− λ)p(1)(x) + λp(2)(x))

(

(1− λ)p(1)(x) + λp(2)(x)

(1− λ)q(1)(x) + λq(2)(x)

)r−k

ln{k,r}

(

(1 − λ)p(1)(x) + λp(2)(x)

(1− λ)q(1)(x) + λq(2)(x)

)

. (56)

Now, applying the log-sum inequality stated in Lemma 9 we find

((1− λ)p(1)(x) + λp(2)(x))

(

(1− λ)p(1)(x) + λp(2)(x)

(1− λ)q(1)(x) + λq(2)(x)

)r−k

ln{k,r}

(

(1 − λ)p(1)(x) + λp(2)(x)

(1− λ)q(1)(x) + λq(2)(x)

)

≤(1− λ)p(1)(x)

(

(1− λ)p(1)(x)

(1− λ)q(1)(x)

)r−k

ln{k,r}

(

(1− λ)p(1)(x)

(1− λ)q(1)(x)

)

+ λp(2)(x)

(

λ
p(2)(x)

λq(2)(x)

)r−k

ln{k,r}

(

λp(2)(x)

λq(2)(x)

)

.

(57)

Summing over x, we find the result.

Consider a transition probability matrix W = (wj,i)m×n, such that,
∑m

j=1 wj,i = 1 for all i = 1, 2, . . . n. Let

P = {p
(in)
i }ni=1 and Q = {q

(in)
i }ni=1 be two probability distributions. After a transition with W the new probability

distributions are WP = {p
(out)
j }mj=1 and WQ = {q

(out)
j }mj=1, respectively, where p

(out)
j =

∑n

i=1 wj,ip
(in)
i , and

q
(out)
j =

∑n

i=1 wj,iq
(in)
i . Now, we have the following theorem.

Theorem 6. (Information monotonicity) Given probability distributions P, Q and transition probability matrix W

we have D{k,r}(WP||WQ) ≤ D{k,r}(P||Q).

Proof. Definition 5 of the generalized divergence indicates that

D{k,r}(WP||WQ) =

m
∑

j=1

p
(out)
j

(

p
(out)
j

q
(out)
j

)r−k

ln{k,r}

(

p
(out)
j

q
(out)
j

)

=

m
∑

j=1

[

n
∑

i=1

wjip
(in)
i

](

∑n

i=1 wjip
(in)
i

∑n

i=1 wjiq
(in)
i

)r−k

ln{k,r}

(

∑n

i=1 wjip
(in)
i

∑n

i=1 wjiq
(in)
i

)

.

(58)
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Now, from Lemma 9 we find that

D{k,r}(WP||WQ) ≤
m
∑

j=1

n
∑

i=1

(

wjip
(in)
i

)

(

wjip
(in)
i

wjiq
(in)
i

)r−k

ln{k,r}

(

wjip
(in)
i

wjiq
(in)
i

)

=
n
∑

i=1



p
(in)
i

(

p
(in)
i

q
(in)
i

)r−k

ln{k,r}

(

p
(in)
i

q
(in)
i

)









m
∑

j=1

wji





=

m
∑

j=1

p
(in)
i

(

p
(in)
i

q
(in)
i

)r−k

ln{k,r}

(

p
(in)
i

q
(in)
i

)

since

m
∑

j=1

wji = 1.

(59)

Hence, we have D{k,r}(WP||WQ) ≤ D{k,r}(P||Q).

In Theorem 6, if the probability transition matrix W = (wji)m×n has m < n, then W partitions the random
variable X = (x1, x2, . . . xn) into m groups G1, G2, . . .Gn such that X = ∪m

j=1Gj , and Gk ∩ Gl = ∅. Then

p
(out)
j (Gj) =

∑

xi∈Gj
p
(in)
i . Now Theorem 6 indicates D(WP||WQ) ≤ D(P||Q), which is formally mentioned as

information monotonicity.

4 Information geometric aspects

This section is dedicated to the geometric nature of the generalized divergence. First recall a number of fundamental
concepts of information geometry [29]. A probability simplex is given by,

S = {P : P = (p1, p2, . . . pn), 0 ≤ pi ≤ 1,

n
∑

i=1

pi = 1}. (60)

with the distribution P described by n-independent probabilities (p1, p2, . . . pn). Consider a parametric family of
distributions P(x) with parameter vector x = (x1, x2, . . . xn) ∈ X , where X is a parameter space. If the parameter
space X is a differentiable manifold and the mapping x 7→ P(p,x) is a diffeomorphism we can identify statistical
models in the family as points on the manifold X . The Fisher-Rao information matrix E(ssT ), where s is the

gradient [s]i =
∂ logP(p,x)

∂xi
may be used to endow X with the following Riemannian metric

Gx(u, v) =
∑

i,j

uivj

∫

P(p,x)
∂

∂xi

logP(p,x)
∂

∂xj

logP(p,x)dp =
∑

i,j

uivjE

(

∂ logP(p,x)

∂xi

∂ logP(p,x)

∂xj

)

. (61)

If X is a discrete random variable then the above integral is replaced with a sum. An equivalent form of Gx(u, v)
for normalized distributions is given by

Gx(u, v) = −
∑

i,j

uivj

∫

P(p,x)
∂2

∂xj∂xi

logP(p,x)dp =
∑

i,j

uivjE

(

−
∂2

∂xj∂xi

logP(p,x)

)

. (62)

In information geometry, a function D(P||Q) for P ,Q ∈ S is called divergence if D(P||Q) ≥ 0 and D(P||Q) = 0
if and only if P = Q. Consider a point P with coordinates (p1, p2, . . . pn). Let Q = (P + d(P)) be another point
infinitesimally close to P . Using the Taylor series expansion we have

D(P + dP||P) =
∑

gijdpidpj +O(|dp|3), (63)

where gij is a positive-definite matrix. Hence, the Riemannian metric induced by the divergence D is given by

gij(P) =
∂2

∂pi∂pj
D{k,r}(P||Q)|Q=P . (64)

Thus, the divergence gives us a means of determining the degree of separation between two points on a manifold.
It is not a metric since it is not necessarily symmetric. Also, the length of small line segment is given by

ds2 =
1

2
D(P||P + dP). (65)
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Recalling Definition 5 of the generalized divergence we calculate

∂

∂pi
D{k,r}(P||Q) =

∂

∂pi

[

pi

(

pi

qi

)r−k

ln{k,r}

(

pi

qi

)

]

=

(

(2r + 1)
((

pi

qi

)

2k − 1
)

+ 2k
)(

pi

qi

)

2r−2k

2k

∂2

∂2pi
D{k,r}(P||Q) =

(

r(2r + 1)
((

pi

qi

)

2k − 1
)

− 2k2 + 4kr + k
)(

pi

qi

)

2r−2k

kpi

∂2

∂2pi
D{k,r}(P||Q)|Q=P =

−2k + 4r + 1

pi
,

∂2

∂pj∂pi
D{k,r}(P||Q) = 0.

(66)

Therefore, the Fisher information matrix G = (gij)n×n for the generalized divergence is given by

gij =

{

−2k+4r+1
pi

, for i = j

0 for i 6= j.
(67)

A manifold is called Hassian if there is a function Ψ(u) such that gij(P) = ∂ij(Ψ). Here, for i = j we have
∂ii(Ψ) = gii(u) =

1−2k+4r
u

. Integrating twice we find

Ψii(u) = c2 + u(c1 + 2k − 4r − 1) + (−2k + 4r + 1)u log(u), (68)

where c1 and c2 are integrating constants. For i 6= j we have ∂ii(Ψ) = gij = 0, that is Ψ(u) = c1u+ c2. Hence, the
statistical manifold induced by the generalized divergence is Hassian.

5 Conclusion

In recent years, the idea of entropy offers a broad scope of mathematical investigations. In this article, we introduce
the two parameter deformed entropy ln{k,r}. Interestingly, it can be reduced to the q-deformed logarithm for

k = r = q−1
2 and natural logarithm when q → 1. In table 1, we compare various properties of the logarithm, the

q-deformed logarithm and ln{k,r}. It leads us to propose the new generalized entropy S{k,r} with two parameters k
and r. Interestingly, our proposed entropy has a number of important characteristics which are not established in
the earlier proposals of two parameter generalized entropy. The table 2 contains the comparative properties of the
Shannon entropy, the Tsallis entropy, and S{k,r}. The table suggests that the new generalized entropy is efficient
to be utilized in classical information theory. These properties include chain rule, pseudo-additive property, sub-
additive property, and information monotonicity. Properties of the two parameter generalized divergenceD{k,r}, the
Tsallis divergence, and the Kullback–Leibler divergence are collected in table 3. Also, we justify that the statistical
manifold induced by the generalized divergence is Hassian.

An interested reader may extend this work further. In the Shannon information theory, the mutual information
of two random variables X and Y is defined by I(X ;Y ) = D(p(x, y)|p(x)p(y)), which is the Kullback-Leibler
divergence between two probability distributions p(x, y) and p(x)p(y). In case of the generalized entropy, one
may introduce the mutual information I{k,r}(X ;Y ) = D{k,r}(p(x, y)||p(x)p(y)) then investigates its properties.
Moreover, the mutual information has a crucial role in the literature of data processing inequalities. Hence, two
parameter deformation of data-processing inequalities will be very crucial in this direction.
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Table 1: Comparison between different logarithms
Properties with descrip-
tions

Logarithm Expressions

Definition of logarithm
logarithm log(x).

q-deformed
logarithm

lnq(u) =
u1−q−1
1−q

for q 6= 1 [30]

ln{k,r} ln{k,r}(u) =
uk−u−k

2kur = u2k−1
2kur+k , with r > 0 and 0 < k ≤ 1. (Defi-

nition 1)

Product law: Let u and v

be two non-zero real
numbers, then

logarithm log(uv) = log(u) + log(v)
q-deformed
logarithm

lnq(uv) = lnq(u) + lnq(v) + (1− q) lnq(u) lnq(v) [30]

ln{k,r} (uv)r+k ln{k,r}(uv) = ur+k ln{k,r}(u) + vr+k ln{k,r}(v) +

2kur+kvr+k ln{k,r}(u) ln{k,r}(v) (Lemma 2)

Log sum inequality: Let
a1, a2, . . . an and
b1, b2, . . . bn be
non-negative numbers. In
addition, a =

∑n
i=1 ai

and b =
∑n

i=1 bi. Then,

logarithm
∑n

i=1 ai log
ai

bi
≥ a log a

b

q-deformed
logarithm

∑n
i=1 ai lnq

(

ai

bi

)

≥ a lnq
(

a
b

)

[23]

ln{k,r}
∑n

i=1 ai

(

ai

bi

)r−k

ln{k,r}

(

ai

bi

)

≥ a
(

a
b

)r−k
ln{k,r}

(

a
b

)

(Lemma 9)
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Table 2: Comparison between different entropy
Properties with descriptions Entropy Expressions

Definition of entropy: Given
a random variable X with
probability distribution
P = {p(x)}x∈X

Shannon
entropy

H(X) = −
∑

x∈X p(x) log(p(x)) =
∑

x∈X p(x) log
(

1
p(x)

)

Tsallis
entropy

Sq(X) = −
∑

x∈X(p(x))q lnq(p(x))

S{k,r} S{k,r}(X) = −
∑

x∈X (p(x))
r+k+1

ln{k,r}(p(x)) =
∑

x∈X (p(x))k−r+1 ln{k,r}

(

1
p(x)

)

(Definition 2)

Positivity
Shannon
entropy

H(X) ≥ 0

Tsallis
entropy

Sq(X) ≥ 0

S{k,r} S{k,r}(X) ≥ 0

Chain rule for independent
random variables X and Y

Shannon
entropy

H(X,Y ) = H(X) +H(Y )

Tsallis
entropy

Sq(X,Y ) = Sq(X) + Sq(Y ) + (1 − q)Sq(X)Sq(Y ) [24]

S{k,r} S{k,r}(X,Y ) = S{k,r}(X) + S{k,r}(Y ) − 2kS{k,r}(X)S{k,r}(Y )
(Equation 30)

Chain rule for dependent
random variables X and Y

Shannon
entropy

H(X,Y ) = H(X) +H(Y |X)

Tsallis
entropy

Sq(X,Y ) = Sq(X) + Sq(Y |X). [24]

S{k,r} S{k,r}(X,Y ) = S{k,r}(X) + S{k,r}(Y |X). (Theorem 1)

Sub-additive property:
Given random variables
X1, X2, . . .Xn,

Shannon
entropy

H(X1, X2, . . . Xn) ≤
∑n

i=1 H(Xi)

Tsallis
entropy

Sq(X1, X2, . . . Xn) ≤
∑n

i=1 Sq(Xi) [24]

S{k,r} S{k,r}(X1, X2, . . .Xn) ≤
∑n

i=1 S{k,r}(Xi) (Theorem 2)

Strong sub-additive
property: Given any three
random variable X,Y and Z

we have

Shannon
entropy

H(X,Y, Z) +H(Z) ≤ H(X,Z) +H(Y, Z).

Tsallis
entropy

Sq(X,Y, Z) + Sq(Z) ≤ Sq(X,Z) + Sq(Y, Z) [24]

S{k,r} S{k,r}(X,Y, Z) + S{k,r}(Z) ≤ S{k,r}(X,Z) + S{k,r}(Y, Z). (Theo-
rem 3)
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Table 3: Comparison between different divergence
Properties with descrip-
tions

Divergence Expressions

Definition of divergence:
Given two probability
distributions
P = {p(x)}x∈X and
Q = {q(x)}x∈X

KL diver-
gence

D(P||Q) =
∑

x∈X p(x) ln
(

p(x)
q(x)

)

= −
∑

x∈X p(x) ln
(

q(x)
p(x)

)

.

Tsallis diver-
gence

Dq(P||Q) = −
∑

x∈X p(x) lnq

(

q(x)
p(x)

)

[23]

D{k,r} D{k,r}(P||Q) =
∑

x∈X p(x)
(

p(x)
q(x)

)r−k

ln{k,r}

(

p(x)
q(x)

)

=

−
∑

x∈X p(x)
(

q(x)
p(x)

)r+k

ln{k,r}

(

q(x)
p(x)

)

(Definition 5)

Non-negativity
KL diver-
gence

D(P||Q) ≥ 0

Tsallis diver-
gence

Dq(P||Q) ≥ 0

D{k,r} D{k,r}(P||Q) ≥ 0

Pseudo-additivity: Given
probability distributions
P(1) = {p(1)(x)}x∈X ,
Q(1) = {q(1)(x)}x∈X ,
P(2) = {p(2)(y)}y∈Y and
Q(2) = {q(2)(y)}y∈Y we
have

KL diver-
gence

D(P(1) ⊗ P(2)||Q(1) ⊗Q(2)) = D(P(1)||Q(1)) +D(P(2)||Q(2))

Tsallis diver-
gence

Dq(P(1) ⊗P(2)||Q(1) ⊗Q(2)) = Dq(P(1)||Q(1)) +Dq(P(2)||Q(2))−
(q − 1)Dq(P(1)||Q(1))Dq(P(2)||Q(2)) [23]

D{k,r} D{k,r}(P
(1) ⊗ P(2)||Q(1) ⊗ Q(2)) = D{k,r}(P

(1)||Q(1)) +

D{k,r}(P
(2)||Q(2))− 2kD{k,r}(P

(1)||Q(1))D{k,r}(P
(2)||Q(2)) (The-

orem 4)

Joint-convexity: Let

P(k) = {p(k)(x)}x∈X and
Q(k) = {q(k)(x)}x∈X for
k = 1, 2 are probability
distributions. Construct
new probability
distributions
(1−λ)P(1)+λP(2) = {(1−
λ)p(1)(x) + λp(2)(x)}x∈X ,
and
(1−λ)Q(1)+λQ(2) = {(1−
λ)q(1)(x) + λq(2)(x)}x∈X

as convex combinations.

KL diver-
gence

D((1−λ)P(1)+λP(2)||(1−λ)Q(1)+λQ(2)) ≤ (1−λ)D(P(1)||Q(1))+
λD(P(2)||Q(2))

Tsallis diver-
gence

Dq((1 − λ)P(1) + λP(2)||(1 − λ)Q(1) + λQ(2)) ≤ (1 −
λ)Dq(P(1)||Q(1)) + λDq(P(2)||Q(2)) [23]

D{k,r} D{k,r}((1 − λ)P(1) + λP(2)||(1 − λ)Q(1) + λQ(2)) ≤ (1 −

λ)D{k,r}(P
(1)||Q(1)) + λD{k,r}(P

(2)||Q(2)) (Theorem 5 )
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